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FiNniTE ELEMENT FOR BUCKLING OF CURVED
BEAMS AND SHELLS WITH SHEAR

By Zdenék P. Bazant,' M. ASCE and Mahjoub El Nimeiri?

INTRODUCTION

Inclusion of shear deformations allows the bending theory to be extended
to relatively thick beams and shells and, at the same time, simplifies the finite
element formulation for both thick and thin beams because monotonic conver-
gence may be achieved without ensuring continuity of displacement derivatives
between adjacent elements. Consequently, one may use low order interpolation
polynomials, including linear ones. This is particularly useful in the case of
curved beams because with higher order interpolation polynomials it is very
difficult to satisfy exactly the conditions of no self-straining at rigid body rotations
and of availability of all constant strain states (2,3,6,10), while with linear
displacement interpolation polynomials and a straight shape of the element these
requirements are easily met.

As the beam depth, d (or cylindrical shell thickness), becomes very small
keeping the element length, [, constant, the contribution of shear stiffness to
the element stiffness matrix must vanish. However, this was found not to occur,
a condition which was termed ‘‘spurious shear stiffness’’ (20) and was shown
to be responsible for ill-conditioning of the stiffness matrix in the case of very
slender beams or thin cylindrical shells. A number of remedial techniques have
been proposed (7,8,9,11,12,14,15,16,17,18,20,21). Best known is the technique
of reduced numerical integration (1,20) which, however, does not allow the
use of linear interpolation polynomials. In a recent work (7) (not covering buckling
and curved beams) it has been shown that the ill-conditioning (or spurious shear
stiffness) can also be avoided if the actual plate thickness, d, is replaced by
a modified thickness, d’, depending on the element size, . However, this could
hardly be applied in the case of irregular cross sections (e.g., I, T, and box)
or nonhomogeneous and layered cross sections.

In a recent study (5), the writers found that the problem of spurious shear
stiffness also arises in the combined Saint-Venant and warping torsion of box
girders, but can be eliminated by introducing a new formulation in which the
degree, N, of interpolation polynomials for transverse displacements (and twist)
is N, — 1, N, being the degree of polynomials for longitudinal displacements
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(rotation and warping). (This is contrary to the general practice of using N,
= N, + 1.) It was also observed (5) that this formulation can eliminate the
problem of spurious shear in bending of slender beams or cylindrical shells,
but the formulation for this case was not developed in detail. This will be
done herein, showing a new formulation which is particularly useful for curved
beams. All analysis will be restricted to deformations in the plane of curvature.

INTERPOLATION POLYNOMIALS AND INCREMENTAL STiFrnESS MATRIX

A curved beam will be approximated by a series of straight elements [Fig.
1(a)] with skew ends satisfying full continuity between elements. For best

TABLE 1.—Numerical Resuits
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Note: §in. = 25.4 mm; | b = 0.4536 kg.
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FIG. 1.—(a) Subdivision of Beam in Finite Elements; (b} Mapping from Unit Parent
Element; (c) Comparison of Displacement Interpolation Functions

accuracy, the axis of each element is chosen to deviate equally to both sides
from the given curved axis [ Fig. 1(a)]. The element will be conveniently visualized
as a mapped image of a parent unit rectangular element (Figs. 1(a) and !(b)].
By virtue of the straightness of element, the mapping is linear in each coordinate,
i.e.
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i 1
2= SOCLE b+ DU+ bm) (la)

x

1 1
y= 7(1 - C)bym + 7(1 + C)by,ﬂ ..................... (i1b)

in which z, y = local rectangular coordinates of the element centered at midlength
of the element [Fig. 1(a)]; | = length of element; {, n = coordinates of the
parent rectangular element that are mapped into z and y; subscripts i, j refer
to the ends of element; b, by, (or b, b,) = components of vector b that
characterizes the orientation of the cross section, such that b = |b| represents
the depth [or thickness, Fig. 1(a)] of the beam (which may vary along the
beam). The mapping in Eq. la is introduced in such a form that { = *1 are
the end cross sections and, in the case of doubly symmetric cross section,
n = =1 are the top and bottom fibers of the beam element; for an asymmetric
cross section, the limits are m, = 2y,/b and m, = m, — 2, in which y, =
y-coordinate of the top fiber measured from the centroid. The displacements,
u and v, in z and y directions will be considered to be distributed as:

b
u=?[(§2—.§)¢,~+(1 — P+ P+ D D;0m
1 1
+—2—(1—-§)U,.+—2-(1+§)U,. ..................... a)

1 1
=— (0 =-0DV.+— (U +0DV. . .. e e e 2b
V= =DV 0V, (2b)

& = rotation of cross section; V = transverse deflection; U = longitudinal
displacement of the centroid: and subscript 0 refers to the midlength of element
(interior node). In contrast to the usual finite elements for bending (13), the
distribution of deflection, v, is not cubic but linear, and in contrast to the
usual thick-shell finite elements (19), the polynomials for u and v are not of
the same degree [Fig. 1(c)], and the element is not isoparametric but subparame-
tric (19).

Consider now that the beam is initially in equilibrium at initial normal stresses
o%= P°/ A, dueto initial axial force P°and initial shear stresses 77,. Subsequently,
an infinitesimal incremental deformation occurs. The virtual work of stresses
(0% +0,) and (%, + 7)) after incremental deformation upon any kinematically
admissible variation du(z, y), dv(z,y) isdW =8W, + W, — [ (g, du + qy8v)dz
with

W, =f f Uzﬁeszdz+f f Ty0€,dAdz . oL 3)
/A v A

aw(,:f j &;’SeszdHJ’ f 100y, dAdz ... @)
v A zd A

in which A = area of cross section; q,, q, = load components per unit length
of beam; and
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du 1 fav)?

el=a—z, €z=ez+?<;) ....................... (&)
ou av 1 av av

ely=a—y+-;;; y:y=e1y+?—a-;;; ................... (6)

in which e,, e, = small (linearized) normal and shear strains; and ¢,, v, =
finite normal and shear strains. Eq. 3 contains linearized strain because only
infinitesimal incremental deformation is considered. Nevertheless, in the product
a? 8¢, (Eq. 4) the finite strain expression must be used, because, in view
of a? and 19, being finite (large), the product, o9 e,, would be accurate only
up to small quantities of first order in displacement gradients, whereas the
product, o 8¢, (Eq. 3), is a small quantity of second order (4). Component
(9u/32)* has been deleted from e, since for small incremental strains it is negligible
with regard to e_. Similar comments can be made about t, 8¢, and 79 3v,,.
1t is expedient to introduce the column matrices

e=(e.e )T, a=0,1 )" ........... e e e e e e e e @)
q=(U,V, &, U, V,d,d)T=(q"", D)7 .. ............. ®
"=,V P, U, V, 0T . ... &)
in which superscript T denotes a transpose. Then

g=De,e=Bq; B=adb......................... (10)

in which D = (2 x 2} elastic matrix defined as D; = 0 for i # j; D, =
E = Young's modulus; D,, = G = shear modulus (modified by the shear correction
coefficient for a given shape of cross section); B = (2 x 7) matrix; and matrices
a, d, and b are defined by

e=auw; u=did; u=bq ...... .. ... ... . (1
in which u’ =(9u/az, du/ady, av/a)7;

= (/L oufom, ov/al, ov/om) . . . .. Lo 12)
Further, it is useful to set

av av v\ T

—=d'{—,— ) =d'b q=Cq with C=d'b ......... (13)
a2z ol am

Matrices b’ and d’ are easily derived from the relation

u ? az ay ou au
a A a7 3z
= =F ¢ 0N Lo e e e (14)
an a9z ay au du
an n ’ am ay ay

in which J = Jacobian matrix of the mapping defined by Eq. 1, and from
a similar relation that holds for the derivatives of v. Denoting by JE‘ the
components of the inverse matrix, J ', one obtains
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I J5 0 0
d=|J; I3 0 0 d=[Jphdp]e e, 15)
0 0 I I

Using Eqs. 11, 13, 8, and 9, Egs. 3 and 4 can be brought to the forms
3W, = [, [,8eTg dzdA = 8q"K' q and 8W, = [, [, 0%(C3q)7C q dzdA
= 8q7 K° q in which

1 2
K! =J' j BTDBdZdA=J j BTDB|J|dndl . .......... (16)
Yy A -1 n,

P() 1 P
K® = —f J’ CTC | dndl « o oo an
Aal.,l,

where K', K® = stress-independent and stress-dependent parts of incremental
stiffness matrix K; |J| = det (}). Terms that do not involve q have been deleted
in 8 W, because they do not affect the stiffness.

The virtual work may now be expressed as W = 8q7(K'q + K°q - F),
in which F = (7 x 1) column matrix of applied forces associated with q. The
condition that 8 W vanish for any 8q yields the incremental equilibrium condition
of the element

Kq=F with K=K'+K° . ... .. .. ..., ........... (18)

in which F are applied forces associated with q (Eq. 9). The last row of matrix
in Eq. 18 refers to &,. Since &, is a rotation of an internal node, it may
be eliminated from the system of equations (which is termed *‘static condensation’’
of stiffness matrix) (13). This yields the condensed equilibrium equation of
the element

kgqb=f with k=k'+k® ... ... ... ... .. ... ...... (19)

in which k', k? are the parts arising from K!, K°. Note that matrix k° is obtained
from K° merely by deleting zero rows and zero columns associated with the
internal node.

In the general case, the stiffness matrix is best computed from Eqs. 16 and
17 by Gaussian-point integration (8 points were used). In the special case of
a straight beam of constant cross section, the nonzero components of the upper
triangular part of the symmetric (6 X 6) matrix k' are

EA l
ki, = _l_ ki¢= —ki,, k3, = (60 EI, + GA I>)(6°¢ )'; kjy=— 7k;2,

kis = —kp. ki = kiys kiy = [(80 + 24y ) EI + 3GA, IPJQ4l )7

23>
ki, = (60 EI + GA, P)(1217% )", ki = [(40 - 244 )EI,
— GA 121410 )" kb= ki kg = ki, ki = —kl klo= ki, .. .. (20)

in which A = area of the webs; and ¢ = 1 + 10 EI,(GA, [?)~". The geometric
stiffness matrix, k° (6 x 6 in size), has, in the present formulation, a simpler
form than it has in the usual formulation and its only nonzero elements are
k3 = k35 = P°/1, k35 = k3, = —k%,.
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Numenicar ExampLes

To examine the convergence with growing number n of identical elements,
beams, rings, and arches of various slenderness ratios have been solved numer;-
cally. The results are summarized in Table 1. In all cases the cross section
was a hollow square box, constant along the beam, of width b = 120 in. (3.048
m), depth d = b; Young's modulus E = 30 x 10° psi (206.8 kN/mm?), shear
modulus G = E/3; thickness 8, = 1 in. (25.4 mm) of the walls parallel to
axis y. Various thicknesses 8, of horizontal walls were considered. The exact
solutions in Table 1 were solved from the differential equations for bending
or buckling of beams with shear deformation.

In case a, a simply supported beam of span L is loaded by moments 4 x
107 b x in. (4.519 MN x m) at both ends. In case b, Table | gives axial
buckling lead of the beam. In cases ¢ — d a ring of perimeter 2L is stretched
by two opposite loads P = 10% Ib (453,590 kg) acting along the diameter, and
Table | gives the deflection under load, w,, as well as the deflection along
a horizontal diameter which is perpendicular to the load direction, w,. In case
e, Table | gives the critical uniformly distributed radial load, q,, for the first
antisymmetric plane buckling mode of a circular two-hinge arch of length L
(along the curve) and of central angle 60°.

AnaLysis ofF ResuLrs AND CoNcLUSIONS

Examples show that the convergence is monotonic, i.e., upper bound solutions
are guaranteed. This is due to the fact that a fully consistent finite element
formulation characterized by full continuity between the elements is used. In
the case of very slender beams, the rate of convergence is found to be distinctly
slower than that for the usual slender beam elements with cubic displacement
variation, and so a higher number of elements is needed, which is naturally
expected because of the assumed linear variation of the displacements. But
for deep beams the convergence is very fast. The convergence rate improves
considerably as the thickness of top and bottom flanges increases and the shear
deformation of the vertical webs becomes more important, whereas for a slender
solid rectangular beam without flanges (case 8, = 0 in Table 1), in which the
shear deformation is not too pronounced, the rate of convergence is poor.

The source of poor convergence in the case of very slender beams may
be clarified by considering the matrix in Eq. 20 for a solid rectangular cross
section of depth d. When d — 0 (very slender beam) while keeping I, E, and
G fixed, the cffect of shear stiffness, GA _, should vanish for the spurious
shear stiffness phenomenon to be absent, and all stiffness coefficients except
the axial ones (EA/I) should decrease as d?, i.e., ki /d®> must be finite as
d = 0. But cxamination of Eq. 20, in which GA, ~ d, EI, ~ d° lim {,
= 1, and GA 1? ~ d (~ denoting proportional dependence), reveals that ki/d?
— o as d — (. At the same time, however, it appears from this consideration
that im kl/d* can be made finite by substituting G = 0 in all elements of
the matrix in Eq. 20 except in coefficient §,. In this manner, the spurious
stiffness phenomenon is easily eliminated. (This is done, of course, at the expense
of loosing monotonous convergence, i.e., upper-bound solutions.) Furthermore,
it has been verified numerically that the substitution of G = 0 except in ¥,
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also greatly improves accuracy, even for rather deep beams. Apparently, the
shear is adequately accounted for by coefficient §s,, the other terms due to
shear being unrealistic.

When the stiffness matrix is calculated by numerical integration, the foregoing
elimination of shear corresponds to the following procedure: (1) Calculate the
diagonal stiffness coefficient, KJ,, associated with interior node rotation ®,,
separately for E = 1, G = 0 and for E = 0, G = 1, and express K}, as
«E + BG; (2) calculate ¢ = | + a E/BG for actual E and G; and (3) expressing
K}, as BG ¥, replace here and in all other terms of the row and column
associated with @, the actual value of G by a very small number, e.g., G
= 10-%; then proceed to calculate the rest of K/ and condense K }.

Note the special role of the interior node rotation in eliminating the spurious
shear phenomenon. Apparently, the additional degree of freedom associated
with this node (and resulting from the fact that N, = N, + 1) makes it possible
for the excess equilibrium condition associated with this node to enforce in
the limit for d — 0 the normality of cross section in a certain average sense
within the element. Further, note that the spurious shear stiffness could also
be eliminated by setting G = 0 at the outset (giving {, = 1); but for deep
beams the accuracy would then be poor.

Finite elements of the type proposed are particularly expedient in the case
of curved beams. The reason is that the interpolation (shape) functions in Eq.
2 enable the ends of element to be made skew with regard to its axis, so
that one may easily achieve full continuity between finite elements, as well
as fulfill the conditions of no self-straining in rigid body rotation and of availability
of all constant strain states. These conditions are very difficult to satisfy exactly
with curved finite elements based on the classical bending theory (2,3,6,10).

Finite elements with various other combinations of the interpolation polynomials
for displacements (degree N,) and for rotation (degree N,) have been examined.
Among all other possible combinations of the degrees N, = 1, 2, 3 and N,
=1, 2, 3, only the case N, = 2, N, = 3 allows a similar elimination of spurious
shear stiffness by merely deleting the shear terms. Accuracy for slender beams
was in this case also much better than that shown in Table 1, but the formulation
was cumbersome in the case of curved beams. It seems that in general the
ease of elimination of spurious shear stiffness requires that

Ny= Nom b oo e Q1)

It was also found that, after applying static condensation to the three interior
nodes needed for the case Ny = 2, N, = 3, the stiffness matrix is identical
to that derived in a different manner by Prziemieniecki (p. 80 of Ref. 13) for
prismatic beams without initial forces.

APPENDIX. —REFERENCES

1. Ahmed, S., Irons, B. M., and Zienkiewicz, O. C., ““Analysis of Thick and Thin
Shell Structures by Curved Finite Elements,”” International Journal for Numerical
Methods in Engineering, Vol. 2, 1970, pp. 419-451.

2. Ashwell, D. G., Sabir, A. B., and Roberts, T. M., *‘Further Studies in the Application
of Curved Finite Elements to Circular Arches,” International Journal of Mechanical
Sciences, Vol. 13, 1971, pp. 507-517.

3. Austin, W. J., “'In-Plane Bending and Buckling of Arches,’’ Journal of the Structural

2004 SEPTEMBER 1976 ST9

#-xi Division, ASCE, Vol: 97, No.-STS$, Proc. Paper 8130, May, 1971, pp. 1575-1592,4 «

4, Balant; Z. P.,**A Correlation Study of Formulations of Incremental: Deformation:
and Stability of Continuous Bodies, Transactions of the American Society. of .
Mechanical Engineers, Journal of Applied Mechanics, Vol. 38, 1971, pp. 919-928.. .

5. Ba%ant, Z. P., and EINimeiri, M., *‘Stiffness Method for Curved Box Girders at
Initial Stress,’* Journal of the Structural Division, ASCE, Vol. 100, No. ST10, Proc.
Paper 10877, Oct., 1974, pp. 2071-2090. ) '

6. Dawe, D. J.. “'Finite Deflection Analysis of Arches,” International Journal for
Numerical Methods in Engineering, Vol. 3, 1971, pp. 529-552.

7. Fried, 1., “Shear in C® and C' Bending Finite Elements,” International Journal of
Solids and Structures, Vol. 9, 1973, pp. 449-460.

8. Greimann, L. F., and Lynn, P. P., *‘Finite Element Analysis of Plate Bending with
Transverse Shear Deformation,” Nuclear Engineering and Design, Vol. 14, 1970, pp.
223-230.

9. Irons, B. M., and Razzague, A., “‘Experience with the Patch Test for Convergence
of Finite Elements,”” The Mathematical Foundations of the Finite Element Method,
A. K. Aziz, ed., Academic Press, New York, N.Y., 1972, pp. 557-587.

10. Megard, G., “‘Planar and Curved Shell Elements,”’ Finite Element Methods in Stress
Analysis, 1. Holand and K. Bell, eds., Tapir-T.U., Trondheim, Norway, 1970, pp.
287-318.

11. Melosh, R. J., **A Flat Triangular Shell Element Stiffness Matrix,”" Proceedings of
the Conference on Matrix Methods in Structural Mechanics, Air Force Institute of
Technology, Wright-Patterson Air Force Base, Dayton, Ohio, 1965.

12. Pryor, C. W., and Baker, R. M., *‘A Finite Element Analysis Including Transverse
Shear Effects for Applications to Laminated Plates,” American Institute of Aeronautics
and Astronautics Journal, Vol. 9, 1971, pp. 912-917.

13. Przemieniecki, J. S., Theory of Matrix Structural Analysis, McGraw-Hill Book Co.,
Inc.. New York, N.Y., 1968.

14. Severn, R. T., “Inclusion of Shear Deflection in the Stiffness Matrix for a Beam
Element,”” Journal of Strain Analysis, Vol. 5, 1970, pp. 239-241.

15. Stricklin, J. A., et al., **A Rapidly Converging Triangular Plate Element,”” American
Institute of Aeronautics and Astronautics Journal, Vol. 7, 1969, pp. 180-181.

16. Wempner, G. A., ‘‘Finite Elements, Finite Rotations and Small Strains of Flexible
Shelis,” International Journal of Solids and Structures, Vol. 5,°1969, pp. 117-153.

17. Wempner, G. A., Oden, J. T., and Kross, D. A., ‘‘Finite Element Analysis of Thin
Shells,” Journal of the Engineering Mechanics Division, ASCE, Vol. 94, No. EM6,
Proc. Paper 6259, Dec., 1968, pp. 1273-1294,

18. Utku, S., “*Stiffness Matrices for Thin Triangular Elements of Non-Zero Gaussian
Curvature,’” American Institute of Aeronautics and Astronautics Journal, Vol., 5, 1967,
pp. 1659-1667.

19. Zienkiewicz, O. C., The Finite Element Method in Engineering Science, McGraw-Hill
Book Co. Ltd., London, England, 1971.

20. Zicnkiewicz, O. C., Taylor, R. L., and Too, J. M., “‘Reduced Integration Techniques
in General Analysis of Plates and Shells,” International Journal for Numerical Methods
in Engineering, Vol. 3, 1971, pp. 255-290.

21. Zudans, Z., **Analysis of Asymmetric Stiffened Shell Type Structures by the Finite
Element Method-111. Constant Transverse Shear Model,” Nuclear Engineering and
Design, Vol. 11, 1970, pp. 177-194.



