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Abstract-The harmonic function u near point 0 from which a single singularity ray emanates is assumed to 
be dominated by the term )E#‘U where r=distance from point 0, p=known constant and p=chosen function 
of angular spherical coordinates 0, cp, for which a partial differential equation with boundary conditions, espe- 
cially those at the singularity rays, and a variational principle, are derived. Because grad U is nonsingular, a 
numerical solution is possible, using, e.g. the finite difference or finite element methods. This reduces the 
problem to finding h of the smallest real part satisfying the equation Det (A”) = 0 where A. is a large matrix 
whose coethcients depend linearly on it = A(/\ -t 1). In general A and AU are complex. Solutions can be 
obtained either by reduction to a standard matrix eigenvalue problem for p, or by successive conversions to 
nonhomogeneous linear equation systems. Computer studies have confirmed the feasibility of the method and 
have shown that highly accurate results can be obtained. Solutions for cracks and notches ending at a plane or 
conical surface, and for cracks ending obliquely at a halfspace surface, are presented. In these cases, A is real 
and the singularity is always weaker (A > p) than on the singularity line and may even disappear (A > 1). 
Furthermore, elastic stresses under a wedge-shaped rigid sliding stamp or at a corner of a crack edge, and also 

harmonic functions at three-sided pyramidal notches, have been analyzed. Here A < p was found to occur. A 
simple analytical solution for one class of special cases has also been found and used to check some of the 
numerical results. 

INTRODUCTION 

IN THREE-dimensional potential theory there exists a great number of problems in which 
one or several lines of singularity of the potential gradient terminate or intersect. The 
singularity at the point of ter~ation or intersection can naturally be expected to differ 
from the singularity on the line or lines entering this point. Solutions to these problems 
are of considerable interest, e.g. for scattering of waves at a corner of a screen, for 
distribution of electric charge, for problems of heat conduction, potential flow, seepage 
etc., and perhaps most importantly, for fracture mechanics of elastic bodies. At pres- 
ent, however, most of these problems remain unsolved. 

One problem of this type is the ~s~bution of pressure below the tip of a rigid 
frictionless stamp of wedge-shaped contact, pressed upon an elastic halfspace. The 
problem can be reduced to a potential theory problem[4], It was discussed in 1947 by 
Galin[5,4] and an approximate solution restricted to non-oscillating singularities and 
based on mapping of a hemisphere upon a circle was presented in 1957 by Rvachev [ 111. 
He applied the Gale&in method in the mapped domain and, using up to six terms, made 
rough estimates of the real values of the sin~l~ity exponent h. He concluded that the 
pressure near the tip behaves as rh-’ where A monotonously increases from 0 to I as the 
wedge angle 2a grows from 0 to 27r (r = distance from the tip). Recently Aleksandrov 
and Babeshko 111 used Green’s function approach to study analytically the limiting case 
of the wedge angle 2a tending to zero. They concluded that near the tip the pressure 
exhibits an oscillating sin~l~ty of the type r-l.’ cos (k In r) (k = parameter), which ob- 
viously prevails over the non-oscillating singularity r-’ found for cy +O by Rvachev 1111. 
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But it seems that no complete solutions of the near singularity fields, including the 
singularity on the edge of the stamp near the tip, have been presented so far. 

A mathematically equivalent problem for the Helmholtz reduced wave equation, 
consisting in wave scattering near the tip of a right-angled corner of a screen, was 
studied analytically by Radlow [9]. He found that near the tip the harmonic wave func- 
tion is of the type Y~“~, without checking for a possible imaginary part of the exponent, 
and without deducing the near-tip field itself. Diffraction of elastic waves by a 
right-angled wedge was also studied analytically by Kraut [ 161. 

The intent of the present study is to propose a general method for problems of this 
type. The method will consist of reduction to a two-dimensional eigenvalue problem for 
a function without gradient singularity, which can presumably be solved numerically 
with any desired accuracy. 

TYPE OF PROBLEMS TO BE DISCUSSED 

Using spherical coordinates 8, 4, r, the Laplace equation for the potential u(13, 4, r) 
reads 

vzu _ a2u ; 1 a2u ; 1 a% 2 au cot 9 au 
a9 T* ae2 

2~+2+ray+t-=o 
r sin e afp t- de . (1) 

The problem to be discussed herein consists in finding the limiting form of the solution 
of this equation as r+O, assuming that the domain of the solution is an infinite space 
bounded by a certain surface B(B, C#I) = 0 formed by rays emanating from point 0. The 
boundary conditions are u = 0 on part of the surface and au/an = 0 on the remaining 
part, n being a normal to the surface. (The case of the boundary conditions u = constant 
on part of the surface is easily reduced to the present case.) No boundary conditions 
will be prescribed at any point on radial rays that do not lie entirely on I3 = 0, so that 
an infinite number of solutions can be expected. Assuming these solutions to comprise a 
complete system of linearly independent functions, a certain linear combination of 
these solutions should satisfy the additional boundary conditions on the radial rays 
occurring in real problems. As will be seen, a class of admissible solutions is of the form 
r*F(e, q) and consequently, regardless of the type of the afore-mentioned linear combi- 
nation, the solution for any boundary conditions on the radial rays will be dominated in 
a sufficiently small neighborhood of point 0 by that solution of the present problem for 
which Re(h) is smallest. When &(A) < 1, grad u near point 0 becomes unbounded, i.e. 
the solution exhibits a singularity at point 0. However, for the given boundary condi- 
tions on the radial rays the singularity need not necessarily occur because the solutions 
with Re(h) < 1 need not be present in the afore-mentioned linear combination (as in the 
case of a homogeneous normal stress field parallel to a crack). The sufficient conditions 
of singular behavior, as well as the uniqueness aspects, cannot be included in the 
present study. 

If u is required to be finite, only Re(h) >O is admissible. (However, in some physi- 
cally meaningful problems, such as the case of a line load on an elastic half-space, u is 
not finite at point 0.) 

The surface formed by radial rays and the corresponding boundary conditions are 
assumed to be of such a form that the surface contains a finite number of rays on which 
grad u is singular (unbounded). Further, it is assumed that at any finite distance L from 
point 0, the field within a neighborhood of the singularity ray which is sufficiently smal- 
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ler than L is known, and is of the same type at any point of the ray except at point 0. 
This field may be determined by solving the plane problem in a plane normal to the ray. 
(The latter property is verified in some special cases by the analytical solutions reported 
in the sequel.) 

Consider the plane section normal to a singularity ray passing through point 0’ at a 
finite distance L from point 0. It is assumed that within a neighborhood of point 0’ 
which is sufficiently smaller than L, the normal plane section of the body is bounded by 
two straight rays O’A, O’B from point 0’, forming angle LY (Fig. 1). The boundary condi- 
tion on the rays may be either u = 0 or ~~/~~ = 0 where 4 = angular coordinate in Fig. 1. 
The solution near point 0’ in the normal plane section may be sought in the form 
u - <f,(4) where rl is the distance from point O’, and p and ~,(~) are assumed to be the 
same at any finite distance L from point 0. 

To give an example of the determination of p and f,(4), consider that.the boundary 
conditions are ~~~~~=O on ray O’A, and u-0 on ray O’B. Substitution of u=rY fi(#) 
into the Laplace equation yields a homogeneous ordinary differential equation for f,(#), 
whose general solution is A cos p+ +B sin ~4. The boundary conditions reduce to 
df,(O)/d4 = 0, f,(v - a) = 0, which yield 

u-rpfi(4) where fi(~>=cosp~,p=4?r/(a-cu). (2) 

The same result is obtained when rays O’A, O’B form angle 2ar and u = 0 on both rays. 
This technique of the determination of the net-sin~l~ity fields has been used in 

plane elasticity (where it is not as trivial as here) by Knein[8] (who thanked T. von 
K&m&n for suggesting the basic approach), and later independently by Williams [ 141 
and Karp and Karal[7]. In analogy with this technique, the variables may be separated 
in the three-dimensional problem as follows: 

a(& 6 r) = r”f(@, 9) (3) 

where n is, in general, complex and f is a function of 8 and b, only. It may be imagined 
as a function defined in a certain domain fl on a unit sphere about point 0. Substitution 
of (3) into the Laplace equation (1) allows r to be completely eliminated from the 
equation and results in a differential equation for f(@, 4). 

It should be noted that in the case of the Helmholtz reduced wave equation, V’u + 
key = 0 (arising in wave scattering problems), or the Poisson equation, V*u = k, the 
variable r is not eliminated since the additional term k*r*f or krzmn, respectively, appears 
in the equation for fi However, in a sufficiently small neighborhood of point 0, this term 
becomes negligible, as compared with other terms in the equation (provided that f is 

Fig. I. Planar case giving rise to singularity at point 0’. 
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bounded and, in the case of the Poisson equation, n ~2). Thus, the solutions of the 
reduced wave equation and the Poisson equation exhibit the same type of singularity as 
the harmonic functions. 

The gradient singularity at point 0 is only partly interpreted by the term r” in 
equation (3) since along certain radial rays there is an additional singularity which must 
be embedded in function fi Consequently, function f is not suitable for determination 
by approximate numerical methods. 

REMOVING SINGULARITY ON RADIAL SURFACE RAYS 

ft is desired to separate the variables in such a manner that, in any plane normal to 
the singularity ray, function u near the ray be of the same form as equation (3) in 
which fi has no gradient singularity. Considering, for the sake of brevity, the case of a 
single singularity ray, this may be achieved by writing 

where rl = chosen continuous smooth function of 8, 4, and r, which is identical to the 
distance from the singularity ray in its vicinity and is nonzero everywhere except on the 
ray. Obviously, if p is the correct exponent for the gradient singularity on the ray, as 
determined from (2), U(B, #> must be a continuous smooth function of 8 and # which 
has (a) no gradient singularity on the singularity ray, and (b) in its vicinity is propor- 
tional to the function fi from equation (2). 

Function r, may always be introduced in the form 

rr = r&f% cb> (5) 

where p = chosen continuous smooth function of 8 and St, which is nonzero everywhere 
except on the singularity ray in whose vicinity it is identical with the distance from the 
ray measured on the unit sphere. Thus 

u(@, 4, r)= r”F(i?, cb)= rA\pDU(8, 4) 16) 

where 

A=PI-bp. 

If the singularity ray is located at the pole, B =O, a very simple choice of p is 
possible: 

p= 8 or p=sin 0. (8) 

With the latter choice, rI represents the exact distance from the ray not only in its 
vicinity but everywhere in the domain. It must be warned, however, that’sin 0 cannot be 
used when 8 = z is part of the domain and no sin~la~ty ray exists at f3 = 71. The 
function p = sin k0 may be suitable when symmetric boundary conditions at 6 = rrl2k 
are desired. 

If the singularity ray is located at (&, &), it is possible to choose, e.g. 
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p = ((0 - @,)” + [(4 - &) sin @,J’}“*. (9) 

Generalization to the case of several singularity rays contained within the domain 
on the unit sphere is obvious. For three rays, e.g. 

where 

8+ =n+p,+pz+p3 (11) 

p,, p2, p3 being known exponents for the three rays and pl, p2, p3 functions of the same 
type as pft?, 4) was before. 

Now consider a singularity ray which is placed into the pole of a spherical coordi- 
nate system (e.g. ray 00’ in Fig. 2). In the plane (@, #) the pole appears as a straight line 
segment 8 = 0 with end points given by the angles &, qbz forming the crack or notch that 
creates the singularity (Fig. 3). This line segment is a part of the boundary of domain Sz 
in the plane (@, 4) on which function V(6, #) has to be solved. It is obvious that a 
certain boundary condition must be imposed at this line segment (O’@ in Fig. 3). The 
boundary condition may be deduced from the fact that U must be proportional to the 
function f, from equation (2) in the vicinity of 6 = 0. In equation (2) f, depends only on 
4, i.e. is independent of 8. Hence, the condition 

aUfM=O at 0=0 (12) 

must be satisfied. 

(b) 

Fig. 2. Various cases of a notch or crack ending into a conical or planar surface. (The sphere is 
not the body surface and serves only for visualizing the situation in spherical coordinates.) 
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Fig. 3. Domain O’ACO’ from Fig. 2 visualized in (6, q) plane, with a nodal net used for numerical 

solution. 

DIFFERENTIAL EQUATrON OF THE PROBLEM AND VARIATIONAL FORMULATION 

Substitution of equation (6) into equation (1) yields, after rearrangement and simp- 
lification, the partial differential equation: 

p 
2a2u p2 a’u ---t- 

a82+sin26 ad? ( 
Zpp~+p’cot 8 

> 1 
+;+ A(h+l)p* 

+,[,~cot6+~P--l)(~)2+P~]} u=o. (13) 

In the special case where p = sin 0, equation (13) becomes 

si~‘~~+~+(p+~)sin2~~~+{[h(h+l)-p(p+1)1sin2B+p2}~=O. (14) 

The problem consists in finding a nonzero solution of equation (13) or (14) which 
satisfies the boundary conditions at a surface formed by the radial rays and gives the 
smallest positive real part of A. 

It should be noted that for 8 +O, equation (14) becomes a”U/&&” + p*U = 0, which 
gives U-cos pr$, as is required by equation (2). 

For numerical solution, the variational formulation is of particular interest. The 
functional associated with the Laplace equation is known to be 

W= I v i(gradu)ZdV+W,5i I, [(g>‘+ (;$>‘+ (j&$-$)2] dV+W, (15) 

where V = volume, W, = certain integral over the boundary surface. The functional 
which is associated with equation (13) or (14) may be obtained by reducing functional W 
to a two-dimensional one. In conformity with the separation of variables by substitution 
(6), the minimizing condition for W may be considered to be of the form @&‘I&‘) = 0 
where S, is the variation with regard to functions of r, and 6 is the variation with regard 
to functions of t9 and (6. Thus, according to (15) and (7), 
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where R = r*, R’ = dRldr. ~nte~ation by parts with respect to (&R) provides 

where $I is the given domain on the unit sphere. Since this equation must be satisfied for 
any variation &R as a function of r, the minimizing condition reduces to 8 W = 0, where 
W is the following functional 

in which F = p”U; W, is a certain integral arising from ‘IV,. Because the surface of the 
body in three dimensions consists of radial rays, WI represents a certain contour in- 
tegral along the boundary of the domain Q. The foregoing simple derivation is, of 
course, not rigorous, but it is easy to verify using standard procedures that equation (13) 
is indeed associated with the variational principle SW = 0. 

SOME CASES ADMITTING SIMPLE ANALYTICAL SOLUTIONS 

Consider solutions of equation (14) which have the form 

U(@, #J) = Y( 0) sin ~4. (19) 

This obviously satisfies the boundary conditions 

or 
U=O at Cp=O andat +=2(rr--cr)=7rlp (20a) 

U=O at #=0 and aVla+=O at b,=1r--==/2p (20b) 

that is, U = 0 at the planes OtYA and OO’B in Fig. 2 where (Y and p are related as given by 
equation (2). Thus, if domain R on the unit sphere is rectangular in 8 and # (Fig. 3), i.e. 

function Y(t)) in (19) needs to satisfy only the boundary conditions on 8 = 0 and 8 = @. 
Considering that there is a free surface at 0 = /3 (a cone, and for p = 7r/2 a plane; Fig. 
2), and taking equation (12) into account, one may write 

au/ae=o at 8=0, U=O at e=p. (22) 

Thus, it is necessary and sufficient that Y(8) fuhill the boundary conditions: 

aYfae=o at t?=O, Y=O at @=p. (23) 
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For LY < r/2 there is a single singularity ray in this problem, the ray 00’ in Fig. 2, and 
for (Y 3 1r/2 there is none. (On rays OA, OB there is no singularity.) Substituting equation 
(19) into (14), equation (14) is found to be satisfied if 

$+(2p+*)cot e%+rA(A+l)-p(p+l)lY=O. (24) 

Upon introduction of a new independent variable x = sin’ 8, equation (24) may be 
transformed to the form 

x(l-X)~+[P+l-(p+~)X]~+~(*+~)qP(P+*)Y=O (25) 

which is seen to be a special form of the hypergeometric (Gauss) differential equation. 
The solution of this equation [ 121 leads to hypergeometric functions and it can be shown 
that it may be expressed in terms of elementary functions only if /3=~/2, that is if the 
conical surface degenerates into a plane (Fig. 2b). Then the root h having the smallest 
real part is obtained as 

A=p+l (26) 

and the corresponding solution is 

~(6, 4) = Cr’+’ (sin 0)” cos 8 sin p4 (27) 

where C=an arbitrary constant. Equation (27) can be proved by substitution into (14). 
Note that, for any angle (Y, h is greater than 1. 

An interesting result is thus obtained: the gradient singularity at the ray (edge of a 
crack or notch, e.g. ) disappears at the surface of the body (cases in Fig. 2b, c, d). 

One important case is the half-space - IT c + 6 0 whose boundary conditions at the 
surface (b = 0 are u = 0 on the infinite wedge 0 ~8<2pandau/&t=au/&$=Oonthe 
rest of the surface (Fig. 1 la). Simple analytical solutions exist [I 11 for two limiting 
cases: 8 

u=Cln tan2 ( > for p +O (A = 0) (28) 

u=Crsin8sin+ forp-+m (A=l) (29) 

and, of course, for the case CY = 7~/2 in which the problem reduces to a plane one and has 
a well known solution yielding A = 4. 

REDUCTION TO A NONLINEAR EIGENVALUE PROBLEM FOR A MATRIX 

Because function V( 8,d) has no gradient singularities, standard numerical methods 
may be applied to its determination. For complicated geometries of the domain R on the 
unit sphere, the most versatile approach will certainly be the finite element method. 
However, development of finite elements on the basis of the functional (18) exceeds the 
scope of this paper and will be treated separately. For domains of simpler geometries, 
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the use of the finite difference method appears to be easier and has been adopted for all 
computer studies reported herein. The di~erential equation (14) or (13) is replaced by its 
finite difference approximation in terms of nodal values ui (i = 1,2,. . . .) and is written 
for all nodes of the chosen network inside the domain fI. Some of the equations involve 
nodal points outside the boundary for which further equations expressing the boundary 
conditions must be added. 

Application of the finite difference method, as well as the finite element method, 
yields a large system of N homogeneous linear algebraic equations for values Uj of 
function U in the nodes j = 1,2,. = _, N, 

(30) 

The determinant of matrix Aij, in general complex, must vanish for a non-zero solution 
to exist. The problem is thus reduced to finding a root h having the smallest positive real 
part. The solution is complicated by the large size of matrix [Aij] needed for accurate 
results, and also by the fact that Aij are nonlinear functions of A (polynomials). Various 
methods of solution are possible. 

Method A. reduction to a matrix eigenvalue problem 

Noticing that equation (13) or (14) involves h solely through the term h(h + I> = ,u, 
matrix Aij is a linear function of p. Fu~hermore, if the finite difference method is used, 
p appears only in the diagonal coefficients of Ail, and if the equations expressing the 
boundary conditions are eliminated, ,u appears in all diagonal coefficients. Mere divi- 
sion of each equation by the coefficient at lu reduces the matrix A<j to the form: 

Aij(h) = F&j- P&j (311 

where &Ii, is a matrix which is independent of A, and &I= 1 for i= j, 6ij=O for i # j. Thus, a 
standard eigenvalue problem in P for a real, general (nonsymmetrical) matrix is 
obtained. There are two roots A which correspond to each root t.~, 

h ---+I?<& (32) 

If the roots A are all real, the smallest positive h evidently corresponds to the smallest JL 
(2 being replaced by +). But this is not true in the case of complex roots and all roots p 
must be checked to determine the smallest &(A). 

For the solution of the eigenvalue problem obtained, standard subroutines are 
available [3,6, 10,151. Nevertheless, even with the contemporary electronic computers 
it is difficult and costly to exceed 150 equations, approximately, which usually suffices 
for accurate but not highly accurate results. The cost is also substantially increased by 
the fact that for the finite difference method, matrix Aii is non-symmetric. 

The finite element method, which may be based on minimizing the functional (18}, 
yields symmetric matrices Atj and Kc+ However, in contrast with the finite difference 
method, E*_ no longer appears exclusively in the diagonal terms of Aij and inversion of a 
matrix of the size N X N is necessary to obtain a standard eigenvalue problem in p. 

Taking advantage of the sparsity of matrix Aij, a much larger matrix can be stored in 
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rapid access memory and the eigenvalue could be obtained by iteration[3,6, lo]. How- 
ever, this would be economical only for the eigenvalue of largest absolute value. At- 
tempts have been made to recast the problem in terms of the highest eigenvalue, e.g. 
replacing A with l/r and linearizing with respect to y. It appears, however, that this 
approach is impossible because there are always some spurious negative roots whose 
absolute value is larger than the largest positive y. 

Method B. Conversion to nonhomogeneous equation systems 

(a) The case of real root. In this method, which has been used with success[2] to 
solve buckling problems for very large elastic structural systems leading to equations of 
type (30), a certain value ho is first chosen and all coefficients A&lo) are evaluated. One 
equation, whose number will be referred to as k, is replaced by the equation iX= 1, 
which makes the system nonhomogeneous. Normally the matrix of the new system is 
nonsingular and all ui (i = 1,2, . . ., IV) may be solved using the standard subroutines for 
systems of linear equations. The obtained values of ui are then substituted into the 
original kth equation, previously replaced, and the corresponding right-hand side 
&A& = Q is computed. In general Q will be nonzero and the aim is to find the smallest 
value of A for which Q = 0. This may be done by the regula falsi method. Several values 
of A,, are selected and the plot of Q versus ho is imagined as shown in Fig. 6. Subsequent 
choices of ho are made by linear interpolation. Good accuracy and convergence is 
achieved only when the k’h equation is chosen in such a manner that no 1 uil is much 
larger than Uk. 

From computer studies it has been found that the radius of convergence of this 
method is sometimes quite small. The interval of interest, such as 0 < A < 2, must be 
scanned in small steps of A, about 0.05, to obtain a good initial guess of A. Only then 
may the automatic improvements of A by the regula falsi method be started. This is 
obvious from the sharply varying slope of the plot b in Fig. 6 (although there exists 
cases of slowly varying slope, as is shown by curve c in Fig. 6). Much care is needed to 
avoid missing the smallest root. Nevertheless, if a great number of problems with the 
given data varying in small steps are being solved, as in the studies reported herein, an 
approximate value of A is usually known in advance and scanning of the large interval 
may be skipped. It is because of this fact that this method is usually much more 
economical than the general programs for eigenvalues. Moreover, in contrast with 
method A, this method allows handling up to one or two thousand equations without 
great difficulties (using either various elimination methods for banded matrices with 
tape storage or the sparse matrix storage in rapid access memory combined with an 
iterative solution). 

If no estimate of A is available, computationally the most efficient procedure is a 
combination of methods A and B. First, method A with a low number of nodes is used 
to obtain an approximate value of A and the solution is then refined to a high accuracy 
using method B with a large number of nodes. 

As an alternative to method B, it is also possible to apply the regula falsi method to 
the plot of the determinant of Aii versus A. But the slope of this plot usually varies even 
more rapidly and the convergence properties were found to be poorer than in method B. 

(b) The case of complex root. When root A of the smallest real part happens to be 
complex, a similar method may be used. In this case ui, as well as matrix Aii depending 
on A, must be considered as complex. The objective is to find complex ho for which 
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Q = 0. First, an arbitrary value of Im(AO) = X is chosen and, keeping it fixed, the plot of 
Re(Q) versus Re(ho) is examined, choosing various values of Re(h& The point at which 
Re(Q) = 0 may be found by the regula falsi method and the corresponding ma(Q) de- 
noted as Y. The foregoing procedure is then repeated for various ~~(A~) = X and, 
considering the plot of Y versus X, the point at which Y = 0 (and Q = 0) is again found 
by the regula falsi method. 

The fact that the regula falsi method must be applied in two dimensions makes the 
computations much more expensive than in the case of a real A. Moreover, because the 
matrix is complex, the running time of each equation system is longer, Nevertheless, 
using tape storage or compact storage of the sparse matrix, much larger systems can be 
handled than with method A. 

~ei~ad C. Successive linearizat~u~s with respect to A 
If the technique presented here is applied in elasticity, Aij will usually consist of 

general polynomials in A, complex or real. Method B will still be applicable, but instead 
of Method A successive solutions of eigenvalue problems will be required. Since Alj 
are, in general, analytic functions of a complex variable A, expansion in a Taylor series 
about a chosen complex ha is possible. The series may be truncated after the second 
term to achieve linearization. Equations (30) are then reduced to the form 

where A ’ = ho - A, A yi = Aij (A,,), A :j = - aAii (A~)/~A. Multiplication of matrix equation 
(33) by the inverse of A {j then produces a standard eigenvalue problem, in general with 
a complex matrix. The objective is to find ho for which A’ = 0. This can be achieved by 
application of the regula falsi method, in the same procedure as the condition Q = 0 is 
achieved in method B. 

This method has so far been tested only in the problems with real A as reported in 
the sequel. The convergence was rapid and the radius of convergence appeared to be 
quite large, that is the method automatically converged even if the initial guess of ho 
was very poor (e.g. 0.2 in the case of plot (a) in Fig. 6). This is due to the slow change of 
the slope in this plot. 

APPLICATION AND RESULTS OF NUMERICAL STUDIES 

Cracks and ~~~c~es ending at a plane or cubical surface 
To examine the numerical methods described above, the cases whose exact solution 

is known were solved first. These are the cases shown in Fig. 2 and characterized by 
boundary conditions (20a) and (22). There is only one singularity ray 00’ in these prob- 
lems. The domain Q is given by equation (21) and is rectangular in terms of 8 and 4, as 
shown in Fig. 3. The domain was subdivided by a rectangular network with steps 
AC#J = (2~ - (~)/2n, A8 = f+rr/(n + i). It is noteworthy that no interior nodes of the net- 
work may be placed on the boundary line @ = 0 because the finite difference equations 
for the nodes on this line do not involve any node with 8f 0. However, these nodes 
may be considered as exterior nodes of the network used in formulating the boundary 
condition (as has been done in computing Table 2). 

The solutions were carried out for various sizes of the step. The results for LY =0, 
given in Fig. 7, indicate an excellent convergence of A to the exact value 1.5 resulting 
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from equations (26) and (2). For 72 equations the error is O-4 per cent and for 1152 
equations it is 0.04 per cent. The convergence is monotonous and from the slope of the 
line in Fig. 7 it may be inferred that the error = (step size)“9, that is, the convergence is 
almost quadratic. A similar picture is obtained for other values of CL 

The solutions were also computed for non-zero values of p, that is, the cases of 
cracks or notches ending at the apex of a conical surface, which do not admit simple 
analytical solutions. The results are plotted in Fig. 4 and some of the results are 
tabulated in Table 1 (where three decimals are believed to be correct). 

The results for p #0 were compared and agreed with one-dimensional finite differ- 
ence solutions of the ordinary differential equation (24). (For (Y = 0, p = 7~/2, step A6 = 
p/SO gave h = 1.4998, which is only 0.013 per cent in error.) For several cases, the 
eigenstates, as characterized by function Y(O) in equation (19), are plotted in Fig. 5. As 
a check, some solutions have also been run with pp = V% and the results were 
identical. 

It is interesting to note that at a certain value p > 7r/2, depending on (Y, A becomes 
less than 1-O so that grad u is singular at point 0. But the singularity is always weaker 
than at the edge 00’ (see Fig. 4). 

Cracks ending obliquely at a halfspace surface 
The general method presented herein was further applied to the case shown in Fig. 

8b, which is equivalent to the case in Fig. 8a where the boundary conditions are also 
given. There is only one singularity ray 00’ in this problem, with p = i from equation 

0 

a 

Fig. 4. Singularity strength for cases shown in Fig. 2. 
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Table 1. Values of A for various (Y and fl in the problem shown in Fig. 2 

P 
P/4 37-r/8 ITI2 5~18 3aI4 7~~18 rr 

a! 

-r 3.031 1.846 I .250 0.888 0.641 0.455 0.250 
- rrl2 3.189 1.953 I.333 0.958 0.704 0.515 0.333 
_ 7Tl4 3.314 2.039 1.400 I.015 0.755 0.565 0.400 

0 3.500 2.167 1.500 1.100 0.833 0642 0.500 
ml8 3.631 2.257 1.571 1.162 0.890 0.699 0.571 
n/4 3.806 2449 1.667 1.244 0.967 0.778 0.667 

(2). The pole of the spherical coordinates is conveniently placed into this ray. Then, 
using p = sin 8, the problem is again governed by the differential equation (14). Ln is the 
domain O’ABCDO’ (or O’AECDO’) in Fig. 8 as is shown in plane (fI,q) in Fig. 10. The 
boundary conditions are &/arp = 0 on side DCO’ (plane of symmetry), au/&19 = 0 at the 
pole 0’ (side 0’6’ in Fig. lo), u = 0 on side O’A (crack surface) and u = 0 on side ABC (or 
AEC). The latter side appears in the plane (0, PO> as the curve defined as follows: 

@=arctan(tanp/coscp); if8<Othenete+n. (34) 

Formulation of the finite difference equivalents of the boundary condition u = 0 in 
terms of the nodal values near boundary ABC requires locating point (&, cpJ which is 
symmetrical with respect to plane ABC to a given outside node (&, (p,). To this end, the 
value of 8 which corresponds to p = cpu according to (34) is first calculated and, using 
spherical trigonometry, the following expressions are successively evaluated 

cos * = 1 - 2(cos /3 sin (pa)* 

e,= arccos[cos e,cos (e,-e)+ sin 8, sin (e,-e) cos $1 

i 

(35) 

cpc= cp,+arcsin [sin (e,- e) sin $/sin e,]. 

0 o-2 04 0.6 06 I.0 

Fig. 5. Plot of function Y(0) from equation (19) for some cases shown in Fig. 2. 
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Fig. 6. Examples of dependence of A and parameter Q upon ho in methods A and B for solving 
equations (30). (Curves a, b correspond to Fig. 2c, curve c to Fig. 12a.) 

N = No. of equations 

Fig. 7. Convergence of A to the exact value 1.5 with diminishing step size of the net, for the case 
in Fig. 2c. 

The U-value at point (6, (PC> is then related by linear interpolation to the U-values at the 
nearest three interior nodes p, q, r using area coordinates in the triangle pqr, i.e. 
UC = (ac,,Up + acV U, + u~JJJ/~,,~~ where a,,, etc. are the areas of the triangles indicated 
by subscripts. The boundary condition U=O is expressed in the form U,= 
- U,(sin &/sin 0,)‘. 

Introducing finite difference grids with 80-100 nodes, the problem has been solved 
for various values of p. The values of A of the smallest real part are all real and the 
computer results are shown as points on curve a in Fig. 9. The limiting values A = 1 and 
2 for p +O and p --, r result from equation (2) for the plane problem. The value A = 1.5 
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au -=O 
an 

(b) 

Fig. 8, (a) A quarterspace with boundary conditions giving rise to sin~~arity on line 00’. (b) A 
halfspace with a crack whose edge is not perpendicular to the surface. 

x 

0 R 2r 

28 

Fig. 9. Smallest real root A for cases shown in Fig. 1 I (curve b), Fig. 8 (curve a) and Fig. 13 
(curve c). 

for 2p = w agrees with the result from Fig. 4. It is noteworthy that the singularity on the 
ray 00’ disappears at the surface of the halfspace (Fig. 8b) for any angle /3. The 
eigenstates U(8, q) for two special cases are drawn in Fig. 10. For the case p = 7r/4 (Fig. 
12a) it has been verified by method A that no complex roots exist. This case has also 
been analyzed by method B with grid Acp = r/24, A9 = ~126 (359 nodes), which yielded 
A = 1.131, while the coarser grid (Acp = ~112, A8 = ~113) resulted in A = 1.128 (the sec- 
ond and third smallest A was 2.25 and 2.95). Assuming a similar convergence pattern as 
in Fig. 7, the correct value can be estimated as h = 1.131+ 0.001, or A = 1 a132. 

Elastic stresses under wedge-soaped stamps or at crack edge corners. Wave scatteting 
by corners. 

Furthermore, the case of a rigid sliding stamp with wedge-shaped contact of an 
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Table 2. Nodal values of function U; (A)-Case in Fig. 10a (p = 0.5); (B&Fig. 12a (p = 0.5); (C)-Fig. 
12b (p = 0.5); (D)-Fig. 14 (p = 0.5); (E&Fig. I1 for p = a/8(p = 2/3). Nodal coordinates are I& = 
KAB; 9, = JA9 in cases (A), (B), (D) and (E); 9, = (J - l)A9 in case (C); grid A9 = n/24, A0 = p/26. 
In Table (C) the left and right of Fig. 14 are interchanged. The top row of each case was obtained by 

extrapolation. 
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Fig. 10. Function U computed for the cases shown in Fig. 8 (p”= d& -& 

8 

n/2 _ _.-_--.- 

arbitrary angle, 2& pressed upon the surface of an isotropic elastic half-space (Fig. 
1 la), has been studied. As is well known[4], this problem of elasticity may be reduced, 
with the help of Papkovich-Neuber potentials, to a potential theory problem, V% = 0. 
Introducing Cartesian coordinates x, y, z and considering the half-space z SO or 
0 s cp ES V, the boundary conditions at the halfspace surface are 

G( = 0 on 9 and ~~1~2 = 0 outside 9 (34) 

where 5 = the wedge-shaped domain below the stamp (OO’AO” in Fig. 1 la). Also, at 
infinity, grad u is required to vanish. After solving for u, the displacements ux, uy, uz in 
Cartesian coordinates x, y, z at any point of the half-space z?=O are given as[4]: 

u,=(l-2V) 
CC du 

zdz-z$$ u,=(l-2~) 
_ au 

avdz-z$, 
au 

z&=2(1-v)u-z;j;, (37) 

where z, = Poisson’s ratio of the material. The normal stress below the stamp is 
a, = ( cW/C?Z)E/( 1 -t Y) where E = Young’s modulus. 

This problem is equivalent to the case of an infinite elastic body containing a sharp 
crack whose edge forms a sharp corner of an arbitrary angle 2,&I (Fig. 1 lb). The body is 
subjected at infinity to uniformly dist~buted normal stresses pe~endicul~ to the crack 
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(b) 

Fig. 11. (a) Wedge stamp contact (unshaded) upon elastic halfspace or, alternatively, a screen, 
scattering waves. (b) Crack corner in an infinite elastic space. (The sphere is not the body 

surface and serves only for visualizing the situation in spherical coordinates.) 

plane. Furthermore, the near field in this problem happens to be the same as in the 
scattering of waves by a sharp corner of a screen[9]. 

Although in Fig. 11 there are two singularity rays, 00’ and 00”, each with p = : from 
equation (Z), the problem may be reduced to one with a single singularity ray, taking 
advantage of the fact that the solution II or F must be symmetrical with regard to plane 
OAK‘ in Fig. 1 lb. The formulation of the problem then differs from the previous case 
(Fig. 8) solely by the boundary condition on side ABC (or AEC) which reads: 

a[(sin @)“U]/&r = 0 (38) 

where p = i and n is the normal to the side AEC (normal on the sphere, not in the plane 
(6, cp)). The finite difference formulation of the boundary condition is the same as in the 
previous case (Fig. 8, equations 34, 35), except that Ua= U, (sin &/sin &)“. 

Computer results for grids with 80-100 nodes are shown by the points on curve b in 
Fig. 9. Note that the points adjacent to A = O-5 lit a smooth curve passed through the 
well-known value of X = O-5 for 2p = 71: The point A = 0 for /3 +O follows from equation 
(28), and h = I for /3+~ results from equation (29). The eigenstates U(0, cp) are shown 
for two special cases by lines of equal U-value in Fig. 12. It is worth noting that the 
computed variation of U along the top side 0’6’ of Fig. 12a or b is proportional to 
sin (e/2), as is required by equation (2). 

The results prove that the singularity at the sharp concave (2p<7r) corner 0 of a 
crack edge (Fig. 1 lb) in an elastic body is more severe (h<p) than at a straight crack 
edge (p = f). This fact is of interest for fracture mechanics of brittle elastic materials. It 
shows that at a concave corner of the crack edge of a planar crack the crack will 
propagate faster or at a lower stress than at a straight edge. Obviously, this would tend 
to straighten the crack edge. A plane crack with a straight edge is thus more stable than 
a plane crack with zig-zag edge. 

All roots have been computed by method B, restricting consideration to real h. 
However, the case 2p = 7r/2 has also been computed by method A; the result was 
identical and it was found that no complex roots A exist in this case (similar to cases 
2p = r and ~3 = a). 
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Fig. 12. Function U computed for the case shown in Fig. 11 (p” = V%%). 

All points on curve b in Fig. 9 have first been computed with grids Aq = ~/12,A8 = 
7r/13 (SO-100 nodes). For the case of a right-angled corner (2j3 = r/2; Fig. 12a) this grid 
(having 86 nodes, not counting those outside the domain) yielded A = O-2905. This case 
has then also been computed with a grid Aq = 7~124, A8 = ~126 (having 359 nodes), 
which has resulted in h = O-2947 (using method B). This differs by 0.0043 (i.e. 1.46 per 
cent) from the coarser grid. Nearly the same difference, namely OW44, is found be- 
tween the grids with the same spacing in Fig. 7. Because the result for a grid with 359 
nodes would be in Fig. 7 about OW15 below the exact value, it can be inferred that the 
correct value probably is A = 0.2947 + OW15, i.e. 

A = 0.2% (for 2p = 7r/2). (39) 

(However, Radlow [9] deduced for this case analytically the value Re(h) = 0.25, whose 
difference from the present result is obviously much greater than the probable value of 
numerical error, and so reexamination of the analysis in[9] seems to be in order.) The 
second and third smallest A, as found by method A with 86 nodes for p = 4, are 1.43 and 
2.03. It was also checked that higher p does not give smaller h. 

The case 2p = 3~/2 (Fig. 12b) has also been computed with the finer grid, which has 
furnished A =0*8148; assuming similar convergence behavior as before, the correct 
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value is A =0~815+0~001 =0816. For 2p = 7r/4, the finer grid yielded A = 
0.2057 + 0.0015 = 0.207. 

Rvachev’s results for real roots[l I], obtained by a mapping technique and the 
Galerkin method, differ considerably (by as much as 0.2) from curve b in Fig. 9. This is 
probably due to numerical error because Rvachev used only six unknown parameters. 

For p -0, Aleksandrov and Babeshko [l] found A to be complex, with &(A) = - O.S, 
which overrides the value A =0 indicated by equation (28) and shown in Fig. 9. 
However, no cases with very small p have yet been run to verify this result. This will be 
postponed until the finite element formulation is completed (because refinement of the 
nodal network near side OA in Fig. 10 will probably be desirable for high accuracy). 

Singularity at the apex of pyramidal notches with three equal sides 
The cases of pyramidal notches shown in Fig. 13 have 3 singularity rays and possess 

one plane of symmetry through each of the three edges, so that only the domain 
O’ABCDO’ needs to be considered. This domain includes only one singularity ray and 
the formulation of the problem is the same as for the cases shown in Fig. 11, discussed 
previously, except for two differences. First, angle 2a of the planes forming each radial 
edge depends on the apex angle 2p of each side, namely sin (Y = l/(2 cos p), and the 
value of p is then given by equation (2). Second, the location of the right boundary in 
the (8,(p) plane is different, as is shown in Fig. 14 for the case of the right-angled pyrami- 
dal notch (2/3 = r/2). 

This case was analyzed only by method B, assuming A to be real. The smallest roots 
computed with networks of about 80 nodes are given by the points on curve c in Fig. 9 
and the eigenstate U for one case is shown in Fig. 14. Note that the cases 2/3 >2~/3 
represent a convex solid pyramid rather than a concave notch. For 2p=2~/3 the 
pyramid degenerates into a planar surface ((Y =O), for which A = 1. The case p +O 
should give the same value as for curve 6. (According to the result in[l], the values in 
Fig. 9 will possibly be overriden by some complex A at p -0.) The right-angled pyrami- 
dal notch (Figs. 14 and 13a) has also been computed with a finer grid AL\CP = n/24, A0 = 
~-126, which has yielded A = 0.4533. Assuming similar convergence behavior as before, 
the correct value is A = O-4533 + OW15 = O-455. For 2p = 7r/4, the finer grid yielded 
A = 0.2288 + 0@015 = 0.230 (a = 32.765”, p = 0.61127). 

Fig. 13. Pyramidal notches with three sides of equal apex angle. (The sphere is not the body 
surface and serves only for visualizing the situation in spherical coordinates.) 
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e 

Fig. 14. Function U computed for the case shown in Fig. 13~1 (p” = (sin 8)“‘). 

Development of singular finite elements and extensions to elasticity 
It should be noted that knowledge of the dominant near-singularity field is all that is 

needed for the development of finite elements comprising the singularity, following the 
path shown, e.g. by Walsh [ 131. Table 2 gives sufficient information for formulation of 
such elements for the most important cases. This brings within reach the numerical sol- 
utions by the finite element method for three-dimensional domains with arbitrary 
boundaries. 

The general method presented can also be applied to problems of three-dimensional 
elasticity which are not reducible to potential theory problems. Here expressions of the 
form (6) or (10) augmented by rigid-body displacement terms for the neighborhood of 
the ray must be introduced for each of the three displacement components. The 
analysis may be based either on Navier’s differential equations of equilibrium in 
spherical coordinates or the Papkovich-Neuber potentials. In either case the problem is 
reduced to three simultaneous second order partial differential equations in 0, cp for 
three functions with nonsingular gradients. Applying a numerical method, the problem 
is again reduced to the system of algebraic equations (30). But its matrix is about three 
times larger than for the same nodal network in a potential theory problem, has a wider 
band, and is less sparse. This will make computations more costly. 

Application of the numerical method to singularities in plane elasticity 
There is a number of unanalyzed singular problems in plane elasticity, especially in 

combinations of cracks, notches and bonded dissimilar materials. Analytical solutions 
are complicated and a great effort is being made to solve various cases one by one, as 
can be seen in the recent literature. The present method of numerical solution can be 
useful in all these problems, too. The technique of Knein[8] and Williams [13] reduces 
the plane problem to an ordinary rather than a partial differential equation. The system 
of equations (30) arising in numerical solution is therefore of a much smaller size, and 
usually also narrowly banded, which substantially simplifies computations according to 
methods A, I3 or C outlined previously. 

UES “0, 12. N”. 3-D 
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CONCLUSION 

Three-dimensional harmonic functions near termination or intersection of gradient 
singularity lines can be determined by the general numerical method presented herein. 
Knowledge of the near field will enable the development of finite elements comprising 
the singularity. 
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R&m&-La fonction harmonique U au voisinage du point 0, a partir duquel part un rayon a singularite, est 
supposCe &e dominte par le terme r*p’LJ oh r = distance du point 0, p = constante connue, et p une 
fonction choisie des coordonntes spheriques angulaires 8, cp telles que u - (pr)” au voisinage du rayon pour 
tout r fini. U est une fonction inconnue de 8, cp, pour laquelle une equation ditferentielle partielle avec les 
conditions aux limites, en particulier celles sur les rayons singuliers, et un principe variationnnel sont deduits. 
Parce que grad U est non singulier, une solution numerique est possible, utilisant, par exemple, les methodes 
des differences finies ou des elements finis. Ceci ram&e le probltme a celui de trouver un A de partie rtelle la 
plus petite et satisfaisant a l’tquation Det (A,j) = 0, oh A,i est une grande matrice dont les coefficients 
dependent linCairement du p = h(A + 1). En general A et A, sont complexes. Des solutions peuvent &tre 
obtenues soit en se ramenant a un probleme ordinaire de valeur propre de matrice pour /.L, soit par des 
conversions successives a des systemes d’equations lineaires non homogenes. Des etudes par ordinateur ont 
confumees la faisabilitt de cette methode et ont montrees que des resultats de grande precision peuvent etre 
obtenus. Des solutions pour des fissures et des entailles aboutissant a un plan, ou a une surface conique, et 
pour des fissures aboutissant obliquement a la surface dun demi-espace, sont present&es. Dans ces cas, A est 
reel et la singularite est toujours plus faible (h > p) que sur la ligne singulitre et peut meme disparaitre (A > 
1). 

De plus, des contraintes Clastiques sous l’effet dun poincon rigide, en forme de coin et glissant, ou a 
l’angle du bord dune fissure ont Cte analysees, ainsi que des fonctions harmoniques pour des entailles 
pyramidales a trois c&es. Ici on avait A <p. 

Une solution analytique simple pour une classe de cas particuliers a tgalement et& trouvee. On l’a utilise 
pour verifier quelques uns des rtsultats numbriques. 

Znsammenfassung-Es wird angenommen, dass die harmonische Funktion u nahe dem Punkt 0. von dem ein 
einzelner Singularititsstrahl ausgeht, durch den Ausdruck r*p’U beherrscht wird, wo r = Abstand vom 
Put&t 0, p = bekannte Konstante und p = gewlhlte Funktion von winkeligen Kugelkoordinaten 0, cp 
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so dass u - (pr)” nahe dem Strahl filr jedes endliche r. U ist eine unbekannte Fur&ion von 0, cp, fiir die eine 

partielle Differentialgleichung mit Grenzbedingungen, besonders die an den Singularitatsstrahlen, und ein 
Variationsprinzip abgeleitet werden. Weil Gradient LJ nicht-singuliir ist, ist eine numerische Lissung miiglich, 
verwendend, zum Beispiel, die den Netzverfahren oder die Methode der endlichen Elementen. Dies reduziert 
das Problem auf das Finden von A des kleinsten reellen Teiles, der die Gleichung Det (Aij) = 0 befriedigt, wo 
A, eine grosse Matrize ist, deren Koeffizienten linear van p = h(A f 1) abhlngen. Im Allgemeinen sind A und 
Acj komplex. 

Liisungen kiinnen entweder durch Reduktion auf ein gewiihnlicher Matrizeneigenwertproblem fiir p erhal- 
ten werden, oder durch aufeinanderfolgende Umwandlungen auf nicht-homogene lineare Gleichungssysteme. 
Untersuchungen an Rechenanlagen bestatigten die Durchfiihrbarkeit der Methode und zeigten, dass sehr 
genaue Resultate erhalten werden kiinnen. Es werden Lijsungen fib Risse und Kerben vorgelegt, die an einer 
Ebene oder Kegeloberthiche enden, und fur R&se, die quer an einer H~braumo~rfl~~he enden. In diesen 
Fallen ist A reel1 und die Singular&at ist immer schwacher (A > p) als an der die Sin~larit~tslinie und kann 
sogar verschwinden (h > I). Weiter wurden elastische Spannungen unter einem keilformigen starren gleiten- 
den Stempel oder an der Ecke einer Risskante analysiert, wie such harmonische Funktionen an dreiseitigen 
pyramidischen Kerben. Es wurde gefunden, dass A >p hier vorkommt. Es wurde such eine einfache 
analytische Liisung fur eine Klasse von Spezialflllen gefunden und wurde verwendet, urn einige der 
numerischen Resultate zu priifen. 

Sommario-Si assume the la funz~one armonica u, vicino al punto 0 da cui emana un raggio con singolarit~ 

singola, sia dominata dal termine r*p’U dove r b la distanza dal punto 0, p t una costante nota e p t una 
funzione scelta delle coordinate sferiche angolari 6 e cp tale the u - (pr)” vicino al raggio per ogni valore 

finito di r. U & una funzione non nota di tl e cp per la quale vengono derivati un’equazione a differenziali 

parziali con condizioni allo strato limite, specialmente quelle sui raggi con singolarita, ed un principio var- 

iazionale. Poiche grad U non i: singolare, una soluzione numerica i: possibile, usando per esempio il metodo 
delle differenze finite o quell0 degli elementi finiti. Cih riduce ii problema a trovare il valore di h della piu 
piccola parte reale the soddisfa l’equazione Det (As) = 0 dove Aii & una grande matrice i cui coefficienti di- 

pendono linearmente da p = h(h + 1). In generale, h et A,, sono numeri complessi. Le soluzioni possono 

venir ottenute o per riduzione al problema de1 valore speciale di una matrice normale per F, 0 per conversioni 
successive a sistemi di equazioni iineari non omogenee. Degli studi effettuati su calcolatori hanno confermato 
la praticabilita di quest0 metodo e hanno dimostrato the si possono ottenere risultati molto accurati. Vengono 
presentate soluzioni per fenditure e intagli terminanti su una superficie piana o conica, e per fenditure ter- 

minanti obliquamente sulla superficie di un semispazio. In questi casi A e reale e la singolarita e sempre piu 

debole (A > p) the sulla linea di singolarita e pub per&o scomparire (4 > 1). Sono state analizzate inoltre le 
sollecitazioni elastiche sotto uno stamp0 scorrevole rigid0 a forma di cuneo o su un angolo de1 bordo delta 

fenditura, come pure le funzioni armoniche su in&&i piramidali a tre facce. I? stata inoltre trovata una 

semplice soluzione analitica per una classe di casi speciali, e la soluzione e stata usata per controllare alcuni 
dei risultati numerici. 

A6crpaHT - ~-~E~WITO, YTO rapMoHHrecKan ~~I)YHKUUR u ~6nis3 TO’IKM 0, or KOTO~O~O rwrynaercs OATH 

oco6eHHocrHbrii nys, nonsepxetia K ~~C~O~CTBY wtena r”ppU, rAe r = paccToaHife 0~ TO~KU 0, p = w3- 

B~~CTH* ~OCT~SHH~~~, p = Bbl6op ~ytt~rtnn OT yrnoebrx e@epwiecKnx KoopAaHaT 8, + raK, ‘ITO u _ (~r)~ 

8651333 JIyYa AJIK nro6oro XOHeYHOrO 3HaVeHWSi Y. i@U 3TOM u eCTb He~3B~THa~ @yHKIuia OT f?, (b, AJnl 

KOTOpOrO AaH BbtBOA ‘IaCTHOrO ~~~~~HuU~bHOrO ypaBHeHn5l C rnaHU’iHbiMA YCJIOBFfSiMii, B ‘iaCTHOCTII, 

AnR Tex Ha OC06eHHOCTHbIX AyYaX, a TaKxe BbiBOAMTCfl BapRaunOHHbIn npnHunn. TaK KaK grad u eCTb 

HeOCO6eHHas, B03MOxHO nOJIyWTb WCAeHHOe nellIeHue, nnnMelnnl HanpuMep MeTOAbl KOHeYHblX 

pa3AWiuk NJ’IH KOHe’iHblX 3AeMeHTOB. nO3TOMy npo6neMa CBOAHTCs K HaXOmAHellm x AIIX HauMeHbmeti 

peaJIbHOti YaCTU, yAOBJIeTBOnatomen ypaBHeHneM Det (Al,) = 0, rae ,‘tij - 6onbmas MaTpiina, K03(t)- 

&illeHTbI KOTOpOn 3aBWCsT JIuHefiHO OT p = h(A -t 1). BooGme h H Ai,- KOMnAeKCHblMn. PemeHRa 

MO2KHO nOffyWTb IfAu npaBeAeHUeM npO6neMbI CO~TBeHHOrO 3Ha’ieHnlf CTaHAapTHO~ MaTnnubr OTHOCU- 

Te~bHO~,UA~nOC~eAOBaTe~~bHbiMunpeo6pa3oaaH~~~KK CuCTeMaM HeOAHOpOAHbtX AKKetiHbtX ypaBHeHnk. 

M3 ItCCJIeAOBaHnti KOMnbZOTenOM nOATBepmAeHa nnaKTu%CK~ OCymeCTBJIaeMOCTb MeTOAa, a TaKHCe 

B03MOIKHOCTb nOny’ieHna BbICOKOTO’IHbIX pe3yAbTaTOB. npeACTaBJTeHb1 pemeHAK AJIa TpemnH H HaAne308, 

0rpaHawiBaromsxcn y nJlOCKOCTu unu KOHWeCKOir nOBepXHOCTn, H AJlR TpeumH, orpaserm3atoqcrxcs KOCH~ 

y nOAynpOCTpaHCTBeHHOfi nOBepXHOCTH. ho 3THX CflyVaRX h eCTb peaJIbHOe, a OCO6eHHOCTb BcerAa 6onee 
cna6oe (ii >p), YeM 3Ha'feHHe et? Ha OCO6eHHOCTHOR AnHUH, BOSMOXHO u riCYe3aHAe ee. (;\ > 1). KpoMe Tot-o, 

nnOaHaJm3HpOBaHbi ynpyrne HanpSKeHns nOA KflnH-06pa?HOM, W(eCTKUM, CKOJlb3amiiM mTaMnOM, $iJIA a0 

yrAe Knaa T~mnHbI, A rap~oH~~~Kae ~yHL@iS TPeXrnaHHbrX n~paM~~aNbHblX HaArEZSOS. 3AeCb yCTaE,Oa- 

AeHO VT0 h<p. nOny’IeH0 u nnoCTOe aH~PTRYeCKOe pemeHne Ana OAHOrO KRaCCa YaCTHblX CAyqaeB, 

nnnMeHeHHOe AAs ITpOBepKn HeKOTOpbtX %iCAeHHbIX pe3yAbTaTOB. 


