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Abstract—The harmonic function u near point ¢ from which a single singularity ray emanates is assumed to
be dominated by the term #p’U where r=distance from point 0, p=known constant and p=chosen function
of angular spherical coordinates 8, ¢, for which a partial differential equation with boundary conditions, espe-
cially those at the singularity rays, and a variational principle, are derived. Because grad U is nonsingular, a
numerical solution is possible, using, e.g. the finite difference or finite element methods. This reduces the
problem to finding A of the smallest real part satisfying the equation Det (A,)) =0 where A, is a large matrix
whose coefficients depend linearly on w=A(A+1). In general A and A, are complex. Solutions can be
obtained either by reduction to a standard matrix eigenvalue problem for g, or by successive conversions to
nonhomogeneous linear equation systems. Computer studies have confirmed the feasibility of the method and
have shown that highly accurate results can be obtained. Solutions for cracks and notches ending at a plane or
conical surface, and for cracks ending obliquely at a halfspace surface, are presented. In these cases, A is real
and the singularity is always weaker (A >p) than on the singularity line and may even disappear (A>1).
Furthermore, elastic stresses under a wedge-shaped rigid sliding stamp or at a corner of a crack edge, and also
harmonic functions at three-sided pyramidal notches, have been analyzed. Here A <p was found to occur. A
simple analytical solution for one class of special cases has also been found and used to check some of the
numerical results.

INTRODUCTION

In THREE-dimensional potential theory there exists a great number of problems in which
one or several lines of singularity of the potential gradient terminate or intersect. The
singularity at the point of termination or intersection can naturally be expected to differ
from the singularity on the line or lines entering this point. Solutions to these problems
are of considerable interest, e.g. for scattering of waves at a corner of a screen, for
distribution of electric charge, for problems of heat conduction, potential flow, seepage
etc., and perhaps most importantly, for fracture mechanics of elastic bodies. At pres-
ent, however, most of these problems remain unsolved.

One problem of this type is the distribution of pressure below the tip of a rigid
frictionless stamp of wedge-shaped contact, pressed upon an elastic halfspace. The
problem can be reduced to a potential theory problem[4]. It was discussed in 1947 by
Galin{5, 4] and an approximate solution restricted to non-oscillating singularities and
based on mapping of a hemisphere upon a circle was presented in 1957 by Rvachev[11].
He applied the Galerkin method in the mapped domain and, using up to six terms, made
rough estimates of the real values of the singularity exponent A. He concluded that the
pressure near the tip behaves as v’ ' where A monotonously increases from 0 to 1 as the
wedge angle 2a grows from 0 to 27 (r = distance from the tip). Recently Aleksandrov
and Babeshko[1] used Green’s function approach to study analytically the limiting case
of the wedge angle 2« tending to zero. They concluded that near the tip the pressure
exhibits an oscillating singularity of the type r ™' cos (k In r) (k = parameter), which ob-
viously prevails over the non-oscillating singularity r™' found for @ =0 by Rvachev{11].
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But it seems that no complete solutions of the near singularity fields, including the
singularity on the edge of the stamp near the tip, have been presented so far.

A mathematically equivalent problem for the Helmholtz reduced wave equation,
consisting in wave scattering near the tip of a right-angled corner of a screen, was
studied analytically by Radlow[9]. He found that near the tip the harmonic wave func-
tion is of the type r**, without checking for a possible imaginary part of the exponent,
and without deducing the near-tip field itself. Diffraction of elastic waves by a
right-angled wedge was also studied analytically by Kraut[16].

The intent of the present study is to propose a general method for problems of this
type. The method will consist of reduction to a two-dimensional eigenvalue problem for
a function without gradient singularity, which can presumably be solved numerically
with any desired accuracy.

TYPE OF PROBLEMS TO BE DISCUSSED
Using spherical coordinates 0, ¢, r, the Laplace equation for the potential u(9, ¢, r)
reads
+1
2

V2u=g— _0u+ 1 % u  cot §du —0. )

r’sin’ 6 8d> 90

The problem to be discussed herein consists in finding the limiting form of the solution
of this equation as r—0, assuming that the domain of the solution is an infinite space
bounded by a certain surface B(6, ¢) =0 formed by rays emanating from point 0. The
boundary conditions are u =0 on part of the surface and du/on =0 on the remaining
part, n being a normal to the surface. (The case of the boundary conditions u = constant
on part of the surface is easily reduced to the present case.) No boundary conditions
will be prescribed at any point on radial rays that do not lie entirely on B =0, so that
an infinite number of solutions can be expected. Assuming these solutions to comprise a
complete system of linearly independent functions, a certain linear combination of
these solutions should satisfy the additional boundary conditions on the radial rays
occurring in real problems. As will be seen, a class of admissible solutions is of the form
r*F(8, ¢) and consequently, regardless of the type of the afore-mentioned linear combi-
nation, the solution for any boundary conditions on the radial rays will be dominated in
a sufficiently small neighborhood of point 0 by that solution of the present problem for
which Re(A) is smallest. When Re(A) <1, grad u near point 0 becomes unbounded, i.e.
the solution exhibits a singularity at point 0. However, for the given boundary condi-
tions on the radial rays the singularity need not necessarily occur because the solutions
with Re(A) <1 need not be present in the afore-mentioned linear combination (as in the
case of a homogeneous normal stress field parallel to a crack). The sufficient conditions
of singular behavior, as well as the uniqueness aspects, cannot be included in the
present study.

If u is required to be finite, only Re(A)>0 is admissible. (However, in some physi-
cally meaningful problems, such as the case of a line load on an elastic half-space, u is
not finite at point 0.)

The surface formed by radial rays and the corresponding boundary conditions are
assumed to be of such a form that the surface contains a finite number of rays on which
grad u is singular (unbounded). Further, it is assumed that at any finite distance L from
point 0, the field within a neighborhood of the singularity ray which is sufficiently smal-
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ler than L is known, and is of the same type at any point of the ray except at point 0.
This field may be determined by solving the plane problem in a plane normal to the ray.
(The latter property is verified in some special cases by the analytical solutions reported
in the sequel.)

Consider the plane section normal to a singularity ray passing through point 0’ at a
finite distance L from point 0. It is assumed that within a neighborhood of point ¢
which is sufficiently smaller than L, the normal plane section of the body is bounded by
two straight rays 0’ A, 0’ B from point (', forming angle a (Fig. 1). The boundary condi-
tion on the rays may be either u =0 or du/a¢ = 0 where ¢ = angular coordinate in Fig. 1.
The solution near point ¢ in the normal plane section may be sought in the form
u ~ rifi(¢) where r, is the distance from point 0, and p and f:(¢) are assumed to be the
same at any finite distance L from point 0.

To give an example of the determination of p and f.(¢), consider that.the boundary
conditions are au/ad=0 on ray 0’ A, and u=0 on ray (/' B. Substitution of u=r? f(¢)
into the Laplace equation yields a homogeneous ordinary differential equation for fi(¢),
whose general solution is A cos p¢+ B sin p¢. The boundary conditions reduce to
df.(0)/deé =0, fi( — @) =0, which yield

u~r’fi(¢) where fi(d)=cospod,p=im/(r—a). )

The same result is obtained when rays (' A, O’ B form angle 2a and u =0 on both rays.

This technique of the determination of the near-singularity fields has been used in
plane elasticity (where it is not as trivial as here) by Knein[8] (who thanked T. von
Karmén for suggesting the basic approach), and later independently by Williams[14]
and Karp and Karal[7]. In analogy with this technique, the variables may be separated
in the three-dimensional problem as follows:

u(d, b, r)=r’f(6, ) 3)

where n is, in general, complex and f is a function of 8 and ¢ only. It may be imagined
as a function defined in a certain domain ) on a unit sphere about point 0. Substitution
of (3) into the Laplace equation (1) allows r to be completely eliminated from the
equation and results in a differential equation for f(8, ¢).

It should be noted that in the case of the Helmholtz reduced wave equation, Vu +
k’u =0 (arising in wave scattering problems), or the Poisson equation, V’u =k, the
variable r is not eliminated since the additional term k*r’f or kr*™", respectively, appears
in the equation for f. However, in a sufficiently small neighborhood of point 0, this term
becomes negligible, as compared with other terms in the equation (provided that f is

Fig. 1. Planar case giving rise to singularity at point (.
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bounded and, in the case of the Poisson equation, n <2). Thus, the solutions of the
reduced wave equation and the Poisson equation exhibit the same type of singularity as
the harmonic functions.

The gradient singularity at point 0 is only partly interpreted by the term r”" in
equation (3) since along certain radial rays there is an additional singularity which must
be embedded in function f. Consequently, function f is not suitable for determination
by approximate numerical methods.

REMOVING SINGULARITY ON RADIAL SURFACE RAYS

It is desired to separate the variables in such a manner that, in any plane normal to
the singularity ray, function u near the ray be of the same form as equation (3) in
which f; has no gradient singularity. Considering, for the sake of brevity, the case of a
single singularity ray, this may be achieved by writing

u(b, ¢, r)=rrilU(8, ¢) “@

where r, = chosen continuous smooth function of 8, ¢, and r, which is identical to the
distance from the singularity ray in its vicinity and is nonzero everywhere except on the
ray. Obviously, if p is the correct exponent for the gradient singularity on the ray, as
determined from (2), U(8, ¢) must be a continuous smooth function of § and ¢ which
has (a) no gradient singularity on the singularity ray, and (b) in its vicinity is propor-
tional to the function f, from equation (2).

Function » may always be introduced in the form

r = rp(6, ¢) 5

where p = chosen continuous smooth function of 8 and ¢ which is nonzero everywhere
except on the singularity ray in whose vicinity it is identical with the distance from the
ray measured on the unit sphere. Thus

u(8, ¢, ry=r'F(6, d)=r"p"U(6, $) ()]
where
A=n+p. N

If the singularity ray is located at the pole, 8=0, a very simple choice of p is
possible:

p=6 or p=sinb. 8

With the latter choice, r, represents the exact distance from the ray not only in its
vicinity but everywhere in the domain. It must be warned, however, that'sin 6 cannot be
used when 6= is part of the domain and no singularity ray exists at § =s. The
function p =sin k@ may be suitable when symmetric boundary conditions at 6 = 7/2k
are desired.

If the singularity ray is located at (8, ¢, it is possible to choose, e.g.
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p={(6— 6" +[(¢— ) sin 6.F}". ©)

Generalization to the case of several singularity rays contained within the domain
on the unit sphere is obvious. For three rays, e.g.

u(6, &, ry=r"F(6, d)=r"plpPpsU(8, ¢) 10

where
A=n+p;+p+ps {an

P, P2, Ps being known exponents for the three rays and pi, p2, ps functions of the same
type as p(#8, ¢) was before.

Now consider a singularity ray which is placed into the pole of a spherical coordi-
nate system (e.g. ray 00’ in Fig. 2). In the plane (8, ¢) the pole appears as a straight line
segment 8 = 0 with end points given by the angles ¢,, ¢. forming the crack or notch that
creates the singularity (Fig. 3). This line segment is a part of the boundary of domain Q
in the plane (0,¢) on which function U(9,¢) has to be solved. It is obvious that a
certain boundary condition must be imposed at this line segment (0'¢V in Fig. 3). The
boundary condition may be deduced from the fact that U must be proportional to the
function f, from equation (2) in the vicinity of 9 = 0. In equation (2) f, depends only on
&, 1.e. is independent of 8. Hence, the condition

U868 =0 atd=0 12)

must be satisfied.

Fig. 2. Various cases of a notch or crack ending into a conical or planar surface. (The sphere is
not the body surface and serves only for visualizing the situation in spherical coordinates.)

JES Vol. 12, No, 3~C



226 Z. P. BAZANT

8us8n=0

8=0

8=
A u=0-"" ] C
P=a ¢ Lo ¢=7
Fig. 3. Domain ¢’ ACO from Fig. 2 visualized in (6, ¢) plane, with a nodal net used for numerical
solution.

DIFFERENTIAL EQUATION OF THE PROBLEM AND VARIATIONAL FORMULATION

Substitution of equation (6) into equation (1) yields, after rearrangement and simp-
lification, the partial differential equation:

00U, p° 9°U ( ) aU { 2
682+sm 66¢2+ 2ppa +p’cot 70 +3A(A+Dp

9p _ (@) é’__e]} -
+p{paecot9+(p [y 28) TP U=0. a3y
In the special case where p =sin 8, equation (13) becomes

sin Og-g+a¢[z]

+(p+1)sm26--+{[)\()l+1) p(p+D]sin’ 6+ptU=0. (14)

The problem consists in finding a nonzero solution of equation (13) or (14) which
satisfies the boundary conditions at a surface formed by the radial rays and gives the
smallest positive real part of A.

1t should be noted that for 60, equation (14) becomes 3°U/d¢°+ p*U =0, which
gives U~cos pé, as is required by equation (2).

For numerical solution, the variational formulation is of particular interest. The
functional associated with the Laplace equation is known to be

w=[ Jerad wavew=g [ |G + () + (ﬁa‘a%)] dvew, - as)

where V = volume, W, = certain integral over the boundary surface. The functional
which is associated with equation (13) or (14) may be obtained by reducing functional %
to a two-dimensional one. In conformity with the separation of variables by substitution
(6), the minimizing condition for % may be considered to be of the form §(8.%#)=0
where §, is the variation with regard to functions of r, and § is the variation with regard
to functions of 8 and ¢. Thus, according to (15) and (7),
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5”[ [R F(S.R) + ( ) S.R +?—s§:_§(g§) 5R]r sin 0 d6 dé dr:z(mﬁ;

where R =r", R’ =dR/dr. Integration by parts with respect to (8.R)' provides

[f P {5 j L [- A+ DF+ (%’)Jra% (gg)z] sin 6d0d¢} SRAr+8(3,W)=0 (17)

where {1 is the given domain on the unit sphere. Since this equation must be satisfied for
any variation 8.R as a function of r, the minimizing condition reduces to §W =0, where
W is the following functional

2 2
W=” 1[(@5) 1 (éf)_ + 2] in 8dodg + W, 8
. 21(Gs) s 5 A(A+1)F* | sin 6dode (18)

in which F = p”U; W, is a certain integral arising from %",. Because the surface of the
body in three dimensions consists of radial rays, W, represents a certain contour in-
tegral along the boundary of the domain (). The foregoing simple derivation is, of

course, not rigorous, but it is easy to verify using standard procedures that equation (13)
is indeed associated with the variational principle §W =0.

SOME CASES ADMITTING SIMPLE ANALYTICAL SOLUTIONS
Consider solutions of equation (14) which have the form

U(8, ¢) = Y(6) sin po. (19
This obviously satisfies the boundary conditions
U=0at ¢ =0 andat ¢ =2wr—a)=7/p (20a)
or

U=0at ¢ =0 and dUfdp=0at ¢=m—a=n/2p (20b)

that is, U =0 at the planes 00’ A and 00'B in Fig. 2 where « and p are related as given by
equation (2). Thus, if domain () on the unit sphere is rectangular in 8 and ¢ (Fig. 3),i.e.

Os<¢d=mw/p, 0s6=<p 2
function Y(8) in (19) needs to satisfy only the boundary conditions on =0 and 6 = 8.
Considering that there is a free surface at 8 = 8 (a cone, and for 8 = 7/2 a plane; Fig.
2), and taking equation (12) into account, one may write
aUle8=0 at =0, U=0 at §=4. 22)
Thus, it is necessary and sufficient that Y(8) fulfill the boundary conditions:

aY/38=0 at =0, Y =0 at 6=5. 23)
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For a < 7/2 there is a single singularity ray in this problem, the ray 00’ in Fig. 2, and
for « = /2 there is none. (On rays 0A, OB there is no singularity.) Substituting equation
(19) into (14), equation (14) is found to be satisfied if

2
%%+(2p+l)cot 0%+[/\(A+1)—p(p+1)]Y=0. (24)

Upon introduction of a new independent variable x =sin’ 6, equation (24) may be
transformed to the form

2

x(l—x)g;’;r[p+1—<p+%)x]%§+'\()‘+1);p(p+l)Y=0 (25)

which is seen to be a special form of the hypergeometric (Gauss) differential equation.
The solution of this equation{12] leads to hypergeometric functions and it can be shown
that it may be expressed in terms of elementary functions only if 8=a/2, that is if the
conical surface degenerates into a plane (Fig. 2b). Then the root A having the smallest
real part is obtained as

A=p+1 (26)
and the corresponding solution is
u(8, )= Cr""'(sin 8)" cos 0 sin pp 27N

where C=an arbitrary constant. Equation (27) can be proved by substitution into (14).
Note that, for any angle «, A is greater than 1.

An interesting result is thus obtained: the gradient singularity at the ray (edge of a
crack or notch, e.g. ) disappears at the surface of the body (cases in Fig. 2b, c, d).

One important case is the half-space — 7 < ¢ < 0 whose boundary conditions at the
surface ¢ = 0 are u = 0 on the infinite wedge 0 < 6 <28 and du/dn = du/d¢p = 0 on the
rest of the surface (Fig. 11a). Simple analytical solutions exist[11] for two limiting
cases:

(7)
u=Cln (tanz) forB—-0 (A=0) (28)
u=Crsinfsing forB—m (A=1) (29)

and, of course, for the case @ = 7/2 in which the problem reduces to a plane one and has
a well known solution yielding A =3.

REDUCTION TO A NONLINEAR EIGENVALUE PROBLEM FOR A MATRIX
Because function U(8, ¢) has no gradient singularities, standard numerical methods
may be applied to its determination. For complicated geometries of the domain ( on the
unit sphere, the most versatile approach will certainly be the finite element method.
However, development of finite elements on the basis of the functional (18) exceeds the
scope of this paper and will be treated separately. For domains of simpler geometries,
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the use of the finite difference method appears to be easier and has been adopted for all
computer studies reported herein. The differential equation (14) or (13) is replaced by its
finite difference approximation in terms of nodal values U; (i=1,2,....) and is written
for all nodes of the chosen network inside the domain ). Some of the equations involve
nodal points outside the boundary for which further equations expressing the boundary
conditions must be added.

Application of the finite difference method, as well as the finite element method,
yields a large system of N homogeneous linear algebraic equations for values U; of
function U in the nodes j =1,2,..., N,

Z{A,}(A)UFO (i=1,2,...N). (30

The determinant of matrix Ay, in general complex, must vanish for a non-zero solution
to exist. The problem is thus reduced to finding a root A having the smallest positive real
part. The solution is complicated by the large size of matrix [A;] needed for accurate
results, and also by the fact that A; are nonlinear functions of A (polynomials). Various
methods of solution are possible.

Method A. Reduction to a matrix eigenvalue problem

Noticing that equation (13) or (14) involves A solely through the term A(A+D=u,
matrix A;is a linear function of u. Furthermore, if the finite difference method is used,
u appears only in the diagonal coefficients of As, and if the equations expressing the
boundary conditions are eliminated, u appears in all diagonal coefficients. Mere divi-
sion of each equation by the coefficient at u reduces the matrix A, to the form:

A.‘j(/\) = K.’j" 11:8;’;’ (31)

where Kj is a matrix which is independent of A, and §;=1 for i=j, §;=0for i # j. Thus, a
standard eigenvalue problem in w for a real, general (nonsymmetrical) matrix is
obtained. There are two roots A which correspond to each root yu,

A=—3ixVitpu. (32

If the roots A are all real, the smallest positive A evidently corresponds to the smallest u
(% being replaced by +). But this is not true in the case of complex roots and all roots u
must be checked to determine the smallest Re(A).

For the solution of the eigenvalue problem obtained, standard subroutines are
available[3, 6, 10, 15]. Nevertheless, even with the contemporary electronic computers
it is difficult and costly to exceed 150 equations, approximately, which usually suffices
for accurate but not highly accurate results, The cost is also substantially increased by
the fact that for the finite difference method, matrix A; is non-symmetric.

The finite element method, which may be based on minimizing the functional (18),
yields symmetric matrices A; and K;. However, in contrast with the finite difference
method, ¢ no longer appears exclusively in the diagonal terms of A; and inversion of a
matrix of the size N X N is necessary to obtain a standard eigenvalue problem in u.

Taking advantage of the sparsity of matrix Ay, a much larger matrix can be stored in
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rapid access memory and the eigenvalue could be obtained by iteration[3, 6, 10]. How-
ever, this would be economical only for the eigenvalue of largest absolute value. At-
tempts have been made to recast the problem in terms of the highest eigenvalue, e.g.
replacing A with 1/y and linearizing with respect to vy. It appears, however, that this
approach is impossible because there are always some spurious negative roots whose
absolute value is larger than the largest positive vy.

Method B. Conversion to nonhomogeneous equation systems

(a) The case of real root. In this method, which has been used with success{2] to
solve buckling problems for very large elastic structural systems leading to equations of
type (30), a certain value A, is first chosen and all coefficients Ai{Ao) are evaluated. One
equation, whose number will be referred to as k, is replaced by the equation U.=1,
which makes the system nonhomogeneous. Normally the matrix of the new system is
nonsingular and all U; (i=1,2, ..., N) may be solved using the standard subroutines for
systems of linear equations. The obtained values of U, are then substituted into the
original k™ equation, previously replaced, and the corresponding right-hand side
3,A5U;= Q is computed. In general Q will be nonzero and the aim is to find the smallest
value of A for which Q =0. This may be done by the regula falsi method. Several values
of A, are selected and the plot of Q versus A, is imagined as shown in Fig. 6. Subsequent
choices of A, are made by linear interpolation. Good accuracy and convergence is
achieved only when the k™ equation is chosen in such a manner that no |Uj is much
larger than U..

From computer studies it has been found that the radius of convergence of this
method is sometimes quite small. The interval of interest, such as 0=<<A <2, must be
scanned in small steps of A, about 0-05, to obtain a good initial guess of A. Only then
may the automatic improvements of A by the regula falsi method be started. This is
obvious from the sharply varying slope of the plot b in Fig. 6 (although there exists
cases of slowly varying slope, as is shown by curve c in Fig. 6). Much care is needed to
avoid missing the smallest root. Nevertheless, if a great number of problems with the
given data varying in small steps are being solved, as in the studies reported herein, an
approximate value of A is usually known in advance and scanning of the large interval
may be skipped. It is because of this fact that this method is usually much more
economical than the general programs for eigenvalues. Moreover, in contrast with
method A, this method allows handling up to one or two thousand equations without
great difficulties (using either various elimination methods for banded matrices with
tape storage or the sparse matrix storage in rapid access memory combined with an
iterative solution).

If no estimate of A is available, computationally the most efficient procedure is a
combination of methods A and B. First, method A with a low number of nodes is used
to obtain an approximate value of A and the solution is then refined to a high accuracy
using method B with a large number of nodes.

As an alternative to method B, it is also possible to apply the regula falsi method to
the plot of the determinant of A; versus A. But the slope of this plot usually varies even
more rapidly and the convergence properties were found to be poorer than in method B.

(b) The case of complex root. When root A of the smallest real part happens to be
complex, a similar method may be used. In this case U, as well as matrix A; depending
on A, must be considered as complex. The objective is to find complex A, for which



Three-dimensional harmonic functions 231

Q =0. First, an arbitrary value of Im(Ao) = X is chosen and, keeping it fixed, the plot of
Re(Q) versus Re(\o) is examined, choosing various values of Re(Ao). The point at which
Re(Q) =0 may be found by the regula falsi method and the corresponding Im(Q) de-
noted as Y. The foregoing procedure is then repeated for various Im(Ao) = X and,
considering the plot of Y versus X, the point at which Y = 0 (and Q = 0) is again found
by the regula falsi method.

The fact that the regula falsi method must be applied in two dimensions makes the
computations much more expensive than in the case of a real X. Moreover, because the
matrix is complex, the running time of each equation system is longer. Nevertheless,
using tape storage or compact storage of the sparse matrix, much larger systems can be
handled than with method A.

Method C. Successive linearizations with respect to A

If the technique presented here is applied in elasticity, A; will usually consist of
general polynomials in A, complex or real. Method B will still be applicable, but instead
of Method A successive solutions of eigenvalue problems will be required. Since A;
are, in general, analytic functions of a complex variable A, expansion in a Taylor series
about a chosen complex A, is possible. The series may be truncated after the second
term to achieve linearization. Equations (30) are then reduced to the form

N
2 (A-NAYU; =0 (i=12,...N) 33)

where A’ = Ao— A, AY; = Ai(Xo), Al = — 3A;(A0)/3X. Multiplication of matrix equation
(33) by the inverse of A/; then produces a standard eigenvalue problem, in general with
a complex matrix. The objective is to find A, for which A’ = 0. This can be achieved by
application of the regula falsi method, in the same procedure as the condition Q =0 is
achieved in method B.

This method has so far been tested only in the problems with real A as reported in
the sequel. The convergence was rapid and the radius of convergence appeared to be
quite large, that is the method automatically converged even if the initial guess of Ao
was very poor {e.g. (-2 in the case of plot (a) in Fig. 6). This is due to the slow change of
the slope in this plot.

APPLICATION AND RESULTS OF NUMERICAL STUDIES
Cracks and notches ending at a plane or conical surface

To examine the numerical methods described above, the cases whose exact solution
is known were solved first. These are the cases shown in Fig. 2 and characterized by
boundary conditions (20a) and (22). There is only one singularity ray 00’ in these prob-
lems. The domain () is given by equation (21) and is rectangular in terms of 8 and &, as
shown in Fig. 3. The domain was subdivided by a rectangular network with steps
A¢ = (2w —a)/2n, A8 =3m/(n +3). It is noteworthy that no interior nodes of the net-
work may be placed on the boundary line 6 = 0 because the finite difference equations
for the nodes on this line do not involve any node with 8 # 0. However, these nodes V
may be considered as exterior nodes of the network used in formulating the boundary
condition (as has been done in computing Table 2).

The solutions were carried out for various sizes of the step. The results for a =0,
given in Fig. 7, indicate an excellent convergence of A to the exact value 1-5 resulting
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from equations (26) and (2). For 72 equations the error is 0-4 per cent and for 1152
equations it is 0-04 per cent. The convergence is monotonous and from the slope of the
line in Fig. 7 it may be inferred that the error = (step size)'?, that is, the convergence is
almost quadratic. A similar picture is obtained for other values of a.

The solutions were also computed for non-zero values of B, that is, the cases of
cracks or notches ending at the apex of a conical surface, which do not admit simple
analytical solutions. The results are plotted in Fig. 4 and some of the results are
tabulated in Table 1 (where three decimals are believed to be correct).

The results for 8 +0 were compared and agreed with one-dimensional finite differ-
ence solutions of the ordinary differential equation (24). (Fora =0, 8 = /2, step Af =
B/50 gave A = 1-4998, which is only 0-013 per cent in error.) For several cases, the
eigenstates, as characterized by function Y (8) in equation (19), are plotted in Fig. 5. As
a check, some solutions have also been run with p” =19 and the results were
identical.

It is interesting to note that at a certain value B8 > 7/2, depending on a, A becomes
less than 1-0 so that grad u is singular at point 0. But the singularity is always weaker
than at the edge 00’ (see Fig. 4).

Cracks ending obliquely at a halfspace surface

The general method presented herein was further applied to the case shown in Fig.
8b, which is equivalent to the case in Fig. 8a where the boundary conditions are also
given. There is only one singularity ray 00’ in this problem, with p =} from equation

I

A [ B=m/2{(Plane
| surface)

Fig. 4. Singularity strength for cases shown in Fig. 2.
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Table 1. Values of A for various a and 8 in the problem shown in Fig. 2

B
/4 3m/8 72 57/8 3mw/4 T7/8 T
a
-1 3-031 1-846 1-250 0-888 0-641 0-455 0:250
~a/2 3-189 1-953 1-333 0-958 0-704 0:515 0-333
— /4 3-314 2:039 1-400 1-015 0-755 0-565 0-400
0 3-500 2:167 1-500 1-100 0-833 0-642 0-500
/8 3-631 2-257 1-571 1-162 0-890 0-699 0-571
w4 3-806 2-449 1:667 1-244 0-967 0-778 0-667
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(2). The pole of the spherical coordinates is conveniently placed into this ray. Then,
using p = sin 9, the problem is again governed by the differential equation (14). Q is the
domain ( ABCD{' (or 0/ AECD() in Fig. 8 as is shown in plane (6, ¢) in Fig. 10. The
boundary conditions are du/d¢ = 0 on side DC0' (plane of symmetry), du/39 = 0 at the
pole 0’ (side 0’0’ in Fig. 10), u =0 on side 0’ A (crack surface) and u =0 on side ABC (or
AEC). The latter side appears in the plane (0, ¢) as the curve defined as follows:

@ = arctan (tan B/cos ¢); if 6 <Othen <0 + 7. (34)
Formulation of the finite difference equivalents of the boundary condition u =0 in
terms of the nodal values near boundary ABC requires locating point (6., ¢.) which is
symmetrical with respect to plane ABC to a given outside node (6., ¢.). To this end, the
value of # which corresponds to ¢ = ¢. according to (34) is first calculated and, using
spherical trigonometry, the following expressions are successively evaluated

cos = 1—2(cos B sin @.)°
0. = arccos [cos 0, cos (6.— 8) +sin 8, sin (6.— 8) cos ¢] (35)

@ = @+ arcsin [sin (6,— @) sin ¢/sin 6.].

10 =5 7 T T I T T T
ey a=n/4, B=3m4
L \\\ \\\ / ? B
DD s @=0,B=3m4
8 N \\
N
L N < Anya,B=0
a= -w/2,B=w/4 N N
6 — \ N —
— a= 0 =m/4
9 | ’ B \\
> N\ T
N
4 \ —
N\
- \ ~
2 —
! I} I | ) | ! | 1
o] o2 o4 06 o8 -0

8/p

Fig. 5. Plot of function Y(8) from equation (19) for some cases shown in Fig. 2.
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Fig. 6. Examples of dependence of A and parameter Q upon A, in methods A and B for solving
equations (30). (Curves a, b correspond to Fig. 2¢, curve c to Fig. 12a.)

log (I'5—X)

- N=1152, A=1-4994 o

L i ) | L | I 1 | 1
-02 -06 --0

logVABA P

Fig. 7. Convergence of A to the exact value 1-5 with diminishing step size of the net, for the case
in Fig. 2c.

The U-value at point (8., ¢.) is then related by linear interpolation to the U-values at the
nearest three interior nodes p, g, r using area coordinates in the triangle pgr, i.e.
U.=(Cca U+ @, U+ e Ur)/ G50 Where a., etc. are the areas of the triangles indicated
by subscripts. The boundary condition U=0 is expressed in the form U.=
— U(sin 8./sin 8,)°.

Introducing finite difference grids with 80-100 nodes, the problem has been solved
for various values of B. The values of A of the smallest real part are all real and the
computer results are shown as points on curve a in Fig. 9. The limiting values A = 1 and
2 for B0 and B — 7 result from equation (2) for the plane problem. The value A =15
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{b)

Fig. 8. (a) A quarterspace with boundary conditions giving rise to singularity on line 00’. (b) A
halfspace with a crack whose edge is not perpendicular to the surface.
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b i ! i ) | L
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Fig. 9. Smallest real root A for cases shown in Fig. 11 (curve b), Fig. 8 (curve 2) and Fig. 13
{curve ¢).

for 28 = 7 agrees with the result from Fig. 4. It is noteworthy that the singularity on the
ray 00’ disappears at the surface of the halfspace (Fig. 8b) for any angle B. The
eigenstates U(8, ¢) for two special cases are drawn in Fig. 10. For the case B = /4 (Fig.
12a) it has been verified by method A that no complex roots exist. This case has also
been analyzed by method B with grid Ap = /24, A8 = 7/26 (359 nodes), which yielded
A =1-131, while the coarser grid (Ap = 7/12, A8 = 7/13) resulted in A = 1-128 (the sec-
ond and third smallest A was 2-25 and 2-95). Assuming a similar convergence pattern as
in Fig. 7, the correct value can be estimated as A =1-131+0-001, or A =1-132.

Elastic stresses under wedge-shaped stamps or at crack edge corners. Wave scattering
by corners.
Furthermore, the case of a rigid sliding stamp with wedge-shaped contact of an
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Table 2. Nodal values of function U; (A)—Case in Fig. 10a (p = 0-5); (B)—Fig. 12a (p = 0-5); (C)—Fig.

12b (p =0-5); (D)—Fig. 14 (p = 0-5); (E)—Fig. 11 for B8 = 7/8(p = 2/3). Nodal coordinates are 6, =

KA®; ¢, =JA¢ in cases (A), (B), (D) and (E); ¢, = (J — 1)A¢ in case (C); grid Ap = /24, A9 = 7/26.

In Table (C) the left and right of Fig. 14 are interchanged. The top row of each case was obtained by
extrapolation.
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Fig. 10. Function U computed for the cases shown in Fig. 8 (" = Vsin 8).

arbitrary angle, 288, pressed upon the surface of an isotropic elastic half-space (Fig.
11a), has been studied. As is well known[4], this problem of elasticity may be reduced,
with the help of Papkovich-Neuber potentials, to a potential theory problem, VVu =0.
Introducing cartesian coordinates x, ¥, z and considering the half-space z =0 or
0 =< ¢ < =, the boundary conditions at the halfspace surface are

u=00nd and du/dz=0outsideT (36)

where 7 =the wedge-shaped domain below the stamp (00’ A0” in Fig. 11a). Also, at
infinity, grad u is required to vanish. After solving for u, the displacements u., u,, 4. in
cartesian coordinates x, y, z at any point of the half-space z=0 are given as[4]:

wo=(1- 2v)f Mdz-22, w=a1- 2»)[ Mgy z% w=21-vu-z5%, (37

where v=DPoisson’s ratio of the material. The normal stress below the stamp is
a.=(u/dz)E{(1+ v) where E = Young's modulus.

This problem is equivalent to the case of an infinite elastic body containing a sharp
crack whose edge forms a sharp corner of an arbitrary angle 28 (Fig. 11b). The body is
subjected at infinity to uniformly distributed normal stresses perpendicular to the crack
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Fig. 11. (a) Wedge stamp contact (unshaded) upon elastic halfspace or, alternatively, a screen,
scattering waves. (b) Crack corner in an infinite elastic space. {The sphere is not the body
surface and serves only for visualizing the situation in spherical coordinates.)

plane. Furthermore, the near field in this problem happens to be the same as in the
scattering of waves by a sharp corner of a screen[9].

Although in Fig. 11 there are two singularity rays, 00’ and 00", each with p =2 from
equation (2), the problem may be reduced to one with a single singularity ray, taking
advantage of the fact that the solution 4 or F must be symmetrical with regard to plane
OABC in Fig. 11b. The formulation of the problem then differs from the previous case
(Fig. 8) solely by the boundary condition on side ABC (or AEC) which reads:

3f(sin 8)°Ulfon =0 (38)

where p =3 and n is the normal to the side AEC (normal on the sphere, not in the plane
(8, ¢)). The finite difference formulation of the boundary condition is the same as in the
previous case (Fig. 8, equations 34, 35), except that U,= U. (sin 6./sin 6.)".

Computer results for grids with 80-100 nodes are shown by the points on curve b in
Fig. 9. Note that the points adjacent to A =0-5 fit a smooth curve passed through the
well-known value of A =0-5 for 28 = . The point A =0 for 8 >0 follows from equation
(28), and A = 1 for 8- = results from equation (29). The eigenstates U(8, ¢) are shown
for two special cases by lines of equal U-value in Fig. 12. It is worth noting that the
computed variation of U along the top side 0'0' of Fig. 12a or b is proportional to
sin (8/2), as is required by equation (2).

The results prove that the singularity at the sharp concave (28<<w) corner 0 of a
crack edge (Fig. 11b) in an elastic body is more severe (A<p) than at a straight crack
edge (p =3). This fact is of interest for fracture mechanics of brittle elastic materials. It
shows that at a concave corner of the crack edge of a planar crack the crack will
propagate faster or at a lower stress than at a straight edge. Obviously, this would tend
to straighten the crack edge. A plane crack with a straight edge is thus more stable than
a plane crack with zig-zag edge.

All roots have been computed by method B, restricting consideration to real A.
However, the case 28 = /2 has also been computed by method A ; the result was
identical and it was found that no complex roots A exist in this case (similar to cases
2B = o and B = ).
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Fig. 12. Function U computed for the case shown in Fig. 11 (p” = Vsin §).

All points on curve b in Fig. 9 have first been computed with grids Ap = 7/12,A0 =
/13 (80-100 nodes). For the case of a right-angled corner (28 = =/2; Fig. 12a) this grid
(having 86 nodes, not counting those outside the domain) yielded A = 0-2905. This case
has then also been computed with a grid A = 7/24, A6 =7/26 (having 359 nodes),
which has resulted in A = 0-2947 (using method B). This differs by 0-0043 (i.e. 1-46 per
cent) from the coarser grid. Nearly the same difference, namely 0-0044, is found be-
tween the grids with the same spacing in Fig. 7. Because the result for a grid with 359
nodes would be in Fig. 7 about 0-0015 below the exact value, it can be inferred that the
correct value probably is A =0-2947 +0-0015, i.e.

A =0296 (for2p = w/2). (39

(However, Radlow [9] deduced for this case analytically the value Re(A) =0-25, whose
difference from the present result is obviously much greater than the probable value of
numerical error, and so reexamination of the analysis in[9] seems to be in order.) The
second and third smallest A, as found by method A with 86 nodes for p =3, are 1-43 and
2-03. It was also checked that higher p does not give smaller A.

The case 28 = 3/2 (Fig. 12b) has also been computed with the finer grid, which has
furnished A =0-8148; assuming similar convergence behavior as before, the correct
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value is A =0-815+0-001=0-816. For 28=m/4, the finer grid vielded A =
0-2057+0-0015=0-207.

Rvachev’s results for real roots[11], obtained by a mapping technique and the
Galerkin method, differ considerably (by as much as 0-2) from curve b in Fig. 9. This is
probably due to numerical error because Rvachev used only six unknown parameters.

For B —0, Aleksandrov and Babeshko[1] found A to be complex, with Re(A) = — (-5,
which overrides the value A =0 indicated by equation (28) and shown in Fig. 9.
However, no cases with very small 8 have yet been run to verify this result. This will be
postponed until the finite element formulation is completed (because refinement of the
nodal network near side 0A in Fig. 10 will probably be desirable for high accuracy).

Singularity at the apex of pyramidal notches with three equal sides

The cases of pyramidal notches shown in Fig. 13 have 3 singularity rays and possess
one plane of symmetry through each of the three edges, so that only the domain
0’ ABCD(' needs to be considered. This domain includes only one singularity ray and
the formulation of the problem is the same as for the cases shown in Fig. 11, discussed
previously, except for two differences. First, angle 2a of the planes forming each radial
edge depends on the apex angle 28 of each side, namely sin « = 1/(2 cos 8), and the
value of p is then given by equation (2). Second, the location of the right boundary in
the (6,¢) plane is different, as is shown in Fig. 14 for the case of the right-angled pyrami-
dal notch 28 = w/2).

This case was analyzed only by method B, assuming A to be real. The smallest roots
computed with networks of about 80 nodes are given by the points on curve c in Fig. 9
and the eigenstate U for one case is shown in Fig. 14. Note that the cases 28 >27/3
represent a convex solid pyramid rather than a concave notch. For 28=2n/3 the
pyramid degenerates into a planar surface (a=0), for which A =1. The case 8—0
should give the same value as for curve b. (According to the result in[1], the values in
Fig. 9 will possibly be overriden by some complex A at 8—0.) The right-angled pyrami-
dal notch (Figs. 14 and 13a) has also been computed with a finer grid A¢ = 7/24, A6 =
/26, which has yielded A =0-4533, Assuming similar convergence behavior as before,
the correct value is A = 0-4533 +0-0015 = 0-455. For 23 = o /4, the finer grid yielded
A =0:2288 +0-0015 = 0-230 (a = 32:765°, p =0-61127).

Fig. 13. Pyramidal notches with three sides of equal apex angle. (The sphere is not the body
surface and serves only for visualizing the situation in spherical coordinates.)
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Fig. 14. Function U computed for the case shown in Fig. 13a (p” = (sin 8)*).

Development of singular finite elements and extensions to elasticity

1t should be noted that knowledge of the dominant near-singularity field is all that is
needed for the development of finite elements comprising the singularity, following the
path shown, e.g. by Walsh[13]. Table 2 gives sufficient information for formulation of
such elements for the most important cases. This brings within reach the numerical sol-
utions by the finite element method for three-dimensional domains with arbitrary
boundaries.

The general method presented can also be applied to problems of three-dimensional
elasticity which are not reducible to potential theory problems. Here expressions of the
form (6) or (10) augmented by rigid-body displacement terms for the neighborhood of
the ray must be introduced for each of the three displacement components. The
analysis may be based either on Navier’s differential equations of equilibrium in
spherical coordinates or the Papkovich-Neuber potentials. In either case the problem is
reduced to three simultaneous second order partial differential equations in 6, ¢ for
three functions with nonsingular gradients. Applying a numerical method, the problem
is again reduced to the system of algebraic equations (30). But its matrix is about three
times larger than for the same nodal network in a potential theory problem, has a wider
band, and is less sparse. This will make computations more costly.

Application of the numerical method to singularities in plane elasticity

There is a number of unanalyzed singular problems in plane elasticity, especially in
combinations of cracks, notches and bonded dissimilar materials. Analytical solutions
are complicated and a great effort is being made to solve various cases one by one, as
can be seen in the recent literature. The present method of numerical solution can be
useful in all these problems, too. The technique of Knein[8] and Williams[13] reduces
the plane problem to an ordinary rather than a partial differential equation. The system
of equations (30) arising in numerical solution is therefore of a much smaller size, and
usually also narrowly banded, which substantially simplifies computations according to
methods A, B or C outlined previously.

HES Vol. 12, No. 3—D
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CONCLUSION

Three-dimensional harmonic functions near termination or intersection of gradient
singularity lines can be determined by the general numerical method presented herein.
Knowledge of the near field will enable the development of finite elements comprising
the singularity.
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Résumé—L a fonction harmonique U au voisinage du point 0, a partir duquel part un rayon 2 singularité, est
supposée étre dominée par le terme r’p”U ol r = distance du point 0, p = constante connue, et p une
fonction choisie des coordonnées sphériques angulaires 6, ¢ telles que u ~ (pr)” au voisinage du rayon pour
tout r fini. U est une fonction inconnue de 8, ¢, pour laquelle une équation différentielle partielle avec les
conditions aux limites, en particulier celles sur les rayons singuliers, et un principe variationnnel sont déduits.
Parce que grad U est non singulier, une solution numérique est possible, utilisant, par exemple, les méthodes
des différences finies ou des éléments finis. Ceci raméne le probléme a celui de trouver un A de partie réelle la
plus petite et satisfaisant & Péquation Det (A,;)=0, ol A, est une grande matrice dont les coefficients
dépendent linéairement du g = A(A +1). En général A et A, sont complexes. Des solutions peuvent étre
obtenues soit en se ramenant 3 un probléme ordinaire de valeur propre de matrice pour u, soit par des
conversions successives i des systémes d’équations linéaires non homogeénes. Des études par ordinateur ont
confirmees la faisabilité de cette méthode et ont montrées que des résultats de grande précision peuvent étre
obtenus. Des solutions pour des fissures et des entailles aboutissant & un plan, ou 4 une surface conique, et
pour des fissures aboutissant obliquement a la surface d’un demi-espace, sont présentées. Dans ces cas, A est
réel et la singularité est toujours plus faible (A > p) que sur la ligne singuliére et peut méme disparaitre (A >

1).

De plus, des contraintes élastiques sous I'effet d’un poingon rigide, en forme de coin et glissant, ou a
I’angle du bord d’une fissure ont été analysées, ainsi que des fonctions harmoniques pour des entailles
pyramidales 2 trois cotés. Ici on avait A <p.

Une solution analytique simple pour une classe de cas particuliers a également été trouvée. On I'a utilisé
pour vérifier quelques uns des résultats numériques.

Zusammenfassung—Es wird angenommen, dass die harmonische Funktion u nahe dem Punkt 0. von dem ein
einzelner Singularitiitsstrahl ausgeht, durch den Ausdruck r*p”U beherrscht wird, wo r = Abstand vom
Punkt 0, p =bekannte Konstante und p = gewihlte Funktion von winkeligen Kugelkoordinaten 6, ¢
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so dass u ~ (pry’ nahe dem Strahl fiir jedes endliche r. U ist eine unbekannte Funktion von 6, ¢, fiir die eine
partielle Differentialgleichung mit Grenzbedingungen, besonders die an den Singularititsstrahlen, und ein
Variationsprinzip abgeleitet werden. Weil Gradient U nicht-singuléir ist, ist eine numerische Losung moglich,
verwendend, zum Beispiel, die den Netzverfahren oder die Methode der endlichen Elementen. Dies reduziert
das Problem auf das Finden von A des kleinsten reellen Teiles, der die Gleichung Det (A;) = 0 befriedigt, wo
Ay eine grosse Matrize ist, deren Koeffizienten linear von & = A(A + 1) abhiingen. Im Allgemeinen sind A und
A, komplex.

Lésungen konnen entweder durch Reduktion auf ein gewéhnlicher Matrizeneigenwertproblem fiir i1 erhal-
ten werden, oder durch aufeinanderfolgende Umwandlungen auf nicht-homogene lineare Gleichungssysteme.
Untersuchungen an Rechenanlagen bestiitigten die Durchfiihrbarkeit der Methode und zeigten, dass sehr
genaue Resultate erhalten werden konnen. Es werden Losungen fiir Risse und Kerben vorgelegt, die an einer
Ebene oder Kegeloberfliche enden, und fiir Risse, die quer an einer Halbraumoberfliche enden. In diesen
Fallen ist A reell und die Singularitit ist immer schwicher (A > p) als an der die Singularititslinie und kann
sogar verschwinden {A > 1). Weiter wurden elastische Spannungen unter einem keilfGrmigen starren gleiten-
den Stempel oder an der Ecke einer Risskante analysiert, wie auch harmonische Funktionen an dreiseitigen
pyramidischen Kerben. Es wurde gefunden, dass A >p hier vorkommt. Es wurde auch eine einfache
analytische Losung fiir eine Klasse von Spezialfiillen gefunden und wurde verwendet, um einige der
numerischen Resultate zu priifen.

Sommario—Si assume che la funzione armonica #, vicino al punto 0 da cui emana un raggio con singolarita
singola, sia dominata dal termine r*p”U dove r ¢ la distanza dal punto 0, p & una costante nota e p & una
funzione scelta delle coordinate sferiche angolari 6 e ¢ tale che u ~ (pr)” vicino al raggio per ogni valore
finito di r. U & una funzione non nota di @ e ¢ per la quale vengono derivati un’equazione a differenziali
parziali con condizioni allo strato limite, specialmente quelle sui raggi con singolarita, ed un principio var-
iazionale. Poiché grad U non & singolare, una soluzione numerica & possibile, usando per esempio il metodo
delle differenze finite o quello degli elementi finiti. Cid riduce il problema a trovare il valore di A della pii
piccola parte reale che soddisfa I'equazione Det (A,) =0 dove A; & una grande matrice i cui coefficienti di-
pendono linearmente da u = A(A + 1). In generale, A et A; sono numeri complessi. Le soluzioni possono
venir ottenute o per riduzione al problema del valore speciale di una matrice normale per u, 0 per conversioni
successive a sistemi di equazioni lineari non omogenee. Degli studi effettuati su calcolatori hanno confermato
la praticabilita di questo metodo e hanno dimostrato che si possono ottenere risultati molto accurati. Vengono
presentate soluzioni per fenditure e intagli terminanti su una superficie piana o conica, e per fenditure ter-
minanti obliquamente sulla superficie di un semispazio. In questi casi A & reale e la singolaritd & sempre pilt
debole (A > p) che sulla linea di singolarita e pud perfino scomparire (A > 1). Sono state analizzate inoltre le
sollecitazioni elastiche sotto uno stampo scorrevole rigido a forma di cuneo o su un angolo del bordo della
fenditura, come pure le funzioni armoniche su intagli piramidali a tre facce. E stata inoltre trovata una
semplice soluzione analitica per una classe di casi speciali, e la soluzione & stata usata per controllare alcuni
dei risultati numerici.

AGcTpakT — IpHHATO, YTO rapMonHyeckas (PyHKuUHA u BOIH3 TOUKH 0, OT KOTOPOrO M3/yYyaeTcst OOMH
OCOGEHHOCTHBIH fiyd, MOABEPXKEHA K TOCMOACTBY 4neHa r*pfU, rpe r= paccrostue ot Toukd O, p=u3-
BECTHOE MOCTORHHOE, p = BuibOp PyHKUMA OT yryopsix cdepuieckux koopaunar 8, ¢ rak, wro u~ (pr)®
86143 nyya ans moGoro xonewworo sHawewus r. Ilpu arom U ects HewssecTHan dyuxuus ot 0, ¢, ans
KOTOPOro aH BbIBOA YacTHOTO AuddepeHuNanbHOrO YpasHEHHS C IPAHUYHBIMHA YCIOBHAMM, B MACTHOCTH,
I Tex Ha 0COOEHHOCTHBIX Jly4aX, A TaKKe BBIBOAMTCS BapHAUWOHHbIL npuHumn. Tak xak grad U ecrtb
HeocoOeHHasA, BOIMOXHO NOJNYYHTh YHCIEHHOE pELICHHE, MPHMEHAS HAMPUMED METOAbl KOHEYHbIX
pa3auvuMi WM KOHEYHBIX 3eMenToB, [ToaToMy npobliemMa CBOAMTCH K HAXOXKIHEHMIO A JUIA HaMMEHbLLeH
peasibHO 4acTH, YROBJETBOpatolle ypasHenuem Det (4;;)=0, roe 4;;— 6onblias MaTpuua, KoId-
OHUEHTHI KOTOPO# 3aBUCAT JMHEHHO OT w=A(A+1). Boobumie A H A, — KOMINEKCHBIMH. Pelenust
MOXHO [OJYYMTh HITH NPHBENCHHEM NpolnemMs! COBCTBEHHOTO 3HAYCHUS CTAHAAPTHON MATPHLLI OTHOCH-
TEBHO {4, WK IOCIIEAOBATEIbHBIMHU TPe0GPaI0BAHUAMM K CHCTEMAM HEOJHOPOIHBIX THHEHHBIX yPaBHEHHIL,
W3 uccnegopanuif KOMIIBIOTEPOM HOATBEPKACHA NPAKTHYECKANA OCYLIECTBISEMOCTH METOHA, 4 TaKKe
BO3MOXHOCTH ITOJTy4EHUA BLICOKOTOYHBIX pe3ynsTaTos, IpeacTrasieHb! pellueHns MUist TPEWMH U HaApe3oB,
OTPaHHYMBAKLMXCA Y INIOCKOCTH WM KOHHYECKOM NOBEPXHOCTH, H A TPELUMH, OrPaHHYHBAIOLLIWXCS KOCHO
Y NOJynpOCTPAHCTBEHHOM NOBEPXHOCTH. Bo 3THX cityyasx A ecTh peankHoe, a OCOBEHHOCTH Beeraa Gonee
cnaboe (A > p), 4em 3HaveHue ec Ha OCOBEHHOCTHO THHIM, BOIMOXHO U HcHelaHHe ee (A > 1), Kpowme roro,
NPOAHANWIKPOBAHD! YIIPYTHE HANPAKEHAS N0 KAHH-00PAIHOM, KECTKHM, CKONB3ALIAM IITAMIIOM, HiIH BO
YIA€ Kpast TPEIMHbL, ¥ TAPMOHHYECKHE GYHUMM TPEXIPAHHBIX [HPAMHAANEHBIX HAIPE3I0B. 31€CH YCTAHOB-
7eHo 410 A< p. TIONyueHO M MPOCTOC AHATMTHMECKOE DELIEHWE Ui OJHOTO KJACCA 4aCTHHIX CNydaes,
TIPHMEHEHHOE /1A IPOBEPKH HEKOTOPDBIX YHCIACHHBIX PE3yIbTaATOB.



