	CEE-ME 327 Finite Element Methods in Mechanics Fall 2022	
Instructor:	Professor Wing Kam Liu	
Guest Instructor:	Professor Mark Fleming (Fusion Engineering)	
Days and Times:	Tu, Th 12:30-13:50,	
Place:	University Hall 122	
Office hours:	Professor Wing Kam Liu: By appointment, Tech A326	
Zoom:	https://northwestern.zoom.us/s/97947520811	
TA hours:	Mon : 5:00 pm - 6:00 pm	
	Wed: 5:00 pm - 6:00 pm (ZOOM: TBD based on requests)	

Teaching Assistants: Xiaoyu Xie and Subhadeep Pal

Graders: Xiaoyu Xie, Subhadeep Pal, Jiachen Guo, Yuhui Lyu

COURSE OBJECTIVES

To learn a) the basic theory behind the finite element method (FEM), b) how to program the FEM using MATLAB, c) how to use a general commercial FEM code to solve practical engineering problems, and d) how to use data science techniques for the interpretation of the FEM solutions and in the solving mechanics of materials problems.

	Topics	Problems
Week 1	Introduction and overview of the course	HW1: 2.1, 2.2 (due Sep 29)
Sept 20 (TU) & 22 (TH)	Fish and Belytschko: Ch. 2 (Sections 2.1-2.3): 1D problems, element	
	stiffness matrix, assembly	
Week 2	Fish and Belytschko: Ch. 3 (Sections 3.1-3.6): Strong and weak forms	HW2: 3.1, 3.2, 3.3, 3.7 (due Oct 06)
<mark>Sept 27</mark> (TU) & 29 (TH)		
Week 3	Fish and Belytschko: Ch. 4 (Sections 4.1-4.5): Element shape	HW3: 3.10, 4.1, 5.17 (a, b) (due Oct
<mark>Oct 04 (TU)</mark> & 06 (TH)	functions,	13)
	Fish and Belytschko: Ch. 5 (Sections 5.1-5.2): FEM for 1D elasticity	Comp HW1: 1D FEM in MATLAB part
	Optional reading: 1D elasticity, heat conduction	1 (due Oct 21)
Week 4	Fish and Belytschko: Ch. 6: Strong and weak forms in 2D	HW4: 5.16, 6.1, 7.1
Oct 11 (TU) & 13 (TH)	ABAQUS Tutorial 1	(Due Oct 27)
	Supplementary: FEM for 2D & 3D problems with Laplace equation	
Week 5	Fish and Belytschko: Ch. 7 (Sections 7.1-7.2): Shape functions in 2D,	Comp HW2: 2D ABAQUS (due Nov
Oct 18 (TU) & 20 (TH)	Ch. 4 (Section 4.6): Gauss quadrature method	03)
	Supplementary: Lagrangian polynomials and numerical integration	
	Optional reading: Ch. 7 (Sections 7.3-7.8)	
Week 6	Review	
Oct 25 (TU) & 27 (TH)	Midterm	
Week 7	Principle of Virtual Work	Comp HW3: 1D FEM in MATLAB part
Nov 01 (TU) & Nov 03 (TH)	Fish and Belytschko: Ch. 4 (Section 4.6)	2
	Supplementary reading: Elasticity tensor notes, principle of virtual	(Due Nov 10)
	work in multiple dimensions	
	Optional reading: Ch. 9: Stress analysis in 2D (supplementary	
	reading)	
	Viscoelasticity and Hyperelasticity	
Week 8	ABAQUS Tutorial 2	Comp HW4: 2D & 3D stress analysis in
Nov 08 (TU) & 10 (TH)	ABAQUS Tutorial 3	ABAQUS (due Nov 17)
Week 9	Introduction to Mechanistic Data Science and application to Finite	Comp HW5: Viscoelasticity in
Nov 15 (TU) & 17 (TH)	Element Analysis and Design 1 & 2	ABAQUS (due Nov 24)
Week 10	Application of Mechanistic Data Science	
Nov 22 (TU) & Nov 24 (TH,		
Thanksgiving)		
Week 11	Review	
Nov 29 (TU) & Dec 01 (TH)		
Week 12	Final Exam/Final Project Submission	

GRADING: Class participation 10%, Written homework 15%, computer assignments 30%, exams 45% (midterm 20%, Final Project/Exam 25%) (Strict following of the format is required for the computer assignments and final project report)

TEXTBOOKS: Required: J. Fish and T. Belytschko. A first course in finite elements. Wiley & Sons Ltd., West Sussex, UK, 2007. Highly Recommended: T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Inc., Mineola, NY, 2000.

Review Materials: All the review materials' source will be found on CANVAS. TAs will discuss any questions that a student has on the review materials.