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Abstract-The nature of singularities at the vertex of conical notches and inclusions is found for 
problems of potential theory and for elastostatic problems of torsion and of axisymmetric 
stress. A solution in terms of spherical harmonics and a general numerical solution based upon 
the field equations are used to determine the power dependence of the field quantities upon 
the distance from the apex of the cone. Eigenvalues representing the exponent are computed 
for various values of cone angle and for various Poisson ratios. 

1. INTRODUCTION 

Whereas singularities in two-dimensiona problems of potential theory and of elasticity 
have already been thoroughly examined, Iittfe is known of the singularities in three-dimen- 
sional problems. Even the singularities at conical notches and inclusions, the simplest of the 
three-dimensional problems, seem to have escaped attention and will, therefore, be examined 
in this study. Spherical coordinates will be employed and will be separated in a manner 
which is analogous to that introduced by Knein[l] (upon suggestion of van K&-man), and 
later indep~ndentIy developed by WilliamsfZ], and Karp and Karal[3]. Attention will be 
restricted to problems that either are axisymmetric or are reducible to ane-dimensional 
problems. The axisymmetric elasticity problems for a cone has recently been investigated 
by Thompson and Little[4], but they considered only cones of acute vertex angle (less than rr) 
in which no singularities arise. Nevertheless, it is easy to check that their general solution 
applies for all angles, and so it can be used herein. 

Two variants of soIution will be used. One will be based on spherical harmonics[4]. The 
other will be a genera1 numerical method which, after some additional refinements[5], is 

applicable to three-dimensional singular problems in generaI. A demonstration of this 
numerical method is a second objective of this study. 

2. POTENTlAL THEORY 

Consider a three-dimensional harmonic function ~(0, 4, v) in spherical coordinates 8, 4, r 
which are centered in the apex of a cone whose axis coincides with the pole. Jn analogy 
with the method of Knein[I], Williams[2], and Karp and Karal[3], the radial coordinate r 

will be separated by assuming the harmonic function in the form 

u(@, i$, r) = r”U(O) cc6 I;# tlf 
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where k must be an integer in order to guarantee continuity of U. If this expression is sub- 
stituted into the Laplace equation 

variable r may be eliminated. This yields a second-order ordinary differential equation for 

function U(e), 

d2U 
ho” + cot 8 ; + 

k2 
A(/? + 1) - - 

sin2 I3 I 
u=o (0 # 0). (3) 

In the limit 0 + 0, this equation degenerates into a condition of axisymmetry: 

aujae=o fork=O; or U=Ofork#O (at 0 = 0). (4) 

Two types of the boundary condition on the surface of the cone (0 = p) will be con- 
sidered : 

(a) U = 0 at 8 = j? (inclusion) (5a) 

(b) afJ/ZfI = 0 at H = ,fj (notch). (Sb) 

(Note that the boundary condition U = const. may be reduced to U = 0 by a substitution of 
a new variable for u.) 

The boundary conditions on the radial rays will not be specified, and so an infinite 
number of solutions is naturally expected. That this is indeed so is clear from the fact that 

equations (2) and (Sa) or (5b) represent an eigenvalue problem. Its eigenstates form a com- 

plete orthogonal system and, therefore, a solution for any specified boundary conditions on 
the radial rays is a linear combination of all eigenstates. However, in a sufficiently small 

neighborhood of the apex of the cone, the eigenstate that corresponds to the root A of the 
smallest real part prevails (except in the special cases in which the boundary conditions on 

radial rays yield a zero coefficient for this eigenstate). Consequently, determination of the 
smallest &(A) is of particular interest, especially when 1 Re 11 < 1 because the gradient is 
then unbounded near the apex r = 0 (singular behavior). 

(A) Solution in terms of Legendre functions 

Introducing the new variable x = cos 0, it is readily recognized that equation (3) is the 
Legendre differential equation (for k = 0) or the associated one (for k # 0) [6]. Its solutions 

are the associated Legendre functions P,k(cos 8) [6] (automatically satisfying axisymmetry 
condition 4). The boundary condition (5a) or (5b) requires finding such ,I that 

(a) PJcos B) = 0 (inclusion) (6a) 

dP;(cos 0) 

(b) dH 
= 0 (notch). 

tI=D 
(6b) 

The condition (6b) may be brought to the form (see formula 8.733-l in [6]): 

(I+ l)xOP;(x,) - (3, - k + l)P:+,(x,) = 0. x,, = cos /3 (notch) (6~) 

which is more expedient for numerical calculation. The values of 1 have been solved from 
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equations (6a) and (6~) numerically (with the aid of a computer), using the reguia falsi 
method. This has been particularly simple because it was known in advance (from the 
numerical method described below) that ail roots A are real. The values of Legendre function, 
including the associated one, have been computed from its hypergeometric series representa- 
tion[6]. 

The smallest A-values (probably accurate to four digits) are shown in Fig. 1. Singularity 

4 

Fig. 1. Four smallest values of h in potential theory problems. 

(i.e. 1~ 1) is obtained only for #3 > 742, and for k = 0 ~axisymmetr~~ state) in case of 
inclusion, or for k = 1 (period 271) in case of notch. For angles /3 close to z (B > 0+957~) the 
hypergeometric series converges poorly and an asymptotic expansion/61 is required; from 
such an expansion it further follows. that 

(b) lim A = 1, :_t $ = 0 (notch). 
B-+x /- Vb) 

In the limiting case of a Iine inclusion (8 = a) the solution is well known[7]: 

while for a line notch a homogeneous field (A = 1) is the solution, 
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( B) Direct numerical method based on field equations 

Interval 8 E (0, 8) is subdivided by-discrete nodes, uniformly spaced, and equation (3) and 
the boundary conditions are replaced by their finite difference approximations. If the 

boundary conditions (4) and (5a) or (Sb) are eliminated. one obtains for the nodal values U; 
a tridiagonal system of linear algebraic equations which can be brought to the form: 

with ,~l = E.0. + 1 j; (i = 1, 2. . 17). 

where coefficients ajj are independent of ;1. Thus, the problem is reduced to a standard 
eigenvalue problem. Standard library subroutines have been used for its numerical solution, 
After determining p, whether complex or real, the corresponding value of i is computed as 

A = - 4 + .,/$? il. The solution has been programmed for complex 3., and it has been proved 
that no complex roots exist. With a step size A9 = fi/48 the results coincided to four digits 
with those obtained analytically (Fig. 1). To illustrate the convergence, the L-values for 

~~A~ = 12, 24, 48 and 96 are 0.46396, 0.46332, 0.46315 and O-4631 1 in the case of a notch 

with p = $n and k = 0 (for second-order finite difference formulas). The direct numerical 
solution involves more algebraic operations than the previous numerical solution based on 

an analytical approach, but the cost of computation is so small that the difference is unde- 
tectable. When searching for complex i,, the direct numerical approach is more simple to 
program. and even more importantly, all computations are explicit and the computer runs 
are sure to succeed (whereas the solution of 2 from (6a) or (6~) requires tracing in the 
complex plane the curves of Re(ll) = 0 and the curves of im(A) = 0, and finding their intersec- 
tions, for which a computer program that would not necessitate many runs and an inter- 
action of the programmer is difficult to write). It seems that with small A0 the direct numerical 

method works satisfactorily even for fi quite close to rt (O-97n). although for /I sufficiently 
close to 7c it must fail, because function U(8) tends. according to (8). to become singular at 

0 = 7r. 
Physically, the above solutions represent distributions of temperature near a uniformly 

heated perfectly conducting conical inclusion or a non-conducting conical inclusion: or 
similar distributions of electric charge, of stream function in flow or seepage problems, etc. 
The cases for k = 1 and k = 0 correspond to homogeneous distant held with gradients 
parallel to # = 0, B = n/2, and to Q = 0, respectively. The above solution also describes 
scattering of waves by a reflecting or absorbing cone, because near the singularities the 
Helmholtz reduced wave equation is equivalent to Laplace equation. The same is true of the 

Poisson equation. 

3. ELASTIC TORSION 

As is well known ([8], p. 326), the elasticity problem admits solutions for which U, = uit = 0 
(U denotes displacement component in the direction defined by the subscript). These solutions 
correspond to the case of torsion about axis B = 0. Displacement zl+, then satisfies the equa- 
tion ([S], p. 326) : 

V(u, cos 41) = 0. 110) 

In the case of a rigid conical inclusion, the boundary condition on the surface of a cone is 
U+ = 0. Thus, the problem is identical to the previously solved potential theory problem of an 
inclusion {case a in Fig. 1) with k = I. It is seen that no singularity of stress occurs (R > 1). 
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In the case of a conical notch, shear stress CJ+~ must vanish at the cone. Using the expression 
for strain e@,, in spherical coordinates [S, 91, this condition reduces to 

~U~/~~ = urp cot p (11) 

which gives (according to formula 8.733-l in [C;]) 

/zPi+ ,(X) - (2 + jL)XP:(x) = 0 (X = CQS e). (12) 

This case has been solved in the same manner as described before and again no stress 
singularity was found to occur. 

4. ELASTICITY 

In analogy with Knein’s or Williams’ approach. or equation (l), displacements ZQ, u4, tl, 
will be considered in the form 

ii, = &Jr(%), ug = P”L$@), 6t9 = 0 (axisymmetry). 

In case of a rigid conical inclusion, the boundary conditions require that 

(131 

U, = U, = C’, = 0 at t1 = fi (inclusion). (14) 

In case of a conical notch, the boundary conditions require stresses ~~~ and or@ to vanish. 
If these stresses are related according to Hooke’s law to strains egg, E,, , and E,@, and if these 
are in turn expressed in terms of displacements I(,, ug (see [9, 81) and equation (13) is sub- 
stituted, variable r disappears and the boundary conditions of a notch take the form 

aufJat3 = -(l c v’ _t ;Iv’)Ur - (13’ cot P)U, 
euJ?ct = ( 1 - j.)U# 

at 8 = /? {notch) (15) 

where V’ = IT/( i - I’). v = Poisson’s ratio. 

(A) Solutiou in terms of’Legendre functions 

The displacements are best expressed in terms of the Papkovich-Neuber potentials, which 
automa~icalIy satisfies Navier’s differential equations of equiIibrium. This approach has been 
adopted by Thompson and tittie [4]. Although they considered no notches or inclusions 
(/r > x/2), it is easy to check that their solution also applies to these cases. According to 
equation 2.39 in [4], non-zero solutions of the type (13) exist, in case of a stress-boundary 
condition. if 

X(2C(.UZ - l)R2 i 2c(x2 - I)/? + XZ)[Pi(X)]Z 
+ XC2C(X2 - l)J1 + 2c(x2 - l)i i- I)[PI-,(X)]Z 
- 2c(2x2(xZ - l)i;” $ (x2 - 1)(3X2 - 1)/i (16) 

+ [x4 i- 2(1 - v)P -t- l]}P,(x)P,_,(x) = 0, 

.Y = cos 0, c = l/4(1 - \I), 

In case of displacement boundary condition (141, equations (2.32) and (2.33) from f4] can be 
shown to yield 

(1 + c4xlP,t-r)12 + ~~X[~,_,(X)12 - [x2c(I -I- 2) -t (1 - c)]P,(x)P,_,(x) = 0 (2 # 0). 
(17) 
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Similarly as in the potential theory case, E. has been solved from equations ( 16) and ( 17) by 
the regula falsi method. (Legendre functions have been evaluated from their hypergeo- 
metric series representation[6].) The results, which seem to be accurate to four digits, are 

shown in Table 1 and Fig. 2. 

Table 1. The smallest value of h in axisymmetric elastic problems corresponding to Fig 2 

B 

1’ 

Inclusions 

0 0.9793 0.8387 0.6886 05416 04014 0.2682 o-1760 
0.1 0.9809 OS492 0.7028 0.5536 0.4091 0.2720 0.1777 
0.2 0*9830 OS638 0.7227 0.5700 0.4193 0.2768 0.1798 
0.3 0.9861 OS856 0.7528 0.5939 0.4334 0.2834 0.1827 
0.4 0.9911 0.9222 0.8057 06325 0.4544 0.2926 0.1866 
0.46 0.9957 0.9599 0.8675 0.6709 0.4728 0.3003 0.1899 
0.49 0.9988 0.9882 0.9309 0.6993 0.4846 0.3047 0.1916 
0.499 0.9989 0.9987 0.9779 0.7099 0.4887 0.3066 0.1927 

Notches 

0 0.9706 0.8486 0.8334 0.8798 0.9411 0.9854 0.9983 
@I 0.9676 OS293 0.8072 OS577 O-9294 0.9825 0.9980 
0.2 O-9645 0~8089 0.7781 0.8318 0.9153 0.9790 0.9977 
0.3 O-9614 O-7874 0.7456 0.8012 OS978 0.9749 0.9973 
0.4 0.9584 0-764x 0.7093 0.7644 OS755 0.9694 0,997 1 
0.499 0.9553 0.7411 0.6686 0.7200 OS464 O-9624 O-9969 

0 
lr/2 aa/4 -ir 

P 

The smallest value of h in axisymmetric elastic problems. Fig. 2. 

x8 
.6 

.4 

.2 
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( B) Direct numerical s~lut~~~ based on field equ~ti~~~ 

The numerical approach could also be based on Papkovich-Neuber potentials, but with 

regard to stress boundary conditions it is more convenient to use the three Navier’s differ- 

ential equations of equilibrium in terms of displacements (see Ref. [Q], Section 96, p. 141), of 
which the condition for the &direction is automatically satisfied. If expressions (13) are 
substituted into these equations, variable r disappears and one obtains: 

dZl.J 
-& + cot %S + [v“(jL - 1) - /J, - I] $ + v”(J - l)(A + 2)& 

+ [v”(d - 1) - A - l]cot OU, = 0, (18) 

n a”u, 
_ 

v,,z + [v”(r: + 2) - A] $+ + V” cot 8 z + 
[ 
1(E, + 1 ) - _vI 

I sm* % 
u, = 0, 

where Y” = (1 - v)/(O.S - v). For 0 = 0 these equations degenerate into conditions of 

axisytnmetry : 

XJ,jd% = 0 and u, = 0 at 0 = 0. (19) 

For numerical solution, interval (0, p) is subdivided by discrete nodes and equations (18), 
(IQ) and (14) or (15) are replaced by their finite difference approximations. (To achieve high 
accuracy. fourth-order approximations [lo] have been used.) This results in a banded system 
of 12 linear algebraic equations (of band-width 111: 

>$/tij(i)Uj = 0 (i = 1,2,. . ., 31) (20) 

where coefficients Aij(J.) are nonlinear functions of 1. When complex roots a are searched, 

(lij and CJ; must be considered complex; otherwise they may be treated as real. (No advan- 
tage is gained by eliminating the boundary conditions from equation 20.) Equation (20) 
defines a nonlinear generalized eigenvalue problem which cannot be reduced to the standard 
linear eigenvalue problem (equation 9). However, efficient computer methods exist which 
could handle this problem (up to a size of several thousands of equations without special 

difficulties); see 151. 
Computer analyses for a subdivision with step Ap = a/96 (resulting in a system of IQ2 

equations) have yielded results (Fig. 2, Table I) that coincide to four digits with the results of 
the preceding analytical solution, except for the case v = O-499 for which the error varies 
between 0.0001 and 0.08. (This is because v” --t co for v --+ 0.5; but for v = 0.5 the solution 
could be based on differential equations of equilibrium for an incompressible material.) The 
numerical solution is about equally easy to program as the analytical one. It involves more 
arithmetic operations but the computer cost is not excessive, anyhow. 

Approaching the cone vertex along any radial ray, the stresses grow to co as r-‘-j. Note 
that the stress singularity strength li. - 1 depends on Poisson’s ratio. Physically, the axisym- 
metric singular stress states obtained are excited by combinations of a normal stress parallel 
to axis 0 = 0 at infinity and of equal biaxial normal stresses perpendicular to axis 8 = 0 at 
infinity. 

Knowing i, the eigenstates, when desired, can easily be computed from the formulas 2.32 
and 2.33 derived in [4] by setting in these formulas C; = C and L?; = Cx,(I + c~)~~(.~~~~ 
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~P,_,(A+,) and taking into account minor changes in notations. (In particular, k = c, 

a,, = A, p = x and #, 0 are interchanged.,) According to these formulas, 

where so = cos jj’, s = cos N, C = arbitrary constant. The stresses can similarly be obtained 
by direct substitution from equations (2.311-f-(2.37) in Ref. [4J. 

Knowledge of the field near the singularity makes it possible to construct a singular 

finite element for the vertex region of a cone, and thui to solve practical boundary value 
problems for bodies of finite dimensions. 

Conical notches and inclusions produce singularities of stress or potentiat gradient whose 
strength varies from 0 to - 1 in dependence on the cone angle. The stress singularity also 
depends on the Poisson’s ratio. The problem can be solved analytically in terms of Legendre 
functions. A numerical solution based on finite differences in the angular spherical coor- 
dinate is also possible and yields equally accurate results. This fact at the same time serves 
as a check on the validity of this numerical method, which is applicable to a broad class of 

other problems. 
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A~CT~KT- OnpenenaeTcn npnpona ctfkfrynfiprfocTeii B sepufwrte KoffffYecKkfx sbrpesoe H 

BKJffO'leHM%, fina 3a2fa9 reoputr noTeffunania u znfi ynpyrocTaTWfecKua 3aixas Kpyseffila N 

O~~~MMeT~~~e~Koro Haf'@SmeHSZ% ffpEfMetf%oTCS pelf.feHBR B SHae C&pWfecKkfX f-ap,tiofffiK 

ri 06uree YEfCJfeffHOe peuientie, ocnoaaffHb7e tfa ypaaHeH~~x none, c ue.zbIo o~pe~eJ~e~~~ 

3aBACHMOCTK oT CTenerra LVIR KOJElYeCTB iTOJVl, B 3aBHCMMOCTM OT BePLUMHbl KOHyCa. nOA- 

CYI~T~HO CO6cTBeHHbIe ~HBYBHIIR, k-oropbie u3o6pamamr noKa3aTenb cTenew finsi pa3HblX 
3Ha%eR&fii yrna KoHycaII ~~~~a3HbIX Ko3~~~u~e~roB llyaccowa. 


