STABILITY OF STRUCTURES
Elastic, Inelastic, Fracture, and Damage Theories

Zdeněk P. Bažant
Walter P. Murphy Professor of Civil Engineering
Northwestern University
Evanston, Illinois, USA

and

Luigi Cedolin
Professor of Structural Engineering
Politecnico di Milano
Milano, Italy

New York Oxford
Oxford University Press
1991
Preface

It is our hope that this book will serve both as a textbook for graduate courses on stability of structures and a reference volume for engineers and scientists. We assume the student has a background in mathematics, mechanics, and the level of the B.S. degree in civil or mechanical engineering, though in the last four chapters we assume a more advanced background. We cover subjects relevant to civil, structural, mechanical, aerospace, and nuclear engineering, as well as materials science, although in the first half of the book we place somewhat more emphasis on the civil engineering applications than on others. We include many original derivations as well as some new research results not yet published in periodicals.

Our desire is to achieve understanding rather than just knowledge. We try to proceed in each problem from special to general, from simple to complex, treating each subject as concisely as we can and at the lowest possible level of mathematical apparatus we know, but not so low as to sacrifice efficiency of presentation. We include a large number (almost 700) of exercise problems. Solving many of them is, in our experience, essential for the student to master the subject.

In some curricula, the teaching of stability is fragmented into courses on structural mechanics, design of steel structures, design of concrete structures, structural dynamics, plates and shells, finite elements, plasticity, viscoelasticity, and continuum mechanics. Stability theory, however, stands at the heart of structural and continuum mechanics. Whoever understands it understands mechanics. The methods of stability analysis in various applications are similar, resting on the same principles. A fundamental understanding of these principles, which is not easy to acquire, is likely to be sacrificed when stability is taught by bits, in various courses. Therefore, in our opinion, it is preferable to teach stability in a single course, which should represent the core of the mechanics program in civil, mechanical, and aerospace engineering.

Existing textbooks of structural stability, except for touching on elastoplastic columns, deal almost exclusively with elastic stability. The modern stability problems of fracture and damage, as well as the thermodynamic principles of stability of irreversible systems, have not been covered in textbooks. Even the catastrophe theory, as general as it purports to be, has been limited to systems that possess a potential, which implies elastic behavior. Reflecting recent research results, we depart from tradition, devoting about half of the book to nonelastic stability.

Various kinds of graduate courses can be fashioned from this book. The first-year quarter-length course for structural engineering students may, for example, consist of Sections 1.2–1.7, 2.1–2.4, 2.8, 3.1, 3.2, 3.5, 3.6, 4.2–4.6, 5.1–5.4, 6.1–6.3, 7.1–7.3, 7.5, 7.8, 8.1, 8.3, and 8.4, although about one-third of these sections can be covered in one quarter only partly. A semester-length course can cover them fully and may be expanded by Sections 1.8, 1.9, 2.7, 3.3, 4.5, 4.6, 5.5, 7.4, 7.8, 8.2, and 8.6. The first-year course for mechanical and aerospace engineers may, for example, be composed of Sections 1.1–1.5, 1.7, 1.9, 2.1–2.3, 3.1–3.7, 4.2–4.6, 5.1–5.4, 6.1–6.3, 7.1–7.3, 7.5, 7.8, 8.1–8.3, and 9.1–9.3, again with some sections covered only partly. A second-year sequel for structural engineering students, dealing with inelastic structural stability, can, for example, consist of Sections 8.1–8.6, 9.1–9.6, 10.1–10.4, 13.2–13.4, and 13.6, preceded as necessary by a review of some highlights from the first course. Another possible second-year sequel, suitable for students in theoretical and applied mechanics, is a course on material modeling and stability, which can be set up from Sections 11.1–11.7, 10.1–10.6, 13.1–13.4, 13.8–13.10, and 12.1–12.5 supplemented by a detailed explanation of a few of the constitutive models mentioned in Section 13.11. A course on Stability of Thin-Wall Structures (including plates and shells) can consist of a review of Sections 1.1–1.8 and detailed presentation of Chapters 6 and 7. A course on Inelastic Columns can be based on a review of Sections 1.1–1.8 and detailed presentation of Chapters 8 and 9. A course on Stability of Multidimensional Structures can be based on a review of Sections 1.1–1.9 and detailed presentation of Chapters 7 and 11. A course on Energy Approach to Structural Stability can be based on a review of Sections 1.1–1.8 and detailed presentation of Chapters 4, 5, and 10. A course on Buckling of Frames can be based on Chapters 1, 2, and 3. Chapter 3, along with Section 8.6, can serve as the basis for a large part of a course on Dynamic Stability.

The present book grew out of lecture notes for a course on stability of structures that Professor Bažant has been teaching at Northwestern University every year since 1969. An initial version of these notes was completed during Bažant's Guggenheim fellowship in 1978, spent partly at Stanford and Caltech. Most of the final version of the book was written during Professor Cedolin's visiting appointment at Northwestern between 1986 and 1988, when he enriched the text with his experience from teaching a course on structural analysis at Politecnico di Milano. Most of the last six chapters are based on Bažant's lecture notes for second-year graduate courses on inelastic structural stability, on material modeling principles, and on fracture of concrete, rock, and ceramics. Various drafts of the last chapters were finalized in connection with Bažant's stay as NATO Senior Guest Scientist at the Ecole Normale Supérieure, Cachan, France, and various sections of the book were initially presented by Bažant during specialized intensive courses and guest seminars at the Royal Institute of Technology (Cement och Betonginstitutet, CBI), Stockholm; Ecole des Ponts et Chaussées, Paris; Politecnico di Milano; University of Cape Town; University of Adelaide; University of Tokyo; and Swiss Federal Institute of Technology. Thanks go to Northwestern University and the Politecnico di Milano for providing environments conducive to scholarly pursuits. Professor Bažant had the good fortune to receive financial support from the U.S. National Science Foundation and the Air Force Office of Scientific Research, through grants to Northwestern University; this funding supported research on which the last six chapters are partly based. Professor Bažant wishes to express his thanks to his father, Zdeněk J. Bažant, Professor Emeritus of Foundation Engineering at the
Czech Technical University (ČVUT) in Prague and to his grandfather, Zdeněk Bažant, late Professor of Structural Mechanics at ČVUT, for having introduced him to certain stability problems of structural and geotechnical engineering.

We are indebted for many detailed and very useful comments to Leone Corradi and Giulio Maier, and for further useful comments to several colleagues who read parts of the text: Professors J. P. Cordebois, S. Dei Poli, Eduardo Dvorkin, Theodore V. Galambos, Richard Kohoutek, Franco Mola, Brian Moran, and Jaime Planas. Finally, we extend our thanks to M. Tabbara, R. Gettu, and M. T. Kazemi, graduate research assistants at Northwestern University, for checking some parts of the manuscript and giving various useful comments, to Vera Fisher for her expert typing of the manuscript, and to Giuseppe Martinelli for his impeccable drawings.

Evanston, Ill.
October, 1989

Z. P. B. and L. C.
Contents

Preface

 vii

Introduction

 xxi

I ELASTIC THEORIES

1 Buckling of Elastic Columns by Equilibrium Analysis

1.1 Theory of Bending
1.2 Euler Load, Adjacent Equilibrium, and Bifurcation
1.3 Differential Equations of Beam-Columns
1.4 Critical Loads of Perfect Columns with Various End Restraints
1.5 Imperfect Columns and the Southwell Plot
 Lateral Disturbing Load; Initial Curvature or Load Eccentricity; Behavior near the Critical Load; Southwell Plot
1.6 Code Specifications for Beam-Columns
1.7 Effect of Shear and Sandwich Beams
 Pin-Ended Columns; Generalization; Sandwich Beams and Panels
1.8 Pressurized Pipes and Prestressed Columns
 Pressurized Pipes; Prestressed Columns
1.9 Large Deflections
 Solution of Rotations by Elliptic Integrals (Elastica); Deflections and Shortening; Discussion of Results
1.10 Spatial Buckling of Beams under Torque and Axial Force

3

2 Buckling of Elastic Frames by Equilibrium Analysis

2.1 Stiffness and Flexibility Matrices of Beam-Columns
 Stiffness Matrix for End Rotations; Stiffness Matrix for End Rotations and Relative Lateral Displacement
2.2 Critical Loads of Frames and Continuous Beams
 Simple Structures; Difficulties with the Flexibility Method; General Approach for Computer Analysis
2.3 Buckling as a Matrix Eigenvalue Problem and Use of Finite Elements
2.4 Large Regular Frames
2.5 Postcritical Reserve in Redundant Trusses
 Example of a Statically Indeterminate Truss; Generalization and Limit Analysis Method; Order of Approximation

53

3 Dynamic Analysis of Stability

3.1 Vibration of Columns or Frames and Divergence
 Columns; Types of Motion and Dependence of Natural Frequency on Load; Effect of Damping; Frames and Other Generalizations
3.2 Nonconservative Loads and Flutter
 Massless Column under Follower Load; Effect of Distributed Mass; Elastically Supported Rigid Plate under Aerodynamic Forces; Conservative and Nonconservative Forces; Equations Governing Flutter or Suspension Bridges
3.3 Pulsating Loads and Parametric Resonance
 Axial Pulsating Load on a Column; Undamped Vibration; Damped Vibration; Simple Energy Analysis of Parametric Resonance
3.4 Other Types of Dynamic Loads
3.5 Definition of Stability
3.6 Theorems of Lagrange–Dirichlet and of Liapunov
3.7 Stability Criteria for Dynamic Systems
3.8 Stability of Continuous Elastic Systems
3.9 Nonlinear Oscillations and Chaos

144

4 Energy Methods

4.1 Positive-Definite Matrices, Eigenvalues, and Eigenvectors
4.2 Potential Energy for Discrete Elastic Systems
 Structure-Load System; Second Variation of Potential Energy; Critical State; An Example; Effect of Higher-Order Derivatives of It; Difficulties with Complementary Energy; Overturning Instability of a Block: Discontinuous II*
4.3 Bifurcation Buckling at Small Deflections
 Calculation of Potential Energy of Beam-Columns; Equilibrium

199

89

102

108

118

129

144

151

162

170

174

178

184

187

189

199

207

216
5 Energy Analysis of Continuous Structures and Approximate Methods

5.1 Indirect Variational Method and Euler Equation
- Review of the Calculus of Variations; Application to Structures Possessing a Potential Energy; Review of Positive-Definite and Self-Adjoint Operators

5.2 Beam on Elastic Foundation
- Potential Energy and Differential Equations; Solution for Different Boundary Conditions; Fiber on Elastic Foundation

5.3 Rayleigh Quotient
- Upper-Bound Property of Rayleigh Quotient; Application to Beam-Columns; Relation to Differential Equation; Proof of Upper-Bound Property and Convergence; Extension to Free Vibration

5.4 Timoshenko Quotient and Relations between Various Bounds
- Derivation; Examples; Relation to Differential Equation and Proof of Upper-Bound Property; Relation to Rayleigh Quotient and Inequalities; Inapplicability to Dynamics; The Question of Lower Bounds

5.5 Bound Approximation for Columns, Frames, and High Arches
- Columns; Frames; Elastically Supported Beams; High Arches

6 Thin-Walled Beams

6.1 Potential Energy and Differential Equations
- Deformation of the Cross Section; Potential Energy; Differential Equations and Boundary Conditions

6.2 Axial-Torsional Buckling of Columns

6.3 Lateral Buckling of Beams and Arches
- Axial-Torsional Buckling due to Eccentric Axial Force; Lateral Buckling due to Bending Moment; Approximate Solution for Variable M; Bi-moment; Lateral Buckling of Arches

6.4 Beams of Arbitrary Open Cross Section
- General Theory of Warping Torsion; Stresses and Bimoment in General Theory; Potential Energy and Differential Equations; Monosymmetric Cross Section

6.5 Large Deflections

6.6 Box Girders
- Deformation Modes and Postcritical Energy; Examples; Finite Element Solution; Interaction with Local Buckling

7 Plates and Shells

7.1 Classical Plate Theory

7.2 Differential Equation and Strain Energy
- Strains; Potential Energy; Differential Equations of Equilibrium; Boundary Conditions; Direct Derivation of Transverse Resultant of In-Plane Forces; Discussion and Summary

7.3 Buckling of Rectangular Plates
- Buckling of Simply Supported Plates; Rectangular Plate with Arbitrary Boundary Conditions; Buckling of Plate Subjected to Shear; Nonuniform In-Plane Forces; Solutions by Other Variational Methods

7.4 Large Deflections and Postcritical Reserve of Plates
- Von Kármán–Föppl Differential Equations; Solution by Minimization of Potential Energy; Large Deflections and Ultimate Strength; Measurement of Critical Loads

7.5 Axisymmetric Buckling of Cylindrical Shells

7.6 Shallow or Quasi-Shallow Shells
- Basic Relations for Cylindrical Shells; Donnell's Equation; Axially Compressed Cylindrical Shell; Effect of Lateral Pressure on Cylindrical Shells; Cylindrical Shell Subjected to Torsion; Variational Derivation from Potential Energy; Cylindrical Shell Panels; General Quasi-Shallow Shells

7.7 Nonlinear Analysis of Shell Buckling and Imperfections
- Reduction Factors for Classical Critical Loads; Physical Source of Postcritical Load Drop and High Imperfection Sensitivity; Koiter's
CONTENTS

Laws of Imperfection Sensitivity; Buckling Modes and Their Interaction; Summary
7.8 Sandwich Plates and Shells
Basic Relations for a Sandwich Plate Element; Rectangular Sandwich Plate and Other Problems

II INELASTIC, DAMAGE, AND FRACTURE THEORIES

8 Elastoplastic Buckling
8.1 Perfect Columns or Structures and Shanley’s Bifurcation
Reduced Modulus Load; Tangent Modulus Load; Column Strength Curve; Postbifurcation Load-Deflection Diagram; Bifurcation in Plastic Structures with Multiaxial Stress; Conclusion

8.2 Imperfect Columns and Structures
Shanley’s Rigid-Bar Column: Exact Solution; Arbitrary Imperfect Columns: Approximate Solution; Effect of Cross-Section Nonasymmetry

8.3 Effect of Residual Stresses
Calculation of the Effect of Residual Stresses; Examples

8.4 Metal Columns and Structures: Design and Code Specifications
Centrically Loaded Columns; Load and Resistance Factor Design and Probabilistic Aspects; Beam-Columns; Plates, Shells, and Other Structures; Design Examples

8.5 Concrete Columns and Structures: Design and Code Specifications
Interaction Diagram (Failure Envelope); Deflections and Interaction Diagram; Numerical Algorithm for Calculating Deflections and Interaction Diagram; Column Response for Unsmooth Stress-Strain Diagrams; Design Recommendations and the ACI Code; CEB Design Recommendations; Comparisons of Codes and Shortcomings; Prestressed Concrete Columns; Shells and Other Structures; Stress-Strain Relations for Strain Softening; Design Examples

8.6 Perfectly Plastic Large-Deflection Buckling, Impact, and Blast
Load-Deflection Curve or Perfectly Plastic Columns; Buckling of Perfectly Plastic Frames; Plastic Redistribution and Reserve Capacity of Structures; Dynamic Impact; Perfectly Plastic Buckling of Thick Plates; Transverse Impact or Blast on Plates or Columns with In-Plane or Axial Loads

8.7 Geometric Tensile Instability, Localization, and Necking
Role of Transverse Contraction and Finite Strain; Strain Localization; Necking

9 Creep Buckling
9.1 Viscoelastic Stress-Strain Relations
Compliance Function and Integral-Type Creep Law; Differential-Type Creep Law and Rheologic Models; Elastic-Viscoelastic Analogy

CONTENTS

9.2 Viscoelastic Buckling
Deflection History and Long-Time Critical Load; The Concept of Stability for Viscoelastic Structures; Extensions and Ramifications

9.3 Viscoplastic Buckling
Rigid-Bar Model Column; Critical Time and Stability Concept; Real Columns

9.4 Buckling of Aging Viscoelastic Structures
Aging Maxwell Solid (Dischinger-Type Methods); Deflections According to Aging Maxwell Model; Deflection According to More Realistic Rheologic Models; Deflection According to Effective Modulus; Deflection According to Age-Adjusted Effective Modulus; Deflection According to Integral-Type Stress-Strain Relation; Appendix I—Compliance Function and Relaxation Function of Concrete; Appendix II—Proof of Age-Adjusted Effective Modulus Method

9.5 Effect of Creep Deflection on Concrete Column Strength
9.6 Nonlinear Creep and Long-Time Strength of Concrete Structures
9.7 Creep Buckling at Finite Deflections
Example of Imperfection-Sensitive Rigid-Bar Column; Broader Implications and Ramifications; Variable Load

10 Stability of Inelastic Structures, Bifurcation and Thermodynamic Basis

10.1 Thermodynamic Criteria of Stable State
First and Second Laws of Thermodynamics; Tangentially Equivalent Elastic Structures; Total Energy U and Helmholtz Free Energy F; Second Variation of F or U; Path Dependence and Incremental Potentials; Second-Order Work of Stresses and Geometric Stiffness; Criterion of Stable State for the Case of Dead Loads; Extensions to Variable Loads; Stability at Critical State; Gibbs Free Energy and Enthalpy; Stability Criteria Based on Complementary Work; Structures with a Single Load or a Single Controlled Displacement; Summary

10.2 Thermodynamic Criteria of Stable Path
Path Stability for Basic Types of Control; Mixed Controls of Loads and Displacements; The Case of Equal $(AS)_n$ for Two Branches; Second-Order Work of Stresses along the Path; Structures with a Single Load or a Single Controlled Displacement; Stable States on Postbifurcation Branches; Further Comments and Conclusion

10.3 Application to Elastoplastic Columns and Broader Implications
Loading-Unloading Combinations and Equilibrium Paths; Second-Order Work; Stable Equilibrium States of Elastoplastic Column; Stable Equilibrium Path of an Elastoplastic Column; Breakdown of Symmetry; Hypothesis Implied in Present Thermodynamic Approach; Summary

10.4 Critical States of Stability and Bifurcation
Critical State for Structures with a Symmetric Stiffness Matrix; Critical States for Structures with a Nonsymmetric Stiffness
13.3 Localization of Softening Damage into Planar Bands
- Stability Condition for the Softening Band Within a Layer or Infinite Solid; Discussion of Various Cases; Numerical Examples; Generalization for Geometrically Nonlinear Effects; Bifurcation and Stable Path; Localization into Shear Bands Due to Nonassociatedness in Frictional Materials; Sand Liquefaction as a Localization Instability; Summary

857

13.4 Localization of Softening Damage into Ellipsoidal Regions
- Eshelby's Theorem; Stability of Uniform Strain against Ellipsoidal Localization; Numerical Examples of Stability Limits and Discussion; Bifurcation and Stable Path of Ellipsoidal Localization; Simpler Derivation of Bifurcation Condition; Summary

869

13.5 Localization of Softening Damage into Spherical or Circular Regions
- Localization Instability for Spherical Geometry; Localization Instability for Circular or Cylindrical Geometry; Numerical Examples; Bifurcation and Stable Path; Summary

880

13.6 Localization in Beams and Softening Hinges
- Stability Limit and Snapback; Rotation Capacity or Ductility of Hinges in Concrete Beams; Length of the Softening Region; Bifurcation Due to Interaction of Softening Hinges; Imperfection Approach; Bifurcation and Localization in Redundant Structures; Bifurcation at Simultaneous Formation of Several Softening Hinges; Softening Frames and Trusses; Softening in Metallic Structures; Summary

887

13.7 Friction: Static and Dynamic
- Paradox in Sudden Friction Drop; Bifurcation, Stable Path, and Localization of Frictional Slip; Frictional Supports in Columns; Structures with Stiffness Matrix Asymmetry

902

13.8 Bifurcations Due to Interaction of Softening Damage Zones
- Interaction of Damage (Cracking) Fronts and Stable Paths; Convergence of Iterations Depends on Stability of State, not Path; Multiple Interacting Crack Band Fronts; Interaction of Multiple Shear Bands; Example: Buckling in Direct Tensile Test

907

13.9 Size Effect, Mesh Sensitivity, and Energy Criterion for Crack Bands
- Localization as a Cause of Size Effect; Inobjectivity or Spurious Mesh Sensitivity; Energy Criterion for Crack Band and Stability

914

13.10 Nonlocal Continuum and Its Stability
- Crack Band Model; Nonlocal Continuum Concept; Periodic Instabilities Due to Nonlocal Concept; Nonlocal Continuum with Local Strain; One-Dimensional Localization Instability; Measurement of Characteristic Length of Nonlocal Continuum; Example: Stability of a Tunnel; Gradient Approximation to Nonlocal Continuum; Summary

921

13.11 Constitutive Equations for Strain Softening

937

Glossary of Symbols

953

Author Index

963

Subject Index

973