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Abstract: The parallel machine replacement problem consists of finding a minimum cost replacement policy for a finite
population of economically interdependent machines. In this paper, we formulate a stochastic version of the problem and analyze
the structure of optimal policies under general classes of replacement cost functions. We prove that for problems with arbitrary
cost functions, there can be optimal policies where a machine is replaced only if all machines in worse states are replaced (Worse
Cluster Replacement Rule). We then show that, for problems with replacement cost functions exhibiting nonincreasing marginal
costs, there are optimal policies such that, in any stage, machines in the same state are either all kept or all replaced (No-Splitting
Rule). We also present an example that shows that economies of scale in replacement costs do not guarantee optimal policies that
satisfy the No-Splitting Rule. These results lead to the fundamental insight that replacement decisions are driven by marginal costs,
and not by economies of scale as suggested in the literature. Finally, we describe how the optimal policy structure, i.e., the
No-Splitting and Worse Cluster Replacement Rules, can be used to reduce the computational effort required to obtain optimal
replacement policies. © 2005 Wiley Periodicals, Inc. Naval Research Logistics 52: 409–419, 2005.
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1. INTRODUCTION

The parallel machine replacement problem (PMRP) con-
sists of finding a minimum cost replacement policy for a
finite population of economically interdependent machines.
At the start of each decision-making stage, one may choose
to either keep a machine or to replace it with a new one. The
economic interactions considered in the literature are related
to budget constraints that limit the number of machines that
can be replaced in each stage [8, 5]; constraints that limit the
number of machines that can be replaced in each stage in
order to guarantee enough capacity to satisfy demand [12];
and the structure of the replacement cost function [7]. This
paper addresses the latter issue, a PMRP where replacement

decisions for individual machines are linked by the replace-
ment cost structure.

We build on the model introduced by Jones, Zydiak,
and Hopp [7] in which machines deteriorate determinis-
tically over time. Replacement decisions for the individ-
ual machines are linked by a fixed cost incurred when-
ever one or more of the machines are replaced. Variable
costs per unit are also incurred for the replacement,
maintenance, operation, and salvage of machines. Re-
placement decisions trade off replacement costs with
nondecreasing maintenance and operating costs, and with
salvage values that are nonincreasing with machine age.
The authors present two intuitive rules that limit the
number of options that need to be considered in each
stage, and therefore, reduce the complexity of finding
optimal replacement policies. The No-Splitting Rule
(NSR) ensures that there is an optimal replacement policy
such that in any stage machines of the same age are either
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all kept or all replaced. The Older Cluster Replacement
Rule (OCRR) guarantees that there is an optimal policy
such that a machine is replaced only if all older machines
are replaced.

In this paper, we present a generalization of the problem
which we term the stochastic PMRP. The stochastic PMRP
consists of a set of independent Markovian processes, with
each process corresponding to the deterioration of one of the
machines that comprises the population. We also consider
general classes of replacement cost functions instead of the
fixed plus per-unit variable cost structure used in the liter-
ature.

In addition to presenting a formulation for the stochastic
PMRP, we provide structural and computational insights
about the problem. We show that, under the assumption of
an increasing failure rate, the structure of optimal re-
placement policies for the deterministic PMRP extends to
the stochastic version of the problem. Specifically, we
prove that optimal policies for the stochastic PMRP with
arbitrary replacement cost functions satisfy a result anal-
ogous to the OCRR. We then extend the NSR for replace-
ment functions with nonincreasing marginal costs. We
also present an example that shows that economies of
scale in replacement costs do not guarantee optimal re-
placement policies that satisfy the NSR. Together, these
results lead to the fundamental insight that replacement
decisions are driven by marginal costs, and not by econ-
omies of scale as is suggested in the PMRP literature.
Finally, we illustrate how the structural results can be
used to reduce the computational effort required to find
optimal replacement policies.

The remainder of the paper is organized as follows. In
Section 2, we provide an overview of the deterministic
PMRP and the assumptions used in the literature for its
analysis. We also summarize the existing structural results
for the problem. We formulate the stochastic PMRP and
characterize classes of optimal replacement policies in Sec-
tion 3. In Section 4, we describe how the structure of
optimal policies can be used to reduce the computational
effort to solve the problem. We conclude in Section 5 by
summarizing the contributions of the paper.

2. LITERATURE REVIEW

The deterministic PMRP introduced by Jones, Zydiak,
and Hopp [7] consists of finding a minimum cost replace-
ment policy for a finite population of machines over a
planning horizon that can be finite or infinite. The authors
define a group of machines of the same age to be a cluster.
We denote the size of the population and the initial number
of clusters N and n, respectively. At the start of each stage,
the decisions are to either keep a machine or to replace it

with a new one. Thus, one must consider a total of 2N

replacement options in each stage. In the case of a T-stage
problem, all machines are salvaged at the end of the plan-
ning horizon (start of stage T � 1).

Prior to introducing notation to describe the determin-
istic PMRP, we note that the structural properties and
managerial insights developed in the literature are for the
general case of time-varying parameters, i.e., the param-
eters and functions comprising the models in the litera-
ture are indexed with a subscript t that represents the
stage for which they apply. To simplify the notation in
the paper, we focus on the case of stationary parameters.
However, and unless noted otherwise, the proofs and
discussion also apply to the case of time-varying param-
eters. Hence, the models in the deterministic PMRP lit-
erature can be specified with the following parameters
and functions:

m(i): maintenance and operating costs of an i-year
old machine;

s(i): salvage value of an i-year old machine;
p: variable purchase cost of a new machine;
K: fixed cost incurred if any purchases occur in a

given stage; and
�: discount factor [� � 1/(1 � r) where r is the

discount rate associated with the time value
of money].

McClurg and Chand [9] define the function O(i) �
m(i) � s(i) � �s(i � 1) to account for both the mainte-
nance and operating costs of an i-year old machine, as well
as its depreciation in a given stage. With the parameters
introduced above, the replacement cost function, R( y), de-
fined as the cost of replacing y machines in a given stage,
has the form:

R�y� � � 0, y � 0,
K � p � y, y � 0. (1)

Jones, Zydiak, and Hopp [7] show that the replacement
cost structure in (1) leads to the NSR. The NSR guarantees
that there is an optimal replacement policy such that in any
stage machines of the same age are either all kept or all
replaced. The NSR, furthermore, ensures that machines
remain in the same cluster through the end of the planning
horizon. Consequently, the state of the system can be de-
fined as the sizes and ages of the clusters that comprise the
population. This results in a decrease in the number of
replacement options that need to be considered in each stage
from 2N to at most 2n.

In addition to the NSR, optimal policies for the PMRP
can satisfy other properties that depend on parameter as-
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sumptions. Next, we present the different assumptions con-
sidered in the literature, followed by a summary of the
structural results.

a. For i � 0, m(i) is nondecreasing in i, i.e., for j � i,
m(j) � m(i).

b. For i � 0, s(i) is nonincreasing in i, i.e., for j � i,
s(j) � s(i); and s(0) � p.

c. For i � 0, m(i) � s(i) is nondecreasing in i, i.e., for
j � i, m(j) � s(j) � m(i) � s(i).

ĉ. For i � 1, m(i) � s(i) is nondecreasing in i, i.e., for
j � i � 1, m(j) � s(j) � m(i) � s(i).

d. For i � 0, m(i) � s(i) � m(0) � s(0).
e. For i � 1, O(i � 1) � O(i).

An additional assumption from the deterministic PMRP
literature is that machines of a given maximum allowable
age denoted a� must be replaced.

Jones, Zydiak, and Hopp [7] show that for the replace-
ment cost function given in Eq. (1), assumptions (a), (b),
and (c) lead to the OCRR; that is, there is an optimal policy
such that a machine is replaced only if all older machines
are replaced. Tang and Tang [10] make use of the assump-
tion that s(0) � p, and replace assumption (c) with (d) (a
more general assumption) in order to establish that there is
an optimal policy that satisfies a stronger result, the All Or
None Rule (AONR). The AONR states there is an optimal
policy such that in each stage machines in the population are
either all kept or all replaced. Hopp, Jones, and Zydiak [6]
argue that assumption (d) places an undue restriction on the
purchase price of a new machine. Furthermore, they show
that if assumption (c) only applies to i � 1, then the AONR
does not hold but the OCRR does. This modification cor-
responds to assumption (ĉ), which we use in the remainder
of the paper. Finally, McClurg and Chand [9] replace as-
sumption (ĉ) with (e), which they claim is more commonly
observed in practice due to the high decline in salvage
values in the early stages of operation of a machine. They
find that, for the replacement cost function given in Eq. (1)
and under assumptions (a), (b), and (e), there is an optimal
policy that satisfies the OCRR.

3. THE STOCHASTIC PARALLEL MACHINE
REPLACEMENT PROBLEM

In this section, we introduce the stochastic PMRP and
show that, under the assumption of an increasing failure
rate, the structure of optimal replacement policies for the
deterministic PMRP extends to the stochastic version of the
problem. Specifically, we prove that the assumptions used
to establish the NSR and the OCRR for the deterministic

PMRP are sufficient to extend the rules to the stochastic
PMRP with increasing failure rate.

3.1. Model Formulation

We formulate the stochastic PMRP as a set of N inde-
pendent Markovian processes, with each process corre-
sponding to the deterioration of one of the N machines that
comprise the population. The costs in the model are the
same as in the deterministic version of the problem, and
thus, the replacement cost function, R( y), links the replace-
ment decisions. Each machine deterioration process is de-
fined over a finite set of states, � � {0, 1, 2, . . . , a� },
whose elements are ordered from best/new to worst/failed.
We also assume that all costs in the model are bounded.1

The Markovian deterioration processes require the specifi-
cation of a set of probabilities, pij, @i, j � �, where pij is
the probability that a machine transitions from state i to
state j in a stage when the decision is to keep it. Because
replacements occur at the start of a stage, p0j is the proba-
bility that a newly-replaced machine transitions into state j.

We assume that machines exhibit an increasing failure
rate as defined by Derman [3]. The increasing failure rate
assumption states that machines in better states are more
likely to remain in better states than machines in worse
states. Mathematically, the assumption is expressed as

�
j�0

l

pij � �
j�0

l

pkj, � l, i � k � �. (2)

Derman [3] shows that for every nondecreasing function
g�, expression (2) is equivalent to

�
j��

pijg�j� � �
j��

pkjg�j�, � i � k � �. (3)

Hereafter, we refer to this result as Derman’s Lemma.
We now present a dynamic programming formulation for

the stochastic PMRP that is similar to the one for the deter-
ministic PMRP in [7]. We represent the state of the system in
stage t of a stochastic PMRP as an N-dimensional vector, X� t �
[X1

t , X2
t , . . . , XN

t ], in which each vector component corresponds
to the state of a machine. Recall that a policy is a mapping that
specifies a decision for each machine, for every possible stage
and state combination. We denote the N-dimensional mapping
for stage t and state X� t, �� (t, X� t), in which each component �i(t,
X� t) is defined as follows:

1 These assumptions are consistent with the deterministic PMRP
and ensure that the expectations in the remainder of the paper are
well defined. The assumptions also guarantee the existence of an
optimal replacement policy.
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�i�t, X� t� � � 1, when policy � specifies that for stage t and state X� t,
machine i is to be replaced with a new one,

0, otherwise.
(4)

The expected discounted cost of managing the system in
state X� t under policy � from the start of stage t until the end
of the planning horizon, given the state of the system, is
written recursively as follows:

ft
��X� t� � R��

i�1

N

�i�t, X� t�� � �
i�1

N

�i�t, X� t���s�Xi
t� � m�0��

� �
i�1

N

�1 	 �i�t, X� t��m�Xi
t� � � � E�ft�1

� �X� t�1� � X� t, �� �t, X� t��. (5)

The first three terms correspond to the costs incurred in
stage t and the last term is for the sum of discounted
expected costs from the start of t � 1 until the end of the
planning horizon. In the case of a finite horizon problem, all
machines are salvaged at the start of stage T � 1. Thus, the
boundary condition for a given state, X� T�1, and policy, �,
are given by the following expression:

fT�1
� �X� T�1� � ��

i�1

N

s�Xi
T�1�. (6)

The optimal objective value function for each stage and state is
defined as the minimum expected discounted cost of managing
the system from the given stage and state through the end of
the planning horizon. The optimal objective value function is
given by a replacement policy that minimizes the right-hand
side of Eqs. (5) and (6) for every stage and state. In the remainder
of the paper, we use �* to denote such optimal policies.

3.2. The Worse Cluster Replacement Rule

In this section we begin to characterize optimal replace-
ment policies for the stochastic PMRP. We show that the
assumptions used to establish the OCRR for the determin-

istic PMRP guarantee the existence of optimal replacement
policies with the same structure for the stochastic PMRP with
increasing failure rate. We refer to the result as the Worse
Cluster Replacement Rule (WCRR) because in the stochastic
version of the problem machine condition does not correspond
to age. First, we present an intermediate lemma:

LEMMA 1: Under assumptions (a) and (b), the optimal
objective value function of the stochastic PMRP with increas-
ing failure rate is nondecreasing in each component of the
state-space, i.e.,

ft
�*�i, X2

t , . . . , XN
t � � ft

�*�j, X2
t , . . . , XN

t �, � i � j � �,

X2
t , . . . , XN

t � �N�1, t � 1, 2, . . . , T � 1. (7)

PROOF: See the Appendix.

Lemma 1 states that the optimal expected discounted
costs associated with machines in better states are no greater
than those with machines in worse states. Next, we present
theorems that describe the structure of replacement policies
for the stochastic PMRP with increasing failure rate.

THEOREM 1 (The Worse Cluster Replacement Rule): Un-
der assumptions (a), (b), and (ĉ), the stochastic PMRP with
increasing failure rate has an optimal policy such that a ma-
chine is replaced only if all machines in worse states are replaced.

PROOF: We prove the result by contradiction. Suppose
there exists an instance of the stochastic PMRP where there is
no optimal policy satisfying the WCRR. Let �̂ be an optimal
policy for the given instance. Without loss of generality, there
is a stage t and state i, j, X3

t , . . . , XN
t where �̂ specifies that

machine 1 in state i is to be replaced and machine 2 in state j
is to be kept (0 	 i 	 j). We also consider a policy �� , which
differs from �̂ in that the machine in state i is kept and the
machine in state j is replaced in stage t. The policies are
otherwise identical. We have that

ft
�̂�i, j, X3

t , . . . , XN
t � 	 ft

�� �i, j, X3
t , . . . , XN

t � � m�j� 	 m�i� � s�j� 	 s�i�

���

� � � � E�ft�1
�̂ �X� t�1 � i, j, X3

t , . . . , XN
t , �̂�t, i, j, X3

t , . . . , XN
t ���

�E�ft�1
�� �X� t�1 � i, j, X3

t , . . . , XN
t , �� �t, i, j, X

3

t
, . . . , XN

t ��� �
����

.
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Assumption (ĉ) implies that term (�) is nonnegative. The
nonnegativity of term (��) follows from Lemma 1 and Der-
man’s Lemma. The expectations are evaluated by conditioning
on the realizations of X3

t�1, . . . , XN
t�1 as is done in the proof of

Lemma 1. Consequently, ft
�̂(i, j, X3

t , . . . , XN
t ) � ft

�� (i, j, X3
t , . . . ,

XN
t ) � 0. The same argument can be repeated to construct a

policy that satisfies the WCRR and that is at least as good as
policy �̂. This contradicts the assumption that there is no opti-
mal policy satisfying the WCRR and completes the proof. �

We extend Theorem 1 to cases where assumption (ĉ) is
replaced with assumption (e). In other words, we extend the
OCRR, under the assumptions of McClurg and Chand [9], to
the stochastic PMRP with increasing failure rate. The exten-
sion requires modifying the cost function O�, as follows, so
that it lends itself to the analysis of stochastic deterioration:

O�i� � �
m�0� 	 � �

j��

p0js�j�, i � 0,

m�i� � s�i� 	 � �
j��

pijs�j�, i � 1.
(8)

In addition, we assume that assumption (e) applies to the above
cost function. These modifications constitute generalizations of
the original cost function and assumption because the deter-
ministic PMRP can be obtained as an instance of the stochastic
PMRP defined over the set of states {0, 1, 2, . . . , a�} with the
following transition probabilities: pij � {1 for j � i � 1; 0
otherwise}, if a machine is kept; and pij � {1 for j � 1; 0
otherwise}, if a machine is replaced with a new one.

THEOREM 2: Under assumptions (a), (b), and (e), the
stochastic PMRP with increasing failure rate has an optimal
policy that satisfies the WCRR, i.e., a policy where a machine
is replaced only if all machines in worse states are replaced.

PROOF: We begin by defining an auxiliary function,
ht

�(X� t), as the expected discounted (modified) cost of man-
aging a system in state X� t under policy � from the start of
stage t until the end of the planning horizon. The function
can be written recursively as follows:

ht
��X� t� � R� �

i�1

N

�i�t, X� t�� � �
i�1

N

�i�t, X� t�O�0� � �
i�1

N

�1

	 �i�t, X� t��O�Xi
t� � � � E�ht�1

� �X� t�1� � X� t, �� �t, X� t��. (9)

In the case of a finite horizon problem, we assume that all
machines are salvaged at the start of stage T � 1. Thus, the
boundary condition for a given state X� T�1 and policy � are
given by the following expression:

hT
��X� T� � R� �

i�1

N

�i�T, X� T�� � �
i�1

N

�i�T, X� T�O�0�

� �
i�1

N

�1 	 �i�T, X� T��O�Xi
T�. (10)

We show by induction that ft
�(X� t) � ht

�(X� t) � ¥i�1
N s(X� i

t).
The result is immediate for stage T. For an arbitrary stage t
given that the result holds for stage t � 1, we have

ht
��X� t� 	 �

i�1

N

s�X� i
t� � R� �

i�1

N

�i�t, X� t�� � �
i�1

N

�i�t, X� t�O�0�

� �
i�1

N

�1 	 �i�t, X� t��O�Xi
t� � � � E�ht�1

� �X� t�1� � X� t, �� �t, X� t�� 	 �
i�1

N

s�X� i
t�

� R� �
i�1

N

�i�t, X� t�� � �
i�1

N

�i�t, X� t���s�Xi
t� � m�0��

� �
i�1

N

�1 	 �i�t, X� t��m�Xi
t� � � � E	ht�1

� �X� t�1� 	 �
i�1

N

s�X� i
t�1� 
 X� t, �� �t, X� t��

� R� �
i�1

N

�i�t, X� t�� � �
i�1

N

�i�t, X� t���s�Xi
t� � m�0�� � �

i�1

N

�1 	 �i�t, X� t��m�Xi
t�

� � � E�ft�1
� �X� t�1� � X� t, �� �t, X� t�� by the induction hypothesis.
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We see that the last expression is equal to ft
�(X� t). The

problems of finding policies that minimize ft
�(X� t) and

ht
�(X� t) for each stage and state are equivalent because the

difference in the two value functions is a sunk cost, i.e., a
cost that is independent of the set of decisions for each stage
and state.

To show that assumption (e) guarantees that there is an
optimal replacement policy that satisfies the WCRR for the
stochastic PMRP with increasing failure rate, we note that
the problem of finding a policy that minimizes ht

�(X� t) can
be solved by minimizing ft

�(X� t) with s(i) � 0 and m(i) �
O(i), @i. Assumption (e) for the problem of minimizing
ht

�(X� t) ensures that the new problem satisfies assumptions
(a), (b), and (ĉ). Therefore, by Theorem 1 there is an
optimal policy that satisfies the WCRR. �

The results in this section do not depend on the structure
of the replacement cost function which means that the
WCRR is valid for deterministic and stochastic PMRPs with
arbitrary replacement cost functions. Our proofs differ from
earlier proofs of the OCRR for the deterministic PMRP that
rely on a function consisting of fixed plus variable costs.

3.3. The No-Splitting Rule

In the previous subsection, we established that the
WCRR does not depend on the structure of the replacement
cost function. In this section, we show, on the other hand,
that the NSR does depend on the structure of the replace-
ment cost function. Jones, Zydiak, and Hopp [7] showed
that fixed plus variable replacement costs guarantee optimal
replacement policies satisfying the NSR. Here, we extend
the NSR to the stochastic PMRP with increasing failure rate
for replacement cost functions with nonincreasing marginal
costs. We begin by defining functions with nonincreasing
marginal costs (cf. [11]).

DEFINITION 1: A replacement cost function, R( y), ex-
hibits nonincreasing marginal costs if

R�y2 � 
� 	 R�y2� � R�y1 � 
� 	 R�y1�,

� 
 � 0, y2 � y1 � 0. (11)

The following theorem proves that the NSR holds for the
stochastic PMRP with increasing failure rate and nonin-
creasing marginal costs.

THEOREM 3 (The No-Splitting Rule): Replacement
cost functions with nonincreasing marginal costs guar-
antee that there is an optimal policy that satisfies the

NSR for the stochastic PMRP with increasing failure
rate. That is, there is an optimal policy such that in any
stage machines in the same state are either all kept or all
replaced.

PROOF: We proceed by contradiction. Suppose that
there is an instance of the stochastic PMRP with increasing
failure rate and a replacement cost function with nonin-
creasing marginal costs such that there is no optimal policy
satisfying the NSR. Let �� be an optimal policy for the
problem instance. This means that there is a stage t� and a
state X� t�, where �� specifies different actions for two ma-
chines that are part of a cluster in state k. Let the indices 1
and 2 correspond to two machines in a state k with �� 1 � 1
and �� 2 � 0.

The optimality of �� implies that the incremental value of
replacing machine 1 instead of keeping it is nonnegative.
That is,

R�	 �
i�1

N

�� i�t�, X� �t�� 	 1� 	 R� �
i�1

N

�� i�t�, X� �t�� � m�k�

� s�k� 	 m�0�

� � � �E�f�t�1
�� �X�t�1� � X� �t, 0, 0, �� 3�t�, X� �t�, . . . , �� N�t�, X� t���

	 E�f�t�1
�� �X�t�1� � X� �t, �� �t�, X� �t��� � 0. (12)

Similarly, the incremental value of replacing both machines
together for t� and X� t� instead of splitting them is

R� �
i�1

N

�� i�t�, X� t��� 	 R�	 �
i�1

N

�� i�t�, X� t��� � 1� � m�k� � s�k�

	 m�0� � � � �E�f�t�1
�� �Xt��1� � X� t�, �� �t�, X� t���

	 E�f�t�1
�� �Xt��1� � X� t�, 1, 1, �� 3�t�, X� t��, . . . , �� N�t�, X� t����. (13)

Since R( y) has nonincreasing marginal costs,

R� �
i�1

N

�� i�t�, X� t��� 	 R�	 �
i�1

N

�� i�t�, X� t��� � 1�
� R�	 �

i�1

N

�� i�t�, X� t��� 	 1� 	 R� �
i�1

N

�� i�t�, X� t��� . (14)

We also have that
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E�f�t�1
�� �Xt��1� � X� t�, �� �t�, X� t���

	 E�f�t�1
�� �Xt��1� � X� t�, 1, 1, �� 3�t�, X� t��, . . . , �� N�t�, X� t��� � EX3

t��1, . . . ,XN
�t�1	 �

j2��

p0j2 � �
j1��

�pkj1 	 p0j1�

� f�t�1
�� �j1, j2, X3

t��1, . . . , XN
t��1� 
 X� 3

t� , . . . , X� N
t� , �� 3�t�, X� t��, . . . , �� N�t�, X� t���.

Since ¥j1�� ( pkj1
� p0j1

) � ft��1
�� ( j1, j2, X3

t��1, . . . , XN
t��1)

is nondecreasing in j2, Derman’s Lemma implies that:
¥j2�� ( pkj2

� p0j2
) ¥j1�� ( pkj1

� p0j1
) � ft��1

�� ( j1, j2,
X3

t��1, . . . , XN
t��1) � 0. In turn, this means that

E�f�t�1
�� �Xt��1� � X� t�, �� �t�, X� t���

	 E�f�t�1
�� �Xt��1� � X� t�, 1, 1, �� 3�t�, X� t��, . . . , �� N�t�, X� t���

� E�f�t�1
�� �Xt��1� � X� t�, 0, 0, �� 3�t�, X� t��, . . . , �� N�t�, X� t���

	 E�f�t�1
�� �Xt��1� � X� t�, �� �t�, X� t���. (15)

Together, Eqs. (14) and (15) lead to the conclusion that
there is nonnegative incremental value in replacing both
machines for t� and X� t�, i.e., Eq. (13) is greater than or equal
to the left-hand side of Eq. (12), which is nonnegative. By
applying the argument repeatedly, it is possible to construct
a policy that satisfies the NSR and that is at least as good as
�� . This contradicts the assumption that there is no optimal
policy for the problem instance that satisfies the NSR, and
therefore, completes the proof. �

The proof of the NSR presented in [7] for the determin-
istic PMRP relies on fixed plus variable replacement costs.
Above, we extended the result to the general class of func-
tions with nonincreasing marginal costs. The PMRP litera-
ture incorrectly suggests that the NSR derives from econo-
mies of scale in replacement costs. The following example
provides an instance of the deterministic PMRP with econ-
omies of scale in replacement costs where the NSR does not
hold. Prior to presenting the example and to clarify the
distinctions between different types of functions, we present
definitions for functions that exhibit economies of scale. We
adapt these definitions from Varian [11]:

DEFINITION 2: A replacement cost function exhibits
economies of scale if

R�cy� � cR�y�, � c � 1, y � 0. (16)

DEFINITION 3: A replacement cost function has nonin-
creasing average costs if

R�y � 
�

y � 

�

R�y�

y
, � 
 � 0, y � 0. (17)

For y � 0, the average replacement costs are defined as
limy30�[R( y)/y].

Replacement cost functions that have nonincreasing mar-
ginal costs (i.e., that satisfy Definition 1) exhibit economies
of scale. The replacement cost function used in the follow-
ing example shows that the reverse is not true in general.

EXAMPLE 1: We present a finite horizon (1 stage)
instance of the deterministic PMRP with economies of scale
in replacement costs where the NSR does not hold. In this
example, we let the replacement cost function be

R�y� � �
0, y � 0,
1, 0 
 y � 2,
1
2

y, y � 2.
(18)

As illustrated in Figure 1, the replacement cost function
given in Eq. (18) has nonincreasing average costs per unit
and hence exhibits economies of scale. However, the func-
tion does not exhibit nonincreasing marginal costs; i.e., it
does not satisfy Definition 1. For example, if we let y1 � 1,
y2 � 2, 
 � 1, then R( y2 � 
) � R( y2) � R( y1 � 
) �
R( y1).

Next, we construct an instance of the deterministic PMRP
using the replacement cost function given by (18) such that
the NSR does not hold. Consider a population of 3 machines
of ages 1, 1, and 2, and suppose that the salvage value for
machines of all ages is 0 [s(i) � 0, @i], and that the
maintenance and operating costs are given by the function
m(i) � i2/3, @i. The policy to replace the machine of age
2 and one of the machines of age 1, thus splitting the cluster
of age 1, is optimal with a cost of 4/3. The cost of this policy
is strictly less than the cost associated with implementing
any other policy. This counterexample demonstrates that
replacement cost functions that exhibit economies of scale
do not guarantee the existence optimal replacement policies
satisfying the NSR.

Example 1 and Theorem 3 reveal that optimal replace-
ment decisions for the PMRP are driven by the marginal
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cost structure and not by economies of scale. That is,
decisions to replace additional machines are evaluated
based on their incremental value (marginal benefits minus
marginal costs). Nonincreasing marginal replacement costs
guarantee that there is (nonnegative) value in replacing
additional machines of the same age, whereas, nonincreas-
ing average replacement costs per unit do not. The results in
the literature are obtained for replacement cost functions
consisting of fixed and per-unit variable costs. These cost
functions satisfy Definition 1 (nonincreasing marginal
costs), and therefore, are members of a special class of
functions that satisfy Definition 2 (economies of scale).

4. FINDING OPTIMAL REPLACEMENT
POLICIES

Finding an optimal replacement policy for the PMRP
involves selecting a best replacement option for every pos-
sible state X� t and stage t, i.e., finding �*(t, X� t), @X� t � �N,
t � 1, . . . , T. Computational approaches for the problem
usually involve both the enumeration of each replacement
option for every stage and state combination (an exponential
number), as well as, the solution of an optimization prob-
lem. In this section, we consider a linear programming
approach to find optimal replacement policies for the infi-
nite-horizon,2 stochastic PMRP with stationary parameters.
Through the analysis of the linear program (LP), we illus-
trate how the NSR and WCRR reduce the computational
effort required to find optimal replacement policies for the
stochastic PMRP. We begin by discussing the existing com-
putational approaches for the deterministic PMRP with
fixed plus variable replacement costs.

4.1. Solving the Deterministic PMRP

As discussed in Section 2, Jones, Zydiak, and Hopp [7]
formulate the deterministic PMRP as a (backward) dynamic
program. They consider infinite-horizon problems with sta-
tionary parameters and propose a solution strategy that
requires solving a LP. It is possible to develop a similar LP
for finite-horizon problems with time-varying parameters;
however, optimal policies for finite-horizon dynamic pro-
grams are usually computed recursively by backwards in-
duction. For the infinite-horizon problem with time-varying
parameters, Jones, Zydiak, and Hopp [7] explain that by
invoking standard forecast horizon results, optimal deci-
sions for a given number of periods can be obtained by
solving a sequence of finite-horizon problems in a rolling-
horizon fashion. In all cases, the size of the underlying
optimization problem, and hence the computational effort to
obtain optimal replacement policies, grows exponentially
with the number of initial clusters, n. McClurg and Chand
[9] introduce a forward dynamic program that relies on the
OCRR and on a dominance property for finite-horizon prob-
lems. This approach is slightly more efficient than that of [7]
because it is only necessary to specify replacement options
for the stage and state combinations that are consistent with
the ages of the initial clusters that comprise the population.
Unfortunately, the size of the optimization problem grows
exponentially with the number of stages, T. Finally, Chen
[2] proposes shortest path algorithms that exploit the AONR
for infinite-horizon problems with stationary parameters and
for finite-horizon problems with time-varying parameters.
These algorithms are efficient but rely on overly restrictive
assumptions to ensure that the AONR applies, as discussed
earlier.

In addition to the aforementioned algorithms, Chen [2]
formulates the finite horizon PMRP with fixed plus variable
replacement costs and time-varying parameters as a zero-
one integer program. He proposes an exact solution proce-

2 Since the structural results described in the previous section
apply to arbitrary planning horizons, they also apply to the infinite-
horizon problem.

Figure 1. Average replacement costs per unit.
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dure based on Benders’ decomposition. The key to the
efficiency of this approach is that the decision to allow
replacements in a given stage is separated from the choice
of which clusters to replace. After the selection of a given
set of stages in which replacements are allowed, the prob-
lem can be decomposed into n subproblems, one for each
cluster. The subproblems are independent which means that
the replacement decisions for each of the clusters does not
depend on the ages of the other clusters, and therefore, it is
not necessary to list the exponential number of possible
stage-state combinations in the original problem. Unfortu-
nately, the selection of an optimal set of stages in which
replacements are allowed, involves solving a sequence of
zero-one integer programs. Furthermore, the number of
binary variables in the integer programs increases linearly
with the length of the planning horizon, T. Through a
computational study, however, the author shows that the
procedure is capable of solving large-scale problems, and
that the computational time increases slowly with T.

Except for the zero-one integer program of [2] that relies
on the fixed plus variable cost structure, the computational
approaches described above can be used to find optimal
replacement policies for deterministic problems with gen-
eral classes of replacement cost functions.3 That is, the
linear programming approach of [7] or the forward dynamic
programming approach of [9] can be used for the determin-
istic PMRP with nonincreasing marginal costs because the
NSR applies. The OCRR is also required for the forward
dynamic programming approach of [9]. Also, one may use
the shortest path algorithms of [2] if the assumptions re-
quired for the AONR hold. These algorithms, however,
cannot be used to solve the stochastic PMRP because they
assume that the number of clusters in the population does
not increase over the planning horizon (a corollary to the
NSR). In the stochastic PMRP, clusters can be split even if
the same actions are applied to them. In addition, the for-
ward dynamic programming formulation of [9] and the
zero-one integer program of [2] rely on the fact that ma-
chines deteriorate deterministically.

4.2. Solving the Stochastic PMRP

Next, we consider a linear programming approach to find
optimal replacement policies for the infinite-horizon, sto-

chastic PMRP with stationary parameters.4 The insights we
develop, however, generalize to problems with finite hori-
zons or time-varying parameters. The computational effort
required to solve the infinite-horizon, stochastic PMRP with
stationary parameters relates to the fact that the size of the
corresponding LP grows exponentially with the parameters
of the problem. For this reason, our discussion of complex-
ity focuses on the size of the LP. The number of variables
and constraints in the LP are (a� � 1)N and 2N � (a� � 1)N,
respectively. The number of variables comes from the num-
ber of possible state-vectors used to describe the population.
Each machine can be in one of (a� � 1) states, and therefore,
the total number of states is (a� � 1)N. The number of
constraints is equal to the product of the number of states
times the number of replacement options available for each
state. As each machine may either be kept or replaced, the
number of replacement options for each state is 2N.

Because the machines in the population are homogeneous
with respect to costs and deterioration, it is possible to
relabel them so that their states are ordered from best to
worst. Jones, Zydiak, and Hopp [7] show that this reduces
the number of variables in the linear program to �N

N�a� , i.e.,
the number of combinations of size N from a set of size N �
a� . They also make use of the facts (i) that there is an optimal
policy where machines in state 0 are kept, (ii) that machines
in state a� must be replaced, and (iii) that for two machines
in the same state it is equivalent to replace one or the other,
to show that the number of constraints in the LP reduces to
¥k�0

N �N�k
N�k�1 � �k

a� �2�k � 2k � ¥k�0
N (N � k � 1) �

�k
a� �2�k � 2k.
We now show how the WCRR and the NSR reduce the

number of constraints in the LP, and thus the computational
effort to solve the infinite-horizon, stochastic PMRP with
stationary parameters. Recall that the number of constraints
corresponds to the total number of replacement options. If
the WCRR holds, however, at most N � 1 replacement
options need to be considered for each state, instead of at
most 2N. To clarify the number or replacement options
when the WCRR holds, consider a population of three
machines. The possible replacement options are to either do
nothing, or to replace machine 3 (the one in the worst state),
or to replace machines 2 and 3 (the two worst machines), or
to replace the three machines. The total number of con-
straints in the LP in general when the WCRR applies is
¥k�0

N (N � k � 1) � �k
a� �2�k � (k � 1).

When the NSR applies, there is an optimal replacement
policy that prescribes the same decision for all of the ma-
chines in the same state. In the three-machine example, in
states where all machines are the same age, the possible3 The algorithm of [2] does not extend to the case of general

replacement costs because it is not possible to separate the clusters
that comprise the population. With a general replacement cost
structure, after the decision to allow replacements in a given stage,
the marginal replacement costs for a given cluster can still depend
on the decisions for the other clusters in the population.

4 References such as Bertsekas [1] and Feinberg and Shwartz [4]
provide background on using LPs to solve stochastic dynamic
programs.
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options are to either do nothing or to replace the three
machines. The NSR produces significant reductions in the
number of constraints in the LP when the size of the
population, N, is large relative to the number of states, a� �
1. In the special case of the deterministic PMRP, where it is
possible to redefine the state-space of the problem to be the
sizes and ages of the clusters that comprise the population,
the number of variables in the LP reduces to Pn

a� �1, i.e., the
number of permutations of size n from a set of size a� � 1.
The number of constraints in the LP is 2n�n

a� �1 � 2n�1
n �

�n�1
a� �1 � 2n�2�2

n � �n�2
a� �1, when the OCRR does not apply,

and (n � 1)�n
a� �1 � 2n�1

n � �n�1
a� �1 � (n � 1)�2

n � �n�2
a� �1,

when it does.
To make the above discussion tangible, we consider the

following example:

EXAMPLE 2: We consider infinite-horizon, determinis-
tic and stochastic instances of the PMRP with stationary
parameters. These instances involve 15 machines initially
clustered in 4 different ages/states, with the maximum al-
lowable age/state of 5, i.e., N � 15, n � 4, and a� � 5. The
number of variables and constraints in the LP, depending on
the rules that apply, are shown in Table 1.

The example illustrates how making use of the structural
results can significantly reduce the size of the optimization
problem, and hence the computational effort, to solve the
PMRP. Interestingly, we observe that the OCRR/WCRR
alone can significantly reduce the number of replacement
options that need to be considered. This result can be
particularly useful for PMRPs with arbitrary replacement
cost functions or with stochastic deterioration. This case is
not considered in the literature because earlier proofs of the
OCRR assume that the NSR, which requires a replacement
cost function with nonincreasing marginal costs, holds.
Also, as expected, we observe that the NSR can substan-
tially reduce the size of deterministic PMRPs because it is
only necessary to keep track of clusters, as opposed to
individual machines, in the state-space of the problem.

5. SUMMARY AND CONCLUSIONS

The existing literature on the PMRP centers on two
properties for the case of deterministic deterioration and
replacement cost functions consisting of fixed and per-unit

variable purchase costs. The NSR ensures that there is an
optimal replacement policy such that in any stage machines
of the same age are either all kept or all replaced. The
OCRR guarantees that there is an optimal policy such that a
machine is replaced only if all older machines are replaced.

In this paper, we formulate the stochastic PMRP as a set
of independent Markovian processes and show that under
the assumption of an increasing failure rate the structure of
optimal replacement policies for the deterministic PMRP
extends to the stochastic version of the problem. Specifi-
cally, we prove that optimal policies for the stochastic
PMRP with arbitrary replacement cost functions satisfy a
result analogous to the OCRR. We also extend the NSR for
replacement functions with nonincreasing marginal costs. In
addition, we present an example that shows that economies
of scale in replacement costs do not guarantee optimal
replacement policies that satisfy the NSR. Together, the
example and the results lead to the conclusion that replace-
ment decisions are driven by marginal costs, and not by
economies of scale as suggested in the PMRP literature.

Finally, we consider a linear programming formulation to
find optimal replacement policies for the infinite-horizon
stochastic PMRP with stationary parameters. Through the
analysis of the linear program, we illustrate how the NSR
and WCRR reduce the computational effort required to
solve the stochastic PMRP.

APPENDIX: PROOFS

LEMMA 1: Under assumptions (a) and (b), the optimal objective value
function of the stochastic PMRP with increasing failure rate is nondecreas-
ing in each component of the state-space, i.e.,

ft
�*�i, X2

t , . . . , XN
t � � ft

�*�j, X2
t , . . . , XN

t �, � i

� j � �, X2
t , . . . , XN

t � �N�1, t � 1, 2, . . . , T � 1.

PROOF: The proof is by induction. Equation (6) and assumption (b)
establish the result for stage T � 1. We assume that the result holds for
stage t � 1 and consider stage t. We compare the expected discounted
costs through the end of the horizon when the set of actions �*(t, j,
X2

t , . . . , XN
t ) is applied to both states in stage t, and policy �* is followed

thereafter. We have two cases:

�*1(t, j, X2
t , . . . , XN

t ) � 1: In this case,

ft
�*�j, X2

t , . . . , XN
t � 	 f�t�i, X2

t , . . . , XN
t � � s�i� 	 s�j� � 0

by assumption (b).

Table 1. LP size to solve the infinite-horizon PMRP with stationary parameters.

Applicable rules

Deterministic problem Stochastic problem

Variables Constraints Variables Constraints

None 15,504 77,070,360 15,504 77,070,360
OCRR/WCRR only 15,504 170,544 15,504 170,544
NSR only 360 2496 15,504 246,048
NSR & OCRR/WCRR 360 1320 15,504 73,646
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In this case, f�t(i, X2
t , . . . , XN

t ) represents the total expected discounted cost
(until the end of the horizon) of applying the set of actions �*(t, j,
X2

t , . . . , XN
t ) in stage t to the system in state i, X2

t , . . . , XN
t and following

policy �* thereafter.

�*1(t, j, X2
t , . . . , XN

t ) � 0: In this case,

ft
�*�j, X2

t , . . . , XN
t � 	 f̂ t�i, X2

t , . . . , XN
t � � m�j� 	 m�i�

� � � � E�ft�1
�* �X� t�1 � j, X2

t , . . . , XN
t , �*�t, j, X2

t , . . . , XN
t ���

�E�ft�1
�* �X� t�1 � i, X2

t , . . . , XN
t , �*�t, j, X2

t , . . . , XN
t ��� �.

In this case, f̂t(i, X2
t , . . . , XN

t ) represents the total expected discounted cost
(until the end of the horizon) of applying the set of actions �*(t, j,
X2

t , . . . , XN
t ) in stage t to the system in state i, X2

t , . . . , XN
t and following

policy �* thereafter. We have that m( j) � m(i) � 0 by assumption (a).
We evaluate the expectations by conditioning on the realizations of
X2

t�1, . . . , XN
t�1, i.e.,

E�ft�1
� �X� t�1 � X� t, ��t, X� t���

� EX2
t�1, . . . ,XN

t�1�EX1
t�1 � X2

t�1, . . . ,XN
t�1�ft�1

� �X� t�1 � X� t, ��t, X� t�, X2
t�1, . . . , XN

t�1���.

Since the deterioration process of each machine is independent, the con-
ditional expectation of X1

t�1 given the realizations of X2
t�1, . . . , XN

t�1 is
equal to its (unconditional) expectation. Therefore, the last expression may
be written as

EX2
t�1, . . . ,XN

t�1	�
k��

pX1
t k � ft�1

� �k, X2
t�1, . . . , XN

t�1 � X� t, ��t, X� t�, X2
t�1, . . . , XN

t�1��.

The induction hypothesis and Derman’s Lemma imply that

�
k��

pik � ft�1
�* �k, X2

t�1, . . . , XN
t�1 � i,

X2
t , . . . , XN

t , �*�t, j, X2
t , . . . , XN

t �, X2
t�1, . . . , XN

t�1�

� �
k��

pjk � ft�1
�* �k, X2

t�1, . . . , XN
t�1 � j,

X2
t , . . . , XN

t , �*�t, j, X2
t , . . . , XN

t �, X2
t�1, . . . , XN

t�1�, � i � j � �.

We use the last expression to obtain the inequality E[ ft�1
�* (X� t�1 � j,

X2
t , . . . , XN

t , �*(t, j, X2
t , . . . , XN

t ))] � E[ ft�1
�* (X� t�1 � i, X2

t , . . . , XN
t ,

�*(t, j, X2
t , . . . , XN

t ))] � 0. From this we conclude that when �*1(t, j,
X2

t , . . . , XN
t ) � 0, ft

�*( j, X2
t , . . . , XN

t ) � f̂t(i, X2
t , . . . , XN

t ) � 0. By
definition, �*(t, i, X2

t , . . . , XN
t ) is at least as good as any set of actions

that can be applied in stage t to a system in state i, X2
t , . . . , XN

t .
Depending on the case that applies, ft

�*(i, X2
t , . . . , XN

t ) is less than or
equal to either f�t(i, X2

t , . . . , XN
t ) or f̂t(i, X2

t , . . . , XN
t ), which in turn

completes the proof. �
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