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Abstract-A finite element method is developed for the computation of elastodynamic stress intensity factors at a 
rapidly moving crack tip. The method is restricted to bodies whose surfaces and two-material interfaces are either 
parallel to the diction of propagation or are sufficiently remote. The crack tip starts to move at the instant that it 
is struck by an incident wave. The finite element grid moves undeformed with the crack tip. The main result 
consists in the fact that the method of non-singular calibrated crack tip elements, in which the stress-intensity 
factor is determined from its statically calibrated ratio to the crack opening displacement in an adjacent node, is 
extended to dynamic problems with moving cracks, for both in-plane and anti-plane motions. The dependence of 
the calibration ratio on the crack tip velocity is established from previously developed analytical solutions for the 
near-tip displacement fields. Numerical results compare favorably with known analytical solutions for cracks 
moving in an infinite solid. The grid motion causes an apparent asymmetric additional damping matrix. 

STATRMRNT OF PROBLEM AND OBJBCFMI 
There are two principal reasons for signilicant elas- 
todynamic effects on the fields of stress and deformation 
near a moving crack tip. They are: rapid application of 
external loads, and rapid propagation of the crack tip. In 
both these cases the crack propagates into an environ- 
ment disturbed by elastic wave motions. It has been 
shown that stress intensity factors and, therefore, the 
conditions for further propagation of the crack tip, may 
be significantly affected by elastodynamic effects. For a 
recent review of dynamic effects on fracture we refer to 
ill. 

This paper is concerned with the numerical com- 
putation of elastodynamic stress intensity factors for a 
rapidly propagating crack tip, in a field generated by an 
incident stress wave. The wave strikes the crack tip, and 
is the cause of crack propagation. Analytical solutions 
for this kind of problem are available for semi-infinite 
cracks in an unbounded homogeneous, isotropic, and 
linearly elastic solid, as discussed in Ref. [l]. For the 
analysis of more complicated problems, a numerical 
method appears to be required. Here the effectiveness of 
the finite element method for elastodynamic problems 
involving a rapidly propagating crack is explored. The 
previously formulated method of calibrated crack-tip 
element [2] is extended to a finite element grid which 
moves with the crack tip through the elastic solid. The 
present solution is, however, restricted to bodies whose 
surfaces and two-material interfaces (if any) are either 
parallel to the direction of propagation or sufficiently 
remote (propagation of a crack or cracks along a layer or 
a layered composite). 

For the computation of stress intensity factors, sin- 
gular elements embodying the correct near tip field have 
recently been used extensively. For the analysis of wave 
motions such finite elements have, however, been found 
rather insufficient[2], and inferior to the “calibrated” 
crack tip element of ordinary type. For such elements 
the stress intensity factor, K, is determined from the 
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crack opening displacement, u,, of the node on the crack 
surface which is nearest to the crack tip. The value of u, 
usually greatly differs from the correct value, but the 
ratio R = K/u, (calibration ratio) happens to be almost 
the same for various types of loading, and this ratio can 
thus be determined in advance by numerical analysis of a 
simple test case whose exact solution is known. For 
static problems, this approach has been proposed by 
Walsh[3]. For elastodynamic problems with stationary 
cracks, the advantages of a calibrated element over a 
singular element were demonstrated in Ref.[2]. While for 
stationary cracks the calibration ratio, R, is a constant of 
the grid, for moving cracks it is also a function of the 
crack velocity c. It is one purpose of this study to 
establish the dependence of R upon c and to show that 
the calibrated crack-tip element is also applicable to 
dynamic problems with rapidly propagating cracks. 

ANTI-PLANE MOTION 

Consider a planar crack whose front edge is parallel to 
axis z, and which propagates at velocity c in the diiec- 
tion of axis x through an isotropic homogeneous elastic 
solid. Let x, y and t be Cartesian coordinates, (Fig. 1) 
which move with the crack tip. Attention is first given to 
the case of anti-plane motion, in which displacements u 
and D in the directions x and y vanish. In this case the 
equation of motion is 

where w is the displacement in the z-direction, which 
depends on x, y and time; and cT = (G/p)“* is the 
velocity of transverse waves, G being the shear modulus 
and p the mass density. Superimposed dot denotes the 
material time derivative. The velocity of a material point 
is given in the moving coordinates as $l= 
(awlat)- c(aw/ax) and the acceleration is + = (ti) ; i.e. 

ti=(-&c-f)($-c$). 
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Fig. 1. (a) Coordinate system fpr the moving crack and (b) the finite element grid used. 

Stress intensity factor 
In a sufficiently small neighborhood of the crack tip, 

the displacement field for any loading is given by the 
expression (see eqn (4) of Ref. [4]): 

W(& e, t) = Cd(r) T(f) W(& 8) (3) 

in which r and 0 are polar coordinates centered at the 
moving crack tip, 0 = 0 being the direction of crack 
propagation; C is an arbitrary constant, T is a function of 
time t and W is a function of angle B and parameter 
/3 = c/c,. The function w is given by eqns (8, 9, 11 and 
12) of Ref. 141. Evalmting this function for B = ‘IT, it is 
found that at the crack surface we have 

w = CT(t)A,/r. (4) 

The stress intensity factor K3 (for mode III cracks) is 
defined as 

K3 = lim (~,,,q(2r)) at 6 = 0 (5) 
r-0 

where 7e2 = shear stress = (G/r) awl& Substituting eqn 
(3) for w and evaluating 1(3 in eqn (5) with the help of 
eqns (8, 9, 11 and 12) from Ref. [4], one obtains 

K3 = CT(# 1 - /3’)““. 

A comparison with eqn (4) yields 

(6) 

w = &F”*( 1 - p-“’ for 8 = g. (7) 

This holds not only for constant c but also for smoothly 
time varying c. 

Calibrated crack-tip element 
It has been shown in a previous study[2] that the 

singular crack-tip elements, which include the near-tip 
field given by eqn (3), do not permit accurate and eff- 
ective numerical solutions in case of wave interaction 
with cracks. A more effective approach is to use cali- 
brated ordinary-type finite elements near the crack tip. 
For this approach it is assumed that the ratio of the 
stress intensity factor to the crack-opening displacement 
in the nearest node is fixed for all possible loadings and 
may be dete~in~ with the help of a simple test case 
having a known exact solution. 

According to eqn [7], the stress-intensity factor, K3, 
may be calculated from the displacement, w,, in the 
nearest node at the crack surface; 

K3 = Rw,, R = C,(l -@2)“2 (8) 

in which R is the calibration ratio and C, is the constant 
which should equal rc-“*, according to eqn (7), r, being 
the radial coordinate of the nearest node. In practice, 
however, the value of C, is different because the or- 
dinary finite element near the crack tip does not include 
the correct near-tip dispIacement field and because the 
distance, r,, is usually too large for the near tip field in eqn 
(3) to be accurate. 

In the calibrated crack-tip element approach, it is 
assumed that the value of C,, although being grossly 
different from rcel” is nearly the same for all possible 
loadings. For static problems, this has been proposed and 
demons~at~ by WalshB]. For dynamic wave problems 
with stationary cracks, this has been proposed and 
verified in Ref. [2]. It is one purpose of the present study 
to demonstrate by numerical results that the coelcient 
C, may be considered to be the same for all velocities of 
crack propagation. The coefficient C, may then be deter- 
mined from the known solution of a certain static test 
case, i.e. 

C3= K,lw, for p=O (9) 

w, being the numerical value obtained from the finite 
ebment analysis and K3 the exact value from the known 
exact solution for the test case. 

IN-PLANE MOTION 

For in-plane motion (w = 0), it is convenient to express 
the displacements u and u as 

a’p+2 ,=!2_!!! 
U=dx ay’ ay ax 

where rp and $ are displacement potentials which satisfy 
the equations 

a’o a14p 
s+s = 

_’ 
j&J-$ ~~~=~~. (11) 

Were K* = cL2/cT2 = 2(1- v)/(l - 2~1, v being Poisson’s 
ratio, and c,’ is the longitudinal wave velocity, which is 
defined as c,’ = (A + 2~~)/p. 

Stress-intensity factor 
In the vicinity of the crack tip we have 

(p(r, 0, t) = r3”T(t)@(a, 19), +(r, 0, t) = r3’2T(t)V(/3, 8) 
(12) 

where (Y = c/c,_ = @K and @ and g are functions defined 
by eqns (22-24) and (9f of Ref. [4]. Evaluating the 



derivatives of these functions at 8 if a; eqn (IO) yields 

D =$ CTQ)V(r)(l - a*)‘?(1 -2//P) for B = 7r. 
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The stress intents factor IX, {for r&e I cracks) is 
defined as 

K, = !% (7eet/(2r)) at e = 0 (14) 

in which F- is the ~~~~~ere~~ normal stress. If lee is 
expressed in terms of u and v, eqns (10) are substituted, 
and the derivatives of cp and I@ are calculated at if = 0 
from eqn (12) in which cf, and Y are expressed according 
to eqns (22-24) and 9 of Ref. 141, then the following 
relation is obtained 

Calibrated cm&-tip element 
Comparison with eqn (133 yields for the displacement 

2, = v, at the location r = r, of the nearest node at the 
crack surface: 

K, = Rv,, 
1 - 2//3= 

R m Cl 2c, _ a3,,2 a2 

x I+2 II ( f3’ 
(l-~2)‘n(l-a2f”2_ 1 

r-s*82 )I 

where C1 = G~‘/qr,. However, for the same reasons as 
explained previously, the value of C, in a finite element 
analysis will be different, and must be calibrated by a test 
case that may be chosen as ‘the case of a stationary 
crack, i.e. E = a = /3 = 0, ~~a~ the limit of eqn (16) 
for c-*0, (z+O, 830, one gets 

where K, is the exact value from the known exact 
solution of the test case and u, is the numerical vale 
obtained by the finite element analysis. 

ETMTE ELEMENT FORMULATlGN FOR 
A WF’IDLY IWWN(Z GRID 

For the c&uIation of sfress intensity factors by the 
finite elem~~~~, it is convenient to have the f&&e 
element grid move through the elastic solid along with 
the crack tip, at velocity c in the n-direction. The region 
of the grid is taken as a recMgular one in the x-y 
plane. Let the surface of the crack be loaded by a 
distributed load pi, and let the opposite side parallel to 
the crack be subjected to given l@s ph or ~~~rn~n~ 
u$, and &ally, let the bwndanes normal to x be sub- 
jected to prescrii displacements. In case that the grid 
itself is not deforming and the region of the grid is finite, 
material is flowing into the region of the grid on the side 
facing the x-direction and is leaving the region on the 
opposite side. 

The variatioaal equation that is to serve as basis of the 

finite element formulation is most easily deduced dii&ly 
from the differential equation of motion. The.equation of 
motion in moving coordinates reads Q,~ -put = 0 where 
u1 are the displacement components, u, defines the 
stress tensor, subscripts ij = I, 2, 3 refer to Cartesian 
coordinates x1 = x, xt = y, x3 = 2 moviog through the 
solid and subscripts follows a comma denote a deriva- 
tive. The equations of motion as well as the boundary 
conditions may be both embodied in the following vari- 
ational statement 

which must hold for any variation Sui of displacements 
Ui which is kinematically admissible. Here, u, and Sui 
will be restricted to continuous and piece-wise differen- 
tiable functions. In eqn (IS), V is the volume of the 
region moving &rot& the body, S is the boundary 
surface and nj is its unit outward normal. Expressi~ the 
acceleration aj similarly to i3 in eqn {2), applying the 
Gauss integral theorem to ‘T,~,~ and noting that I@+ = 
&kj, where eij = (l/2)( Ui,j t Uj,i) = linearized strain 
tensor, one obtains 

= 
I 

PiSUi dS. (19) 
S 

This is the variational equation of motion in moving 
coordinates, 

The second integral in eqn (19) involves the term 
c~~~uJ~x~~. However, for the finite element formulation 
it is desirable to get rid of the second-order spatial 
derivatives. To this end, the Gauss theorem may be 
applied to remove a2ui18x?. This yields 

- 
I V 

2pCsSUi dV 
I 

in which 

Here, pq represents an apparent, additional distributed 
load that must be applied on the surface of the moving 
region. This would very much complicate the finite ele- 
ment formulation because load pi” depends on dis- 
piacements (and does not represent a natural Sunday 
condition associated with some extremum principle). 
Fortunately, however, pP = 0 on the crack surface be- 
cause n, = 0. On the remaining boundary segments pf 
need not be considered because either nl = 0 or SU, = 0; but 
these boundary conditions are irrelevant (see eqn 28). 

Equation (20) is valid even when the velocity of grid 
points, E, depends on t and x, In the present study, 
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attention will now be restricted to time-constant velocity 
c and to a grid which does not deform as it moves 
through the solid, and also to a medium of uniformly 
dis~buted mass. Then the volume integral on the right- 
hand side of eqn (20) vanishes because &/at = aclaxx, = 
aplax, = 0. 

The usual notations are introduced for the finite ele- 
ment formulation, i.e. q = column matrix of nodal dis- 
placement of the finite element; u = column matrix con- 
sisting of displacements u, ZJ and W; u, Q = column 
matrices formed of the stress and strain components oii 
and eii. Furthermore u = Cq and c = Bq where C and B 
are well known rectangular matrices depending on xi, and 
u = Ea where E is the matrix of elastic constants. Sub- 
stitution into the variational relation in eqn (20) yields 

(22) 

in which subscript ei refers to individual finite elements 
and superscript 2’ denotes the transpose of the matrix. 
Equation (22) may be rewritten as 

in which 

K=K,+Kz, K2=- 
,aCTaC& 

PC ax ax (24) 

D=D,+D,, D2= - 2cpC Tz dV,. (W) 

Here K,, Dr and M are the usual stiffness, damping and 
mass matrices for immobile grid (c = 0); and Kz and D 
are apparent additional stiffness and damping matrices, 
which depend on c. In the present case D, = 0 because 
no physical damping is considered. In a wave pro- 
pagation problem, the mass matrix is properly considered 
as lumped[2]. However, even when all mass is assumed 
to be lumped in the nodal points, matrix Dz is not 
diagonal in case of a moving grid. 

The presence of the damping matrix is u~avorable to 
the use of explicit numerical integration of the equations 
of motion because the term D dq/dt must be considered 
as given, being evaluated on the basis of dq/d, in the 
previous time step, which introduces a further error. 
Another cornp~~~g feature brought about by the move- 
ment of the coordinate system is the fact that the 
equation system to be solved at each time step has a 
non-symmetric matrix, because the apparent damping 
matrix in eqn (25) is, obviously, non-symmetric. This 
makes the solution of implicit equations by Gaussian 
elimination relatively disadvantageous, as compared to 
Gauss-Seidel iteration. However, the iterative solution 
is, in case of wave problems, rather efficient, and con- 
verges very rapidly because the mass matrix makes the 
diagonal terms large and because a good initial estimate 
of the solution is available from the previous time step. 

NUMERICAL RESULTS FOR WAVE 

DIFFXACTION BY A MOVING CRACK 

Let the crack in Fig. 1 be subjected to a wave with a 
front parallel to axis x and z and arriving at time t = 0 
from the positive y-direction. Assume that the crack 
begins to propagate at constant velocity c as soon as the 
wave arrives at the crack tip (t = 0). In view of the 
superposition principle, the solution consists of two 
parts; one part represents a wave passing through as if 
no crack existed, and the other part represents the effect 
of applying on the surface of the propagating crack a 
load which cancels the stress at that location from the 
first part of the solution. Only the second part of the 
solution needs to be calculated. In particular, consider 
that a uniform load p = p(x, 1) which is a Beaviside step 
function of time, pfx, t) = p&Z(t), is applied on the sur- 
face of the propagating crack. Load p is an antiplane 
shear stress in case of an antiplane shear wave, and a 
normal stress in case of an incident longitudinal wave. 
The exact solution to this problem for any c is known; 
for antiplane motions, the solution is (p. 44 of Ref. [I]): 

for c =O 

(26) 

for 0Gc4cT 

and for in-plane motions, the solution is (eqn (52) of Ref. 
PI. 

K =z POC, l-e212 _ f2 l/2 
I - e212 

’ ?r F+(O) (1+ ep* w’~2{++(1_a2)“2 
I 

(27) 

where 

(1 _ &“*( 1 - $)“* 
C’ = (1 _ *2)‘9 1 - ey _ (1 - &)2 (28) 

A finite element grid, moving with the crack trout 
the solid as a rigid body, is introduced within the rec- 
tangular region, as shown in Fii. 1. Since &is impossible 
to avoid spurious wave retkutions at the boundary, the 
distances, LX, L: and L,, from the crack tip to the 
boundary must be such that the time of travel of a wave 
from the crack tip to the boundary and back exceeds for 
aR boundary points a specilkd time T, (the longest time 
for which the solution is sought). In the y-direction, the 
wave speed relative to the moving grid is c, and there- 
fore: Ly t (1/2)c,T,. However, in the positive x-direc- 
tion the relative wave speed is cT - c, arid in the negative 
x-direction it is c, + c. This yields for the travel times of 
the waves rekcted from the right and left boundaries the 
conditions T+ c L&c= -c)+L.&-+c)r and Z’,s 
L&c, + c) + LJ(cT - c). Solving L, and L: from these 



two conditions one obtains 
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which proved to be optimum. Only about 10 iterations 
have been needed to achieve convergence up to three 
significant digits. 

MinL,=MinL:=Lo Min L, = Lo, The numerical results for K,(t) and K,(t) at various 
crack propagation velocities c are plotted in Fig. 2. The 

cw dependences of Ka and K, at the final time T, from Fig. 
2 upon crack velocity c are plotted in Fig. 3(a, b) and the 
exact solutions from (1) and (5) are shown for com- 
parison. The agreement is quite satisfactory. 

Having verified the finite element approach, solution of 
various more complicated problems by finite elements is 
now feasible. These include rapid crack propagation in a 
statically loaded body and the wave interaction with a 
crack propagating either in a layered material parallel to 
layer interfaces (but not for a crack at the interface), or 
in a strip or halfspace parallel to its surface. Analysis of 
a crack moving in an orthotropic material is also pos- 
sible, using the near tip fields as established numerically 
in Ref. [4]. Furthermore, extension to cracks propagating 
within the interface of two isotropic or orthotropic 
materials is possible, using the near tip fields determined 
in Refs. [6 and 71. Geometric and some material non- 
linearities in regions remote from the crack tip can also 
be included. It is also possible to solve cases in which the 
crack velocity changes discontinuously between time 
steps, while being constant within each time step; e.g. the 
case when a crack that is stricken by a wave remains at 
first stationary until a certain value of the stress intensity 
factor is reached, and then begins moving at a constant 
velocity c, thereby reducing the stress intensity factor. 

However, application to bodies having finite dimen- 
sions in the direction of the crack is not possible without 
further extensions taking into account either the move- 
ment of the physical boundary through the grid or a 
deformation of the grid, by which the grid adapts itself to 
the fixed boundary. The latter extension has been ex- 
plored to some extent, but the results have not been 
satisfactory thus far. Huge spurious oscillations have 
been obtained, which might have been due to the term 
adax, on the right-hand side of eqn (20). Neglection of 

If these conditions are satisfied, then the type of boun- 
dary conditions (other than those at the crack surface) is 
irrelevant for the solution of the stress intensity factor 
up to the time T,. Note that the longitudinal dimension 
of the region can be taken smaller than the transverse 
dimension and could be reduced with increasing crack 
speed. Nevertheless, for convenience of programming, 
Lx = L: = L, = L, was used in all numerical calculations 
for all crack speeds. It is also interesting, but not sur- 
prising, to note that the transformation of length Lo in 
this equation corresponds to the Lorentz transformation 
in the theory of relativity. 

A regular grid of equal size finite elements has been 
introduced, as shown in Fig. l(b), yielding a nonsym- 
metric system of 861 equations of bandwidth 44 for the 
antiplane motion, and 1722 equations of bandwidth 88 for 
the inplane motion. Triangular constant strain elements 
have been used because they seem to be best for wave 
propagation problems with a sharp front[2]. The stress 
intensity factors have been calculated from the dis- 
placement w, or II, in the nearest node on the crack 
surface (see Fig. l(b)). To calibrate the crack-tip element, 
the program has first been run for the case c = 0 for 
which the exact solution is given in Ref.[2]. Finite ele- 
ment programs have been written for both the antiplane 
and the inplane motions. The integration in time has been 
carried out in time steps, using Anderson’s version of the 
implicit Newmark /&algorithm (with /3 = l/4), as has 
been described in [2]. The time step, Ar = NC, or h/c, 
has been used, h being the element size. In each time 
step, the equation system has been solved by Gauss- 
Seidel iteration, using an overrelaxation factor of 1.15, 

L, = ; cTT,. 
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Fig. 2. Histories of the stress intensity factors K, and KI for various crack velocities c. 

b) IN-PLANE MOTION 
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Fig. 3. Comparison of numerical values of K, and K, from Fig. 2 at final time 7’, with the exact solutions 11,51 for 
various crack velocities (K$ and K’; = values of K, and K, at c = 0 and t = T,, c, = Rayleigh wave speed). 

this term is inconsistent with the lumping of the mass of the equation matrix very large. An apparent additional 
which is necessary for other reasonsf2]. stiffness matrix also results. 

CONCLUSIONS 

1. The elastodynamic stress intensity factor due to the 
interaction of an elastic wave and a rapidly propagating 
crack can be solved with sufficient accuracy by the finite 
element method, if a grid which moves with the crack tip 
is used. fn the present formation only sundries or 

material interfaces parallel to the crack can be ac- 
commodated. 
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2. The calibrated crack tip element method, in which 
the stress intensity factor is determined from its (stati- 
cally calibrated) ratio to the crack opening displacement 
of a non-singuIar finite element at the crack tip, can be 
extended to dynamic problems with moving cracks. The 
dependence of the calibration ratio on crack velocity 
may be based on the near tip fields established before by 
analytical methods. 

3. In case of a grid that moves rapidly through the 
solid, an additional apparent damping matrix rest&s. This 
matrix is asymme~ic which is unfavorable to the use of 
explicit time step integration algorithms. However, the 
iterative solution of the implicit time step equation sys- 
tem becomes very efficient in wave propagation prob- 
lems, as they require a time step roughly equal to the 
travel time of a signal across the element, for which the 
contribution of the mass matrix makes the diagonal terms 
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