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Introduction 

In one proposed geothermal energy scheme [1,2], a large vertical main 
crack is produced in a hot dry rock mass by hydraulic fracture. To be able 
to remove heat from rock mass which is remote from the crack face, it is 
necessary to induce by cooling a secondary crack system normal to the wall of 
the main crack. Significant heat removal is possible only if the opening of 
secondary cracks is sufficient to allow rapid water circulation in them. The 
crack opening is wider, the larger is the spacing of cracks. The rate ~ of 
beat removal from secondary cracks by non-turbulent water circulation is 
roughly proportional to wS/h, where w = width of cracks and h = their spacing; 
w is, in turn, proportional to h, and so ~ ,- h ~. Likewise, crack spacing is 
of importance when dealing with shrinkage cracks in reinforced concrete, for 
the opening of such cracks has a decisive effect on the rate of corrosion of 
the embedded steel reinforcement and on the shear transfer capability of 
aggregate interlock on rough crack surfaces. Other problems in which crack 
spacing is of interest include the vertical cracking of lava beds extruded 
and solidified at ocean floor [3], as well as cracking of mud flats and perma- 
frost soils caused by drying [4,3]. 

Cooling of a homogeneous brittle elastic halfspace may be expected to 
produce a system of equally long parallel equidistant cracks normal to the 
surface. However, crack spacing is not unique according to the Grifflth 
criterion, and also other equilibrium solutions in which the length alter- 
nates fromone crack to another are possible. This suggests investigation 
of uniqueness and stability. It seems that stability questions have so far 
been considered only with regard to the propagation of a single crack and its 
direction of propagation [5-7] (Sih's criterion of maximum strain energy 
density, criterion of maximum energy release rate). This paper attempts to 
lay down foundations of stability analysis of a system of cracks for each of 
which the p~opagation direction is known. This problem is much less difficult 
than the problem of crack direction. 
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Conditions of Stability of a General Crack Configuration 

Consider first the general case of a brittle elastic body which contains 

a number of cracks of arbitrary shape (Fig. la). For the sake of simplicity, 

assume that the body is in a state of either plane strain or plane stress, and 

that propagation of the cracks is governed only by Mode I (opening mode) 

stress intensity factors, K i [6], where subscript i refers to the i th crack 

tip, i = I, 2, ...N. Also, assume that the cracks do not branch and that they 

propagate in given directions along straight or curved trajectories. Let a i 

denote the length of crack up to ~ts tip (Fig. la). 

It is well known that the condition of stability of equilibrium of a 

single critical crack of length a. is 
i 

~Ki/~a i < 0 (i = I, 2 .... N) (I) 

This holds for a general elastic body, and because a body with many cracks of 

which only one extends is a special case of a general elastic body with one 

extending crack, this condition also represents a necessary condition of 

stability o~ a crack system. It is not at all clear, however, whether Eq. (I) 

represents a sufficient condition, i.e., whether there are other conditions 

that have to be satisfied to assure stability. 

To investigate equilibrium and stability, it is necessary to consider the 

work, W (more precisely, Helmholtz free energy), that would have to be sup- 

plied to the body in order to extend the cracks; 
N a. 

W = U(al,am,...aN;D) + ~ ~ i 2~ida~ (2) 
i=l 0 

Here U = elastic strain energy of the body, 2~i = specific energy of extension 

of the i th crack; and D = loading parameter. In particular, D will represent 

here the penetration depth of cooling. If yielding and microcracklng near the 

advancing crack tip were absent and the crack surfaces were not rough but per- 

fectly plane, ~i would equal the surface energy of the material. But these 

effects are always present and often they dissipate much energy; then ~i is a 

constant which is much higher than the surface energy. 

Consider now that the crack tips number i = l,...m extend (6a i > 0), the 

cracks numbered m+l .... n close and shorten (6a. < 0), and the crack tips num- i 

bered n+l,...N remain stationary (~a i = 0); 0 ~ m ~ n ~ N. This includes the 

case m = n when no crack closes, and the case n = N when no crack remains 
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immobile. The work, AW, that would have to be supplied in order to change the 

crack lengths by 6a i (at constant loading parameter D and for applied loads 

doing no work) is a function of 6a.. This function must admit Taylor series 
l 

expansion, i.e., 
m n ) AW = 6W + 62W + ...; 6W = i=l~ ~Ul + 2~i 6ai + j=m+l~ ~aj 6a.3 (3a) 

n n ~2 U m ~Yi 6ai)2 n n 
62W ffi ½ E E 6a 6a + ~ ~ ( = ½ E E 6a 6a. (3b) 

i=l j=l ~aiSaj i J i 1 5ai i=l j=l Wij i 3 

in which 6W and 62W are the first and second variations; and 

5v i 52U + 2 -- H(6ai) (i,j = I, .n) (4) 
Wij = Wji = ~ai~aj 5a i 6ij .. 

where 6ij = Kronecker delta and H = Heaviside step function, i.e., H(6ai) ffi I 

where 6a i > 0 and H(6ai) = 0 when 6a. < 0. Usually the fracture properties of 
i 

the body can be considered homogeneous, and then 5Ni/~a i = 0. 

For the cracks to change their length in an equilibrium manner, 6W must 

vanish for any 6a i. It is necessary to distinguish whether a crack extends 

(6a.l > 0) or closes (6a i < 0). According to Eq. (2), 6W = 0 occurs if, and 

only if 

for 6a. > 0: - ~U ~U • 5a i = 2~i; for 6a i < 0: ~a i = 0 . (5) 

Eq. (5) includes the well-known Griffith fracture criterion• Note that the 

strain energy release rate is -~U/Sa i. 

An equivalent form of Eq. (5) can be given in terms of the stress inten- 

sity factor,. K. = lim (c~) for r ~ 0 where r = distance from the crack 
1 

tip and @ = transverse normal stress straight ahead of the crack. It is well 

known [6] that for plane strain ~U/Sa i = -K~/E' with E' = E/(I-92) where E ffi 

Young's modulus, 9 ffi Poisson ratio. Thus, Eq. (5) is equivalent to 

for 6a i > 0: K i = Kc. ; for 6a i < 0: K i = 0 (6) 

)½ ~ 
where Kcl = (2viE' = critical value of the stress intensity factor = frac- 

ture toughness of the material Using ~U/Sa i -K~/E' • = , one may write 

~K ~K,1 
E' ~2u = ~ ffi -Kj (7) 
2 ~ai~a j -Ki ~aj ~a i 

Having stated the conditions of equilibrium, it is natural to ask whether 

the equilibrium configuration is stable. The crack system is said to be 



356 ZDENEK P. BAZANT and HIDEOMI OHTSUBO 
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Results (f,g) with Grid Used (h; 2h = Im), and Bifurcation of Equilibrium 
Path (i,j) 
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stable if and only if no a. can change without changing the loads (or D). 
i 

Thus, stability is ensured if and only if the work AW that is done at any 

admissible crack length increments 6a. is positive, for if this work is not 
i 

done 6a. cannot occur. On the other hand, if AW < 0 for some 6a. energy 
1 l' 

is released, and when a release of energy is possible, changes 6a. will 
1 

occur spontaneously, AW being transformed into kinetic energy and ultimately 

dissipated as heat (which follows from the second law of the thermo- 

dynamics). 

One well-known unstable situation arises when K i > Kci (or -~U/ba i > 2Vi ) 

for 6a.i > 0. Indeed, 6W < 0 for 6a.l > 0, and so K.I > Kci is impossible. Simi- 

< 0 (or -bU/~a i < 0) for 8a. < 0 is also dnstable. There- larly, the case K i 1 

fore,with regard to non-negativeness of 6W, it is necessary that 0 ~ -bU/ba i K 

2V i or 0 ~ K i ~ Kci at all times. Combining the foregoing conditions and 

Eq. (6), it follows that with regard to the first variation, 6W, only the 

fol~owing variations 6a. are admissible: 
1 

for K i = Kci: 6a.~ ~ 0; for K.~ = 0: 6a.i ~ 0 (8a) 

• < 6a. = 0 (8b) for 0 < K I Kci: i 

If 6W = 0, stability will be ensured if 

n n 
26SW = ~ ~ W.. 6a. 6a > 0 for any admissible 6a i. (9) 

i=l j=l 13 ~ J 

Conversely, instability occurs if 62W < 0 for some admissible choice of 6a i. 

The admissible increments 6a.i are given by Eq. (8). If matrix Wij is positive 

definite, stability is assured. However, if W.. is not positive definite, the 13 
crack configuration may or may not be unstable. It is unstable if 6SW < 0 at 

K i = Kc. or K i = 0 for some admissible 6a i. Critical state occurs when 6SW = 0 
i 

at K i = Kc. or K i = 0 for some admissible 6a.. 
i 1 

Array of P,arallel Coolin~ C~acks Penetratin~ a Halfspace 

Consider now a homogeneous isotropic elastic halfspace which is initially 

(at time t = 0) at constant temperature, T = To, and is then cooled at the 

surface x = 0 to temperature T s. This produces an array of straight parallel 

equidistant cracks normal to the surface (Fig. 1 b-d). The temperature field 

is assumed to have the form T-T ° = f(x/D) (Ts-To) where D = D(t) = penetration 

depth of cooling. If all heat is transferred by conduction through the solid, 
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one has f(~) = erfc ~ = 2 ~ exp(- ) d~I/~, ~ = /'~ xlD, D = ~I'~, c = heat 

diffusivity. Because T is constant along lines parallel to the surface, it 

is logical to assume a periodic pattern of crack lengths. Accordingly, con- 

sider that every other crack has one length, a2, and the cracks inbetween have 

another length, al; a 2 • a I (Fig. Ic). Cracks of equal lengths (a 2 = al) 

represent one possible equilibrium state. These states (not all necessarily 

stable) are plotted in Fig.if on the basis of finite element calculations for 

To-T s = 100°C (with error function T-profile),~ = 8 X 10 -6 per °C (linear 

thermal expansion coefficient), E = 37600 MN/m 2, and ~ = 0.305 (2h=Im). 

Various interesting properties of the parallel crack system can be ana- 

lyzed even without numerical solutions of K i and Wij. Since K c is a con- 

stant, a sufficient condition of stability is the positive definiteness of 

= ~2U/~ai~aj matrix Wij , which requires that 

WII W12 I 
W22 = WII > 0 and 0 (I0) 

W21 W221 > 

A critical state, corresponding to a bifurcation point on the basic equili- 

brium path a I = a2, would arise if 62W = ½ Ei(~ j Wij6aj)6a i = 0 for some 

admissible 6a.. This condition is satisfied if ~. W.. 6a. = 0 or 
• 3 ~3 3 

WII 6a I + WI2 6a 2 = 0 , 

(11) 

W21 6a I + W22 6a 2 = 0 

in which WII = W22 and WI2 = W21. Setting the determinant zero, one has 

WII ~22 " WI22 = 0, and using Eq. (7) this becomes (-K 2 ~K2/~a2)2 - (-K 2 ~/ 
2 

~al) = 0. Noting that WII = W22 and K 2 = K I for a 2 = al, one has W22 - 

= 0, yielding (~K2/~a2)2 - (~K2/~al)2 = 0 as a condition of possible critical 

state. Admissibility of the corresponding eigenvector (6al, 6a2) must be checked, 

though. Since WII = W22, WI2 = W21, and at the same time W22 = ± WI2 , 

Eq. II suggests 

6al/~a = + I (12) 
2 -- 

as possible critical states. 

The plus sign in Eq. (12) yields 6a I = 6a 2. In this case Eq. (II) re- 

duces to (WII + WI2) 6a = 0 where 6a = 6a I = 6a 2. Noting that, by virtue 

of the chain rule of differentiation, WII + WI2=(DWl/~al )~al/~a+(~wl/~a2)oa 2 
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/~a=dWl/da with WI=~W/~aI=-KI2/E ' , one concludes that Eq. (ii) degene- 

rates into the condition (dKl2/da) 6a = 0 or dKl/da = 0, which is a condi- 

tion of instability of the basic equilibrium path, a I = a 2. The condition 

of stability of this path is dKl/da < 0 or dWl/da > 0, which is analogous to 

the, well-known stability condition for a single crack (Eq. I). 

Bifurcation of the equilibrium path would be obtained if Eq. (12) admitted 

the minus sign, i.e., 6a I = -6a 2. For Eq. (II) to allow this, WII and WI2 , and 

thus also ~K2/Da 2 and ~K2/~al, would have to be of the same sign. Of these, 

~K2/~a 2 must be negative, or else a critical state of another type, associated 

with the first condition in Eq. (I0) would precede this bifurcation. As far 

as ~K2/~a I is concerned, the finite element calculations described in the 

sequel indicated that for the present crack system with a I = a 2 it is always 

negat£ve, which also agrees with some intuitive considerations. 

Since in the present case both ~K2/~a 2 and ~K2/~a I are negative, it ap- 

pears that Eq. (Ii) would indeed admit the minus sign. However, this means 

that either 6a I or 6a 2 must be negative, and this violates condition (8) 

because K I = K 2 = K c. Hence, a bifurcation of the type given by Eqs. (II) 

and (12) is ~een to be impossible. 

The remaining possible critical state according to Eq. (I0) is given by 

the condition W22 = WII = 0 or 

[~K2/~a2]al = const. = 0 . (13) 

The associated second variation is ~2W = ½ W22 (6a2)2 with 6a I = 0, and the 

bifurcation ("instability") mode is 

6a 2 > 0, 6a I = 0 . (14) 

This mode also represents a bifurcation point on the basic equilibrium path 

a I = a 2 (Fig. li). According to Eq. (Sb), K I does not have to remain equal to 

K c but it may decrease, i.e., the tip of the crack a I may be unloading. In 

fact K I ought to decrease after bifurcation since extension of crack a 2 

should have a non zero effect on K I. It might be also of interest to note 
2 

that if ~K2/Oa 2 > 0 (or WII = W22 < 0), then WII W22 - WI2 or det (Wij) is 

always negative. 

Further light may be shed on the problem if the ,path of equilibrium 

states is regarded as a function of parameter D (cooling penetration depth); 
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see (Fig. lj). Denoting W i = ~W/~a. where W is given by Eq. (~) the 
1 ' 

equilibrium path is distinguished by the conditions W. = 0(i = 1,2). Deriva- 
i 

tives W.l at equilibrium states are functions of a I and a 2. However, by con- 

trast to W in Eq. (2), a. are generally not independent of D because along 
l 

the equilibrium path the crack lengths a I and a 2 depend on D. Thus, W 
i 

along the equilibrium path are implicit functions of D; i.eo, 

[~W/~ai]D,const. = W.l [al(D), a 2 (D)] = 0 (i = 1,2) (15) 

Assume that on the basic equilibrium path a 2 = a I there is a critical 

point (bifurcation point) correspdnding to D = D (Fig. lj). Functions W. 
O ~ 

ought to admit Taylor series expansions at D = D • The cracks should also 
o 

be in equilibrium at adjacent states with D sufficiently close to D o . If 

both 6a I and 6a 2 are assumed to be positive then W. would have to be con- ' ~ 

stant for all such D-values. Consequently, dWi/dD = O, d2W./dD 2 = O, etc. 
i ~ 

must be true at D = D . This yields 
O 

2 r.~._] 

E L~a~. ~ a~ = 0 (i = 1,2) (16) 
j=l J 

0 
w 

~'i] a'~ = 0 (i = 1,2) (17) E E aj~ 3 4+ E 
aj J 

j=Ik=l 0 j=l ~ 0 
where a~ = da./dD along the equilibrium path at D = D O . These equations re- 

] ] 
present conditions of continuing equilibrium, analogous to those which follow 

from the perturbation method of structural stability theory [8]. If they 

admit solution for D ~ const., then a critical state is reached. Setting 

a! ~ 6a., the condition in Eq. (16) is obviously identical to Eq. (II), 
i i 

which is a bifurcation of a type that is inadmissible. However, there exists 

no reason why a higher-order bifurcation governed by Eq. (17) could not take 

place. Since Eq. (16) is not satisfied, such higher-order bifurcation would 

' = ' " e., to the increments for the basic path have to conform to a I a2,L 

(0a I = ~a2) and would have to take place at increasing D (i.e., at increas- 
! ! 

ing cooling penetration depth). Therefore a I and a 2 in Eq. (17) must be 

equal, and a higher-order bifurcation, with the secondary path being tangent 

to the basic path (a I = a 2) at the bifurcation point, would occur if Eq. (17) 

~! ~ ~! • admitted a solution with a I a 2 

Eqs. (16) and (17) were written under the assumption that both 6a I and 

~a 2 are positive (and K I = KZ = Kc). Consider now that ~a 2 > 0 and ~a I = O, 
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i.e., one crack stops growing. In this case Eqs. (16) - (17) still repre- 

sent a possible condition of critical state, but in view of Eq. (Sb) it is 

also possible that only K 2 remains at its critical value K c while K I decreases 

below K . In fact, since bifurcation ~iven by Eq. (16) was shown Co be inad- 
C 

missible (according to Eq. 8), it is not possible that K I and K 2 remain equal 

K during bifurcation. Hence, it is necessary that 
C 

~Kl/~a 2 < 0 (18) 

~uring bifurcation. Thus ~WI/~D cannot be zero at D = DO, and only the con- 

dition ~W2/~D = 0 applies as a condition of continuing equilibrium, yielding 

~W 2 
! 

~a 2 a 2 = 0 (19) 

where a s = da2/dD. Eq. (19) represents the condition of a criticial state, 

provided that it holds true in the limit for D ~ const. This case is identi- 

cal with E~. (13) derived from the condition 62W > 0. 

It is seen that the present variational stability analysis yields the 

condition in Eq. 13. This condition is identical to the elementary condition 

in Eq. I, which is i,~,ediately obvious even without the variational analysis. 

It remains to be seen whether, for the particular crack system at hand, 

~2/~a 2 can indeed change its sign. Therefore, some finite element computations 

have been carried out. The grid in Fig. If, composed of four-node quadri- 

lateral elements, formed by condensing a block of four constant-strain 

triangles, was used. The derivatives of potential energy (~W/~al, ~2W/~al~a2, 

etc.) were calculated from their finite difference approximations, using 

the potential energy (Eq. 2) in the whole grid for various crack length a I and 

a 2. The temperature profile was approximated as parabolic, and the Young's 

modulus E = 37,600 MN/m 2, the Poisson ratio ~ = 0.305 and the linear thermal 

expansion coefficient ~ = 8 X 10 -6 per °C (all typical of granite) were used. 

Some of the results are shown in Fig. Ig, in which the intersections of curves 

K I and K 2 represent equilibrium states if K c = 22.8 MNm -3/2. In one of these 

intersections the slope of the curve of K 2 versus a 2 is positive, which 

violates Eq. 13 and indicates that the equilibrium is unstable. This proves 

that instability due to the violation of Eq. 13 is indeed possible. However, 

it is not at all clear from Fig. Ig that the instability governed by Eq. 13 
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(or Eq. I) is the case which controls. Without a complete solution of the 

crack problem, the higher-order bifurcation with common tangent (Eq. 17) 

cannot be ruled out in a general case. In fact, on the basis of some crude 

finite element calculations of the equilibrium path it was initially thought 

that in the present problem this latter type of bifurcation (Eq. 17) occurred 

before the bifurcation given by Eq. 13 and that it, therefore, controlled. On 

the other hand, S. Nemat-Nasser intuitively expected the elementary condition 

in Eq. I (or Eq. 13) to control. Following the present finite element calcula- 

tions which proved that the bifurcation due to ~K2/~a 2 is possible, L. M. Keer 
I 

et al. demonstrated by a complete analytical solution of the problem based 

on singular integral equations that the bifurcation due to ~K2/~a 2 turning 

zero is not merely a possibility but a phenomenon which does actually occur. 

Simultaneously, refined finite element calculations were being performed by 

the authors together with K. Aoh of University of Tokyo (to be reported 

separately) and these calculations led to the same conclusion. These calcula- 

tions and the work of Keer et al} also indicated that (for granite and for a 

temperature drop of 100°C) the bifurcation is reached when a I and a 2 are 

roughly equal 1.8 times crack spacing. 

Since K I was shown to decrease after bifurcation, the equilibrium path 

must have a straight horizontal segment of finite length after the bifurcation 

point; see (Fig. li). Assuming that the trend remains unchanged, the segment 

would end by a state in which K I = O, K 2 = Kc, and subsequently crack a I would 

begin to close, 6a I < 0. The fact that the bifurcation for 5K2/~a 2 = 0 occurs 

at constant a I means that in the plot of D versus a 2 the equilibrium path 

must have a horizontal tangent at the bifurcation point; see (Fig. ~). If the 

path continued as a straight horizontal line beyond the bifurcation point, 

there would be infinitely many equilibrium crack lengths a 2 corresponding to 

the same D and same al, and this would require the potential energy release 

rate to be independent of D. Obviously, this is impossible. Hence, the path 

of D versus a 2 after the birfurcation point (Fig. lj)must curve either upward 

or downward. If it curved downward, it would mean that a longer crack a 2 

corresponded to a smaller cooling penetration depth D (at constant al) , i.e., 

IManuscript "Growth and Stability of Thermally Induced Cracks in Brittle 
Solids", communicated to the authors by L. M. Keer, S. Nemat-Nasser and 
K. Parlhar of Northwestern University in September 1976. 
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equilibrium extension of cracks a 2 would require withdrawal rather than supply 

of energy. Therefore, if adjacent equilibrium states exist after the bifurca- 

tion point, their path in Fig. lj must curve upward, i.e., with increasing 

penetration depth of cooling the leading cracks must get longer, not shorter, 

as may naturally be expected. It must be emphasized, however, that the shape 

of the post-bifurcation paths in Figs. li and j has been deduced here only 

qualitatively. Prior to formulating this qualitative deduction, the post- 

bifurcation paths of the type shown in Figs. li and j were obtained quantita- 

tively by Keer et al~ by means of a singular integral equation approach. 

The possibility that every other crack (al) might close is suggested by 

empirical observations of drying shrinkage cracks, e.g., in mud flats or in 

concrete. This was also suggested by the behavior of cracks in an experiment 

at Los Alamos Scientific Laboratory [9] in which a concrete slab was cooled 

by liquid nitrogen and hexagonal crack patterns at the surface were made 

easily observable by formation of nitrogen bubbles on evaporation from open 

cracks. The possibility of crack closing was also evidenced at the outset of 

the finite element work by the fact that for a sufficiently large value of 

a2/2h the normal stress ~y along the line of symmetry between two adjacent 

cracks (a I and a2) became compressive up to a certain depth from the surface. 

This showed that on this line of symmetry it is possible to introduce a 

closed crack up to a certain depth without causing any change of the stress 

state in the entire elastic half-space. It follows that shorter closed cracks 

may exist between opened leading cracks and this suggests that every other 

crack (cracks al) may close after bifurcation. However, it does not follow 

theoretically that every other crack must close. Keer et al.2 demonstrated by 

analytical solution of the problem that cracks a I must indeed close after 

bifurcation) So, it is certain that the spacing of the opened (leading) cracks 

doubles whenever the ratio of the opened cracks to their depth reaches a certain 

fixed 9alue (about 1.8). This type of behavior, which has been suggested 

before on the basis of empirical observations [3, 4], is favorable for the 

afore-mentioned scheme for extracting geothermal heat, because it would mean 

that the width of the opened cracks is proportional to the penetration depth 

21bid. 

3'1%e fact of closing is distinguished from the fact that K I must decrease after 
5ifu=cation, which is here established by Eq. (18). 
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of cooling and that the flux of water through the cracks is proportional to 

the square of the crack depth. These crude projections may, however, be greatly 

modified when the effect of water circulation on the temperature profile and 

possible development of eddy currents in the cracks is taken into account. 

Conclusions 

I. A system of cracks is stable if and only if the work AW needed to produce 

any admissible crack length increments is positive definite. This is 

assured if the second variation 62W of W is positive definite for all 

admissible crack length increments. 

2. A system of identical parallel equidistant cooling cracks propagating 

into a halfspace can exhibit instability. The critical state is indi- 

cated by the vanishing of the derivative of the stress intensity factor 

of cracks a 2 with regard to a 2 at constant al, which is the same as the 

well-known stability condition for a single crack considered separately. 

At the critical state every other crack, of length al, ceases to grow 

(6a I = 0) while the intermediate cracks of length a 2 = a I continue to 

advance (6a 2 > 0) at constant temperature. The path of the equilibrium 

states plotted in the space (al, a 2) or in the space (ai, D) then 

bifurcates (D = penetration depth of cooling). After bifurcation, cracks 

a I gradually close. The plot of a I versus D has a horizontal tangent at 

bifurcation point. 

3. Without numerical results, it cannot be ruled out that a higher-order 

bifurcation, in which the bifurcating path and the main path a I = a 2 have 

a common tangent, might be also possible for a system of parallel cracks. 

4. Vanishing of the determinant of the second derivatives of work W with 

respect to a I and a 2 does not cause bifurcation in a system of parallel 

cracks because associated eigenvector (~al, 6a2) indicates negative 6a I. 

Remark. - Equilibrium path bifurcation is characteristic of a perfect 

crack system. An imperfect crack system, e.g., a system of cracks which are 

almost but not exactly equidistant, would probably not exhibit bifurcation of 

equilibrium path, just like an imperfect column does not. However, such a 

case would be much more difficult to solve. 
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Appendix 

The fact that in a system of parallel cracks the bifurcation associated 

with the determinant condition in Eq. I0 is impossible is contingent upon 

(a) bK2/ba I being negative, and (b) both cracks being at the point of extension. 

Prior to completing the finite element calculations which confirmed that 

bK2/ba I is always negative, S. Nemat-Nasser intuitively suggested to the authors 

that it should always be so. Later it was thought that "it is generally true 

that an extension of a given crack accompanied by no increase in applied loads 

would result in a decrease of the stress intensity factor at other active 

cracks, because such an extension decreases the overall stiffness of the 

elastic body. ''4 Subsequently, however, an example of a cracked structure 

for which bK2/~a I is positive has been found; hence the sign of ~K2/~a I is 

not certain in advance, for the general case. 

To show it, consider a horizontal simply supported continuous beam of 

constant cross section (of depth H) and two equal spans (of length L), loaded 

~L.M. Keer et al., loc. tit. 
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in the middle of the left span by downward load PI and in the middle of the 

right span by equal but upward load P2 = -PI" The bending moments in the 

middles of the left and right spans are M I = PIL/4 and M 2 = -M I. Assume 

further that there are two vertical cracks , one reaching upward from the 

bottom of the cross section in the middle of the left span to depth a I from 

the bottom, and the second reaching downward from the top of the cross 

section in the middle of the right span to depth a 2 = a I from top. Assume also 

that K I = K 2 = K c. Let now the crack length a I be increased by 6a I while 

keeping a 2 and the loads constant. Increase of a I will cause the left span to 

become less stiff, and it will cause the left span to deflect downward. In a 

continuous beam, this must cause the right span to deflect upward, and because 

a 2 is constant, K 2 must increase, i.e. ~K2/~a I > O. Alternatively, this may 

be also deduced by noting that the decrease of left span stiffness must cause 

the bending moments to redistribute so that M I would decrease andl~lwould 

increase; an increase of IM21at constant a 2 must cause K 2 to increase. 

Likewise, condition (b), namely that both cracks are on the verge of 

extension, does not have to always occur. Consider the same beam but with 

different loads PI and P2 and with both cracks of lengths ~ = a 2 emanating 

from the bottom of the cross section. Assume now that the beam is slender, so 

that K I and K 2 are proportional to M I and M2, and that a I << H, a 2 << H, so 

that crack lengths have negligible effect on the stiffness of the spans. 

First, let loads PI = P2 = 1.0 be applied. This causes equal moments, M I = 

~ = L/4, and assume that this creates equally long cracks a I = a 2 which are 

both critical, K I = K 2 = K c. Subsequently, load P2 is changed to P2 = 1.3 

and load PI is changed to PI = 0.3. This causes M to become zero while M 2 
I 

remains unchanged (M 2 = L/4). So, P2 = 1.3 and PI = 0.3 gives a state where 

= and K I = O, crack a I being on the verge of extension and crack a 2 K 2 K c 

being on the verge of closing. For checking stability on this state, one must 

obviously consider 6a 2 ~ 0 and 8a I ~ 0 as the admissible 8a..i 

In cases where condition (a) or (b) is reversed, the stability condition 

det (Wij) > 0 cannot be dismissed a priori and must be evaluated to see whether 

or not it is satisfied for all admissible 6a i. 


