Prediction of Concrete Creep Effects Using Age-Adjusted Effective Modulus Method

By ZDENEK P. BAZANT

Authorized Reprint from copyrighted
Journal of the American Concrete Institute
April 1972, Vol. 69, p. 212-217
Prediction of Concrete Creep Effects
Using Age-Adjusted Effective Modulus Method

By ZDENEK P. BAZANT

A recently proposed refinement of the effective modulus method, accounting for concrete aging, is formulated in a rigorous form and is extended to allow for the variation of elastic modulus and an unbounded final value of creep. A numerical example is included to show the application of the proposed method in predicting creep effects.

Keywords: age; concretes; creep properties; deflection; modulus of elasticity; prestress loss; relaxation (mechanics); shrinkage; stresses; structural analysis.

IN THE CREEP ANALYSIS of concrete structures two kinds of errors are involved. One stems from the inaccurate knowledge of the creep law, and its minimization is a problem of materials research. The second error is caused by the simplification of analysis, which designers introduce to avoid the complexities of an exact analysis. In the sequel, only accuracy or exactitude in the latter sense will be of concern.

The simplest and the most widespread among the simplified methods of analysis is the well-known effective modulus method, whose error with regard to the theoretically exact solution for the given creep law is known to be quite large when aging of concrete, i.e., the change of its properties with the progress of hydration, is of significance (see Table 2 discussed below). However, a surprisingly simple way of refinement of this method has been recently discovered by Trost,1 on the basis of approximate and mostly intuitive considerations. The intent of this paper is to present a rigorous formulation of this method and to extend it to the case of a variable elastic modulus and an unbounded final value of creep.

FORMULATION OF METHOD

If attention is restricted to the working stress range and strain reversals are excluded, creep of concrete may be assumed to be governed by the linear principle of superposition in time. The stress-strain relation is then fully defined by specifying functions \(J_c(t, t') \) and \(\varepsilon^*(t) \), or \(E_R(t, t') \) and \(\varepsilon^*(t) \), or \(\phi(t, t') \), \(E(t) \) and \(\varepsilon(t) \), all defined in the Appendix.

Basic theorem

Assume that:
\[
\begin{align*}
\varepsilon(t) - \varepsilon^*(t) &= \varepsilon_a + \varepsilon_i \phi(t, t_o) & \text{for } t > t_o \\
\sigma(t) &= 0 & \text{for } 0 < t < t_o
\end{align*}
\]

where \(\varepsilon_a \) and \(\varepsilon_i \) are arbitrary constants.

Then \(\sigma(t) \) varies linearly with \(E_R(t, t_o) \) and the stress-strain relations may be written (exactly) in the form of an incremental elastic law:

\[
\Delta \varepsilon(t) = E''(t, t_o) \left[\Delta \varepsilon(t) - \Delta \varepsilon^*(t) \right]
\]

in which
\[
\begin{align*}
\varepsilon(t) &= \varepsilon(t) - \varepsilon(t_o), & \Delta \varepsilon &= \sigma(t) - \sigma(t_o) \\
\Delta \varepsilon^*(t) &= \frac{\sigma(t_o)}{E(t_o)} \phi(t, t_o) + \varepsilon^*(t) - \varepsilon^*(t_o) \\
E''(t, t_o) &= \frac{E(t_o)}{1 + \chi(t, t_o) \phi(t, t_o)}
\end{align*}
\]

ACI member Zdenek P. Bazant is associate professor, Department of Civil Engineering, Northwestern University, Evanston, Ill. Following a 3-year experience as design engineer, he received his Ph.D. in engineering mechanics from the Czechoslovak Academy of Sciences in 1963 and the degree of Docent from the Technical University at Prague in 1967. He has held visiting appointments at CEZP in Paris, The University of Toronto, and the University of California, Berkeley. He authored numerous papers and a book, in Czech, "Creep Analysis of Concrete Structures," and holds several patents. Currently, he is a member of ACI Committee 209, Creep and Shrinkage of Concrete.
\[\chi(t, \tau) = \left[1 - \frac{E''(t, \tau)}{E(t, \tau)} \right]^{-1} \cdot \frac{1}{\phi(t, \tau)} \]
(6)

where \(\chi(t, \tau), E''(t, \tau) \) and \(\Delta e''(t) \) will be termed aging coefficient, age-adjusted effective modulus and fictitious inelastic strain increment.

The proof of this theorem is given in the Appendix.

DISCUSSION AND APPLICATION

Determination of \(\chi \) requires the knowledge of the relaxation function, which can be obtained from the creep function \(J_C(t, t') \) with the help of a computer (using the well-known numerical methods for Volterra’s integral equations; see Appendix). Table 1 shows the values of \(\chi \) which have been found for the following material properties:

\[\phi(t, t') = \phi_n(t') \frac{(t - t')^{0.6}}{[10 + (t - t')^{0.6}]} \]
(7)

or

\[\phi(t, t') = \phi_n(t') \cdot 0.113 \ln(1 + t - t') \]
(8)

where

\[E(t') = E(t) \left[t' / (4 + 0.85t') \right]^{1/3} \]

\[\phi_n(t') = \phi(\infty, 7) \cdot 1.25t'^{-0.118} \]
(9)

\(t' \) being given in days.

TABLE 1 — AGING COEFFICIENT \(\chi \) FOR TWO DIFFERENT CREEP LAWS, WITH AND WITHOUT CONSIDERATION OF VARIATION OF ELASTIC MODULUS (SYMBOLS DEFINED IN APPENDIX)

<table>
<thead>
<tr>
<th>Creep law</th>
<th>(t-\tau) days</th>
<th>(\phi(\infty, 7))</th>
<th>Variable (E), Eq. (9)</th>
<th>Constant (E)</th>
<th>(\phi(t, \tau))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(t_0)</td>
<td>(E)</td>
<td>(t_0)</td>
<td>(t_0)</td>
<td>(t_0)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.555</td>
<td>0.804</td>
<td>0.811</td>
<td>0.809</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.720</td>
<td>0.826</td>
<td>0.825</td>
<td>0.829</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.774</td>
<td>0.842</td>
<td>0.837</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>0.806</td>
<td>0.856</td>
<td>0.848</td>
<td>0.839</td>
</tr>
<tr>
<td>Eq. (7)</td>
<td>100</td>
<td>0.5</td>
<td>0.506</td>
<td>0.988</td>
<td>0.916</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.739</td>
<td>0.919</td>
<td>0.932</td>
<td>0.938</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.804</td>
<td>0.935</td>
<td>0.943</td>
<td>0.943</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>0.839</td>
<td>0.946</td>
<td>0.951</td>
<td>0.946</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.5</td>
<td>0.511</td>
<td>0.212</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.732</td>
<td>0.943</td>
<td>0.981</td>
<td>0.985</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.795</td>
<td>0.956</td>
<td>0.985</td>
<td>0.986</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>0.830</td>
<td>0.964</td>
<td>0.987</td>
<td>0.990</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.5</td>
<td>0.501</td>
<td>0.899</td>
<td>0.976</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.717</td>
<td>0.934</td>
<td>0.983</td>
<td>0.985</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.781</td>
<td>0.949</td>
<td>0.986</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>0.818</td>
<td>0.968</td>
<td>0.990</td>
<td>0.997</td>
</tr>
<tr>
<td>Eq. (8)</td>
<td>100</td>
<td>0.5</td>
<td>0.522</td>
<td>0.815</td>
<td>0.832</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.727</td>
<td>0.836</td>
<td>0.836</td>
<td>0.836</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.783</td>
<td>0.849</td>
<td>0.849</td>
<td>0.849</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>0.815</td>
<td>0.860</td>
<td>0.860</td>
<td>0.860</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.493</td>
<td>0.901</td>
<td>0.929</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.742</td>
<td>0.928</td>
<td>0.941</td>
<td>0.939</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.827</td>
<td>0.941</td>
<td>0.950</td>
<td>0.947</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>0.942</td>
<td>0.956</td>
<td>0.956</td>
<td>0.956</td>
</tr>
<tr>
<td>and (9)</td>
<td>100</td>
<td>0.5</td>
<td>0.461</td>
<td>0.887</td>
<td>0.956</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.702</td>
<td>0.924</td>
<td>0.965</td>
<td>0.972</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.779</td>
<td>0.940</td>
<td>0.972</td>
<td>0.976</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>0.806</td>
<td>0.950</td>
<td>0.977</td>
<td>0.980</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.434</td>
<td>0.828</td>
<td>0.940</td>
<td>0.972</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.857</td>
<td>0.987</td>
<td>0.965</td>
<td>0.979</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.917</td>
<td>0.986</td>
<td>0.964</td>
<td>0.963</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>0.768</td>
<td>0.924</td>
<td>0.970</td>
<td>0.985</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.900</td>
<td>0.731</td>
<td>0.558</td>
<td>0.425</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.890</td>
<td>1.060</td>
<td>1.083</td>
<td>1.083</td>
</tr>
</tbody>
</table>

ACI JOURNAL / APRIL 1972
While all the other simplified practical methods, such as the effective modulus method or the rate-of-creep method, give an exact solution only when \(\sigma \) is constant or \(\varepsilon = \varepsilon_0 \left[1 + \phi(t, t_0) \right] \), the present method gives an exact solution in infinitely many special cases, and especially in three basic, diametrically different cases, namely the case of constant \(\sigma \) (as in the creep test), the case of constant \(\varepsilon \) (as in the stress relaxation test; see Table 2 discussed below); and the case \(\varepsilon = \varepsilon_1 \phi(t, t_0) \) (which approximately applies to straining of a structure by differential creep). Most other strain histories represent some kind of intermediate situation between the above cases, and so the solution must usually be much closer to the exact solution than with other simplified methods which coincide with the exact solution only in one special case.

NUMERICAL EXAMPLES

The relatively lowest accuracy is to be expected when strain \(\varepsilon(t) \) is prescribed as a function which considerably differs from linear dependence on \(\phi(t, t_0) \). This occurs especially in the problem of internal forces due to shrinkage, and therefore this case will be selected for a numerical example.

The unrestrained shrinkage strain for drying exposure at \(t_0 = 7 \) days will be assumed as recommended by ACI Committee 209:

\[
\varepsilon_{sb}(t) = 8 \times 10^{-4} \frac{(t - 7)}{[35 + (t - 7)]} \tag{10}
\]

where \(t \) is in days.

If concrete is perfectly restrained against deformation \((\Delta \varepsilon = 0) \), Eq. (2) and (4) give

\[
\sigma(t) / E(t_0) = \varepsilon_{sb}(t) / [1 + \chi(t, t_0) \phi(t, t_0)]
\]

The classical effective modulus method, which is equivalent to the case \(\chi = 1 \), is known to give very accurate results for a nonaging material. This is confirmed by Table 1 which shows that \(\chi = 1 \) for large \(t \) and large \(t - t_0 \). The correction introduced by \(\chi \) into the effective modulus is thus due mainly to aging of the material rather than relaxation. For this reason the term "aging coefficient" is preferable over the term "relaxation coefficient" which was introduced in previous studies.1,3,4,5

TABLE 2 — RATIO IN STRESS RELAXATION \((\varepsilon = \text{CONSTANT})\) OF STRESS AT \(t-t_0 = 10,000 \text{ DAYS} \) AFTER STRAIN INTRODUCTION TO INITIAL STRESS. CREEP LAW GIVEN BY Eq. (7) AND (9) WITH \(\phi(\infty, 7) = 2.35 \)

<table>
<thead>
<tr>
<th>Method</th>
<th>(t_0) at strain introduction, days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10(^1)</td>
</tr>
<tr>
<td>Exact computer solution</td>
<td>0.179</td>
</tr>
<tr>
<td>Present method using Table 1</td>
<td>0.179</td>
</tr>
<tr>
<td>Effective modulus method</td>
<td>0.504</td>
</tr>
<tr>
<td>Rate of creep method</td>
<td>0.100</td>
</tr>
</tbody>
</table>

214 ACI JOURNAL / APRIL 1972
points, the estimate \(x(t, t_o) = 0.75 \) for \(t_o = 7 \) days
can be made. Eq. (10) gives:
\[
\varepsilon_{\text{sh}} = 8 \times 10^6 \times 1000 / (35 + 1000) = 0.000773
\]
Assuming, for example, that the elastic analysis
yielded the value \(X_{\text{sh}} = 130 \times 10^6 \) ft-lb (18 \(\times 10^6 \)
kgf-m), application of the ratio given by Eq. (11) yields:
\[
X(t) = 130 \times 10^6 \times 0.000773 / [1 + 0.75 \times 2.16] = 384 \times 10^4 \text{ ft-lb (532,000 kgf-m)}
\]
Comparison of the theoretically exact computer solution
(obtained by numerical integration of the
integral equation of the problem) with the present
method and other simplified methods, as well as
the effect of variation of \(E \), is shown in Fig. 2. The
present method is clearly the most accurate one.

As another example, consider the prediction of
stress relaxation under constant strain introduced
at age \(t_o \). Substitution of Eq. (3) and (4) with
\(\varepsilon_o = 0 \) into Eq. (2) with \(\Delta \varepsilon = 0 \) yields:
\[
\sigma(t) - \sigma(t_o) = -E'' \sigma(t_o) / \varepsilon_o \]
After substitution of Eq. (5):
\[
\frac{\sigma(t)}{\sigma(t_o)} = 1 - \frac{\phi(t, t_o)}{1 + \chi(t, t_o)}
\]
(12)
According to the effective modulus method, the
ratio \(1 / (1 + \phi(t, t_o)) \) is obtained instead of Eq.
(12). For the rate-of-creep method, the above ratio
is \(e^{-\phi(t, t_o)} \). In Table 2, the prediction of these
formulas is compared with the theoretically exact
solution. Clear superiority of the present method
is apparent. (It should be noted that the ratio in
Eq. (12) determines the reduction by creep of the
effects of any support movement or an introduc-
tion of any additional constraints restricting creep
deformation in structures of homogeneous creep
properties.)

Other examples can be found in References 1
through 5, in which, however, the constant \(E \)
should be replaced with the variable \(E(t) \).

CONCLUSIONS

1. The age-adjusted effective modulus is theo-
retically exact for any creep problem in which
strain varies linearly with creep coefficient, in-
stant strain increment at the time of first loading
being admissible [Eq. (1)].

2. The theoretical accuracy of the method pre-
sented appears to be distinctly superior to that of
the usual effective modulus method, while in sim-
plicity both methods are equal. The method is
also much more accurate than the rate-of-creep
method.

3. The method is extended for an unbounded
final value of creep and also for the variation of
elastic modulus whose omission is found to be
responsible for a significant error, offsetting the
gain in theoretical accuracy.

4. A method of exact determination of the aging
coefficient is presented and a table of its values
for two typical creep functions is given (Table 1).
These values differ considerably from those deter-
determined by an approximate analysis in previous
publications.

ACKNOWLEDGMENT

The results presented herein have been obtained in
connection with the project sponsored by the National
Science Foundation Grant No. GK-26030.

REFERENCES

1. Trost, H., “Implications of the Superposition Prin-
ciple in Creep and Relaxation Problems for Concrete and
Prestressed Concrete,” Beton-und Stahlbetonbau (Ber-
lin-Wilmersdorf), No. 10, 1967, pp. 230-238, 261-269. (in German)

2. ACI Committee 209, Subcommittee 2, “Prediction of
Creep, Shrinkage, and Temperature Effects in Concrete
Structures,” Designing for Effects of Creep, Shrinkage,
and Temperature in Concrete Structures, SP-27, American
Concrete Institute, Detroit, 1971, pp. 51-93.

nation of Stresses in Prestressed Concrete Structures

APPENDIX

Notation
- \(E(t) = 1/J_c(t, t) = E_R(t, t) \) = instantaneous elastic modulus in time \(t \)
- \(E'(t, t_0) \) = age-adjusted effective modulus given by Eq. (5)
- \(E_R(t, t') \) = relaxation function = stress in time \(t \) caused by a unit strain introduced in time \(t' \)
- \(J_c(t, t') = [1 + \phi(t, t')]/E(t') \) = creep function = strain in time \(t \) caused by a unit stress applied in time \(t' \)
- \(t_0 \) = time of days from casting of concrete
- \(t_0 \) = time \(t \) at first load application (in days)
- \(X(t) \) = internal force in time \(t \) in a statically indeterminate structure
- \(X_s(t') \) = value of \(X \) caused by unit shrinkage (\(\varepsilon_{sh} = 1 \)) of the whole structure with \(E = E(t_0) \) and without creep
- \(s'(t') \) = prescribed stress-independent inelastic strain representing shrinkage and thermal dilatation
- \(\varepsilon_0 \), \(\varepsilon_1 \) = arbitrary constants in Eq. (1)
- \(\varepsilon_{sh}(t) \) = unrestrained shrinkage strain in time \(t \)
- \(\varepsilon'(t) \) = fictitious inelastic strain whose increment is given by Eq. (4)
- \(\phi(t, t') \) = strain and stress in time \(t \)
- \(\phi(t, t') \) = ultimate value (or value at 10,000 days) of \(\phi \) for \(\gamma \) loading at time \(t' \) [Eq. (7) through (g)]
- \(\chi(t, t_0) \) = aging coefficient defined by Eq. (6)

Proof of basic theorem

The uniaxial creep law may be expressed in either of the following two equivalent forms:

\[
\varepsilon(t) = \int_0^t J_c(t, t') \, \sigma(t') \, dt' \quad (A1)
\]

\[
\sigma(t) = \int_0^t E_R(t, t') \, [d\varepsilon(t') - d\varepsilon'(t')] \quad (A2)
\]

in which the integrals must be understood as Stieltjes integrals.

The relation between functions \(J_c \) and \(E_R \) may be obtained, e.g., by considering the strain history to be a unit step function, that is, \(\varepsilon = 1 \) for \(t \geq t_0 \) and \(\varepsilon = 0 \) for \(t < t_0 \), in which case the stress response is, by definition, \(\sigma(t) = E_R(t, t_0) \).

Substitution in Eq. (A1) with \(\varepsilon = 0 \) thus yields:

\[
J_c(t, t_0) E(t_0) + \int_0^t J_c(t, t') \, \frac{\partial E_R(t', t_0)}{\partial t'} \, dt' = 1 \quad (A3)
\]

for \(t > t_0 \).

Combination of Eq. (5) and (6) with the relation:

\[
\varepsilon(t, t') = E(t') J_c(t, t') - 1
\]

gives:

\[
E'(t, t_0) = [E(t_0) - E_R(t, t_0)]/\varepsilon(t, t_0)
\]

If one substitutes this relation with Eq. (1), (3), and (4) in Eq. (2) and notes that \(\sigma(t_0)/E(t_0) = \varepsilon_0 \), Eq. (2) becomes:

\[
\sigma(t) = \sigma(t_0) + [E(t_0) - E_R(t, t_0)] \varepsilon_1 - \varepsilon_0 \quad (A4)
\]

for \(t \geq t_0 \).

Insertion of this expression and Eq. (1) into Eq. (A1) yields:

\[
\varepsilon_0 + \varepsilon_1 [E(t_0) J_c(t, t_0) - 1] = J_c(t, t_0) \sigma(t) - \varepsilon_1 \int_0^t J_c(t, t') \, \frac{\partial E_R(t', t_0)}{\partial t'} \, dt' \quad (A5)
\]

or

\[
\varepsilon_0 - \varepsilon_1 = E(t_0) J_c(t, t_0) (\varepsilon_1 - \varepsilon_0) + \varepsilon_0 \int_0^t J_c(t, t') \, \frac{\partial E_R(t', t_0)}{\partial t'} \, dt' \quad (A6)
\]

If \(\varepsilon_0 = \varepsilon_1 \), this equation is identically satisfied, and if \(\varepsilon_0 \neq \varepsilon_1 \), Eq. (A6) may be divided by \((\varepsilon_0 - \varepsilon_1) \) which yields identity Eq. (A3). Noting that a backward transformation from Eq. (A3) through Eq. (A6) and (A5) to Eq. (2) through (6) is also possible, Eq. (2) through (6) are shown to be correct and exact for any \(\varepsilon_0 \) and \(\varepsilon_1 \).

Computation of aging coefficient

Determination of \(\chi \) requires the stress relaxation function to be determined from the given creep function.

This can be done by solving Volterra's integral Eq. (A3), which is best carried out numerically. For this purpose, time \(t \) may be subdivided by discrete times \(t_1 \), ..., \(t_n \) into \(n \) time steps \(\Delta t_r = t_r - t_{r-1} \) \((r = 2,3, \ldots, n) \); one conveniently puts \(t_0 = t_1 \), expressing the fact that the first load increment is instantaneous, \(t_0 = 0 \). If the integral in Eq. (A3) is approximated by a finite sum with the help of the trapezoidal rule, then, after subtracting the forms of Eq. (A3) for \(t = t_r \) and \(t = t_{r-1} \), the following recurrent equation (whose error order is a \(\Delta \phi \)) for the increments \(\Delta E_R = E_R(t_r, t_0) - E_R(t_{r-1}, t_0) \) is obtained:

\[
\Delta E_R = -2(J_{cr} \phi + J_{cr-1} \phi - 1) \times \sum_{r=1}^{r-1} \frac{1}{2} \Delta E_R \sum_{r=1}^{r} [J_{cr} + J_{cr-1} - J_{cr-1} - J_{cr-1} \phi] \quad (A7)
\]

where \(J_{cr} = J_c(t_r, t_0) \) and the starting value is \(E_R(t) = E(t_0) \).

Computation of the relaxation function and the aging coefficient from this equation and Eq. (6) is a simple task and may be programmed with only a few FORTRAN statements. The time steps \(\Delta t_r \) are best chosen as increasing in a constant ratio, such as \(\Delta t_r/\Delta t_{r-1} = 10^{i/10} \). The first time step \(\Delta t_2 \) should not be chosen larger than the value of the elapsed time \(t_r - t_0 \) for which \(\phi(t, t_0) \) equals about 0.01. Accuracy of Eq. (A7) is quite satisfactory and, for a typical creep function of concrete,
one can obtain results whose first three decimals are exact if the ratio $\Delta t_r/\Delta t_{r-1}$ does not exceed the above value. Although for long creep periods, such as 30 years, Eq. (A7) involves rather long sums, the computation time with a computer such as a CDC 6400 is short. (For creep function Eq. (7), computation of all values $E_R(t_r, t_o)$ for $r = 1, \ldots, 100$ and one fixed t_o requires about 20 sec.)

Multiaxial stress

In this case, owing to isotropy, the linear creep law may be expressed by one relation between the volumetric components and one relation between the corresponding deviatoric components of stress and strain. Both of these relations are analogous in form to Eq. (A1) or (A2) and are mutually independent. Hence, the basic theorem with Eq. (1) through (6) may be reformulated for volumetric and deviatoric components, obtaining different values of χ (and ϕ) in each case. Approximately, however, the Poisson ratio in creep is constant and then the creep functions for volumetric and deviatoric creep are both proportional to $J_{c}(t, t')$.

Then, the fictitious inelastic volumetric and deviatoric strain increments are both equal to the $\phi(t, t_o)$ multiple of the initial elastic strains, and the age-adjusted bulk and shear moduli, analogous to E'', are:

$$
\begin{align*}
K''(t, t_o) &= \frac{K(t_o)}{1 + \chi(t, t_o) \phi(t, t_o)} \\
G''(t, t_o) &= \frac{G(t_o)}{1 + \chi(t, t_o) \phi(t, t_o)}
\end{align*}
$$

(A8)

where K and G are the actual instantaneous bulk and shear moduli.

This paper was received by the Institute May 20, 1971.