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A gradual accumulation of inelastic strain can be most conveniently descr~ed in terms of the so-called intrinsic time, 
whose increment depends on the time increment as well as the strain increments, and was originally developed for metals 
and was extended in a previous paper by Z.P. Ba~ant to concrete. In that previous paper it had been demonstrated that the 
proposed model predicts quite closely: (1) Stress-strain diagrams for concretes of different strength; (2) uniaxial, biaxial and 
triaxlal stress-strain diagrams and failure envelopes; (3) failure envelopes for combined torsion and compression: (4) lateral 
strains and volume expansion in uniaxial and biaxial tests; (5) the behavior of spirally confined concrete; (6) hysteresis loops 
for repeated high compression: (7) cyclic creep up to 106 cycles; (8) the strain rate effect; (9) the decrease of long time 
strength: and (10) the increase of short-time strength due to low stress creep. 

The present paper presents a refinement of the endochronic theory of concrete which consists mainly in taking into 
account; (a) the inelastic strains due to hydrostatic compression; (b) improved descriptions of strain-softening behavior, (c) 
cyclic loading in strain-softening range, and (d) volume change in strain-softening range; (e) the differences between propor- 
tional and standard trlaxial tests; (f) trlaxlal failure envelopes; and (g) dependence of material parameters on strength. The 
formulation consists fully of continuous functions, and for numerical analysis it has the advantage that it contains no ine- 
qualities. 

The present expressions are, admittedly, rather complicated and contain many parameters. However, for computer cal- 
culations this is not an insurmountable drawback. The agreement with test data is far superior to any other constitutive law 
found this far - virtually all currently known basic properties are modeled. The value of all material parameters are given, 
their dependence on concrete strength is identified, and a broad range of normal weight concrete is covered. 

1. Introduction and objectives 

In prestressed concrete reactor vessels, concrete is 
subjected generally to triaxial stresses. This is a distinct 
feature by which the state of  stress in concrete differs 
from that in most other structures, such as frames, 
slabs and shells, in which the stress state is predomi- 
nantly uniaxial or biaxial. Thus, it is particularly for 
failure analysis of  reactor vessels that a mathematical 
model for nonlinear triaxial behavior o f  concrete is 
needed. 

The mathematical model which presently appears 
to be most powerful is the endochronic theory, which 
has been presented in refs. [1--4]. In this theory, the 
inelastic strains are characterized by means of  incre- 
ments of  intrinsic time, a non-decreasing scalar variable 
whose increments depend on strain increments. This 
concept was first introduced in practical triaxial con- 
stitutive relations by Valanis [5], who also coined the 

term "endochronic".  Compared to the original appli- 
cations of  endochronic theories for metals [5], the 
formulation for concrete [2] is distinguished chiefly 
by hydrostatic pressure sensitivity o f  inelastic strain, 
by inelastic dilatancy due to large deviatoric strains, 
and by strain-softening. The endochronic theory [2] 
has been shown to give a good fit o f  basic known 
experimental data on multiaxial nonlinear behavior 
of  concrete, including uniaxial, biaxial and triaxial tests, 
torsion compression tests, lateral strains, strain-softening 
branches and failure envelopes, spirally confined con- 
crete, unloading, reloading and cyclic loading (up to 
4 × 106 cycles) and effects of  load duration and loading 
rate. The prediction capability o f  the theory has been 
demonstrated for cyclic moment.curvature relationships 
for reinforced concrete members [3]. The formulation 
from ref. [2] has been or is being incorporated in several 
finite element codes around the world. 

The purpose of  this paper is to present the results 
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of  an extremely tedious and time-consuming analysis 
of  further test data which resulted in a significant refine- 
ment of  the endochronic theory from ref. [2]. This 
refined formulation is ready for being used in finite ele- 
ment programs. 

2. Proposed stress-strain relations 

The elastic properties are assumed to be increment- 
ally isotropic, and, accordingly, the stress-strain rela- 
tions are conveniently written in terms of  separate 
deviatoric and volumetric relations: 

dei, = d s i ]  + de;) de'.'. = s i /  d z  
• 2G ' - ' I  2G 

do de" de = -~ -  + , 

de" = de ° + dX + °--~-dz' + dX' (1) 
3K 

in which eli = ei] - 6i/e = deviatoric components of  
strain tensor ei], e = ]ekk = volumetric strain, 6ii = 

Kronecker delta, sii = oil - 6ila = deviatoric compo- 
nents of  stress tensor aq, a = ½akk = volumetric stress 
(negative for compression), subscripts i, ] refer to Car- 
tesian coordinates x i (i = 1, 2, 3), e ° = stress-indepen- 
dent inelastic strain, such as thermal dilatation or 
shrinkage, and K, G = bulk and shear modulus which 

IF 
depend on X. Furthermore, eli = inelastic deviator 
strain, ~ = inelastic dilatancy, ~' = shear compaction, 
and z and z' are intrinsic times for distortion and com- 
paction, respectively; 

dz = F /d~ ' l~  + __ (.yl 
L\ZI]  V r l /  A ' 

dr/ 
d~" = f(r/, t ,  *-------~ ' dr/= F( t ,  ~) d~ (2) 

de'--Im't 
L\Z2] \ r t /  a ' 

d~" - dr/' dr/' = H(o) d~' 
h(r/') ' 

(3) 

dX = l(X) L(h, ~, ~) d~,  dX' = f(X') L'(X' ~, a)  d~. 

(5) 

Here Jz = second invafiant of the deviator of  the ten- 
sor which follows in parentheses, 11 = first invariant of 
the tensor which follows; Z1, ~-j = constants;f(r/, t ,  o) = 
distortion hardening function, F( t ,  ~) = distortion sof- 
tening function, h(r/') = compaction hardening function, 
H(a) = compaction softening function, I(X) = dilatancy 
function, L(X, s, ~) = dilatancy softening function; 
and ~' = non-decreasing scalar variables called distortion 
measure and compaction measure. In what follows, con- 
sideration will be given only to the case of  sufficiently 
rapid deformation, for which d~/dt > >  1 and d~'/dt >> 
1, so that the time-dependent terms in dz and dz' become 
negligible, i.e., 

dz = d~/Z l , dz' = d ~ ' / Z  2 , 

(rapid deformation) (6) 

and the intrinsic time is independent of time per se. 
By analysis of  test data the following hardening and 

softening functions have been identified: 

~lr/+/~2r/2 ~ F 

alo (7) 
F 3 = 1 + j2(e) (  1 +a9/r/2) , 

ao(1 - g ] )  
F ( E , ~ ) = F  I + F 2 ,  F 1 =1_a5 ( I~ )1 /3 (1  +g2) '  (8) 

F 2 = [a2x/J2(¢)(1 + la6I~[ 1/4 + F s ) ] / [ 1  - al[l(o) 

+ lasI~ll/4F4 - -a313(¢0[J2(@)]  1/8( 1 + g 2 ) ]  , (9) 

g] = g l l g 1 2 ,  g2 =g21g22g23,  

g12 = I -  II + ( a l  omin ~41-1 
7 ( a ~  --a23) ] _J 

(10) 

g l l  = a14 [J2(t)] 1/4 O m e d  -- O m i n  

t/ma x -- a23 

d~ = x/J2 (d~) = X/~ deijdeij, 

d~' = ~  = ]dell + de22 + de33[ , (4) 

XF /Omed -- qmin~ 4/3 al,: 1 
~3 (11) 
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g21 =f al9 1 

( Omed - Ornin] 1 i] 
a18 < Ome-----d----- a2-~) 

I°---mi--n-I ) (O'min - a23 
Oma x - a23 

- -  a 2 0  

s/4 

[I ( °min  41-' 
= , ( 1 2 )  g22 

+a21\amax - a 2 3 !  J 

g23 = a22 + [J2( )l 1/2 , F4 -- a4  ¥ V 2 ( 0 1 1 / 2 !  , 

(13) 

• . . /  [j2(l~)] 1/4 )3 
Fs = a11°min(1 ta12Omln)~lai3aminll/4 + [j2(~_)] 1/2'. ' 

(14) 

' ( 11(1I) ,~2 
h(r/') = 1 +~3 +(£~2\/34] ' H ( e ) = b l  b2 ~II - - (e)k l5)  

X 
t(x) = 1 - x o '  

L(•'t'*)-I-cIII(*) ~00 ~ c 2 + d 2 ( t ) "  -] '  
(16) 

1 E o 1 E o 

G - 1 + Cs--------~ 2(1 + v ) '  K = 1 + Cs)~ 3(1 - 2v) '  (17) 

(1 I~il~ Oming~/3 
l '(~') = C 6 -- XO ] ' L'(~' ,  ~ , e ' ) -  1 + ~3/c813'  

g3 = ICTOminl 0.93 -- ~ / J2( t ) ,  (18) 

in which Eo, v, ao, al . . . .  a23, bl ,  b2, c l ,  ... c8,/31 .... 
34, Xo, X~, Z1, Z2 are material parameters;/3 = third 
invariant of  the tensor which follows in parentheses; 
Omax, Omi n and Ome d = maximum, minimum and me- 
dium principal stresses, the maximum being con- 
sidered in the sense of  compression, i.e., Omax 

Ome d ~- Omi n. 
The material parameters have been identified by 

fitting of test data using the same method as previously 
[2]. The dependence of  the parameters upon strength 

fc has been also established more accurately. The 
results of  this extremely tedious and time-consuming 
work are the following values of  material parameters, 
applicable for usual normal weight concretes of  
strength 3000 to 7000 psi (20.7 to 48.3 MN/mm 2 , 

with 1 psi = 6.89 kN/m2): 

0.6 
ao = 0 . 7 ,  al fc ' 

! f ,  \ 1/2 

0 .6/3600 psi] 
a4 = 0.045 as =-7r-- ~ , 

_ lS(Z  1 l's 
a7 =0.05 , aa -~c2~3"~-~ l  , 

0.2 
alo = 1.25 X 10 -4 a l l  = , , 

0.8 2.2 × 10 - s  
a12 f /  ~' a13 

K 

_ 90 [ 3600 psi ) 
a3 - ~ -=7 , 

0.15 
a6 fc 2 ' 

a 9 = 1.5 × 10 -3 , 

a14 = 25 ,  als  = 1.095,  a16 = 1.216,  

al 7 = 0.055 , al8 = 0 .94 ,  (19) 

1.0/6300 psi] 
a l 9 = f - ~ ~ ] ,  a2o= 14,  a21 = 1000,  

a22 = 0 .04 ,  a23 = 0.2 fc , 

b --9.1 , 

c 2 = 3 . 0 x 1 0  - 3 ,  c 3 = 0 . 5 ,  c4 = 2 . 0 ,  

C's = 1 5 0 ,  /3t = 3 0 ,  /32 = 3 5 0 0 ,  

/33 = 0 .08 ,  /34 = 0 .23 ,  Z 1 = 0 .0015 ,  

Z 2 = 0 . 0 1 2 5 ,  k o = 0 . 0 0 3 ,  v = 0 . 1 8 ,  

c6 = 0.002/psi ,  c7 = 1.05 X 10-6 /ps i ,  

ca = 0 . 0 0 1 ,  h I = 0 . 0 0 3 ,  

E o = 4 × 106 psi + (ja c - 4650 psi) 103 . 

It must be pointed out, however, that the dependence 
of all parameters on a single experimental parameter, 
s trength/" ,  is a simplification. It is known [6] that it 
is possible to prepare concrete mixtures giving the 
same strength fc but  rather a different initial elastic 
modulus Eo. The most blatant example of  this is given 
in part III of  Waterways Experiment Station Report 
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Fig. 1. Effect of various coefficients in the hardening and softening functions. 

[6], in which Eo-values of 6.70, 5.82, and 3.02 × 106 

psi are indicategl for three mixtures giving the same 
strength. However, for usual mixtures, the assumption 
that the relationship of Eo to ~ is unique is an accept- 
able approximation. The formula which has worked 

U!rllilxi a l C0illre ss).on /o-~t  ~ = l i ~ - . , ~ .  

~ s t a d ,  I~son, J - 
Newnr,. ls~'-~. / 

Eralocaronic / \ 
"~ Tf~lOry / a 

% 

@ o ° o 

= - s  

o70 ° o o  

-2 

-i 

-o.eei -e.eol -e.~: 

Strain • t 
Fig. 2. Fit of uniaxial test data of hognestad, hanson and 
mchenry. 

best for the relationship o fE  o t o ~  is different from 
the ACI formula as well as the CEB-FIP formula, but 
the differences in predicted E o-values are not too sig- 
nificant. 

The fits of various test data obtained with indi- 
cated material parameters are shown in figs. 2 -12 .  

3. Analysis of proposed stress-strain relations 

To avoid repetition of lengthy arguments and dis- 
cussions, interested reader should consult ref. [2] for 
derivation of the basic form of the constitutive equa- 

-__-= -2 "q fc' 

b- b# Popovic ~ s expression based 
/ on test data 

Endocnron~.c theory 

-o.o'o, -o.~o~ -o?o03 -o.bo~ -o.bos 

Axial  Stra in ,  6~ 

Fig. 3. Fit of popovics' expression for complete stress- 
strain curve representing an average of various test data. 
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Fig. 4. Fit of axial and lateral strains in uniaxiai and biaxial tests of Kupfer hilsdorf and Riisch. 
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Fig. 5. Fit of volume change diagrams for uniaxial and 
biaxial tests of Kupfer, Hilsclorf and Riisch. 

-80 

Balrner, 1949. o 
fc' = 3570 ° i x  ° -25000 ps i  

-70 (ks i  = 1000 ps i  = 6.894 NN/m z) 
n 

TheOZy - -  Endocnzonic ° o 

, ° ~ 
lOW strength 9 

-60 concrete,. - 20000 ps i  
wide conf ine-  
merit range 

- 1 - -  = ° ~:0,; 
x -50 0 

~= ~,=;loooo -qO. ~ • 

- 3 0  

-20. .~, 
-~ .m nydzosta t.t 

-io 62= 0 ~ = - ~ p . i  
• .x 

" .,~'--~= -I000 psi  03= 

--,  ~ o  < i 
0 -0.@1 -0.02 -0.0~ -0.0~ -0.05 

= I r a i n ,  t| 

Fig. 6. Fit of triaxiai test data of Baimer for low strength con- 
crete with a broad range of confining pressures (data points on 
hydrostatic loading are unavailable). 
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Fig. 8. Fit of  Green and Swanson's data on volume change 
in hydrostatic loading and unloading and in triaxial tests. 

StraZn 61 Zn % 
Fig. 9. Fit o f  Mills' and Hobbs'  data on low strength concrete 
and high strength concrete at low confining pressures. 

tion and for a discussion of the role of basic param- 
eters. Only those aspects which are different from 
ref. [2] will be discussed herein. 

The previously developed endochronic stress-strain 
relations for concrete [2] did not involve volumetric 
inelastic strains de" due to hydrostatic stress p(Z 2 -* ~ ,  
z' = ~' = 0) and the expressions for their softening func- 
tion F(e, a) were considerably simpler. In the present 
model, de" due to p is taken into account. For this 
purpose a second intrinsic time variable, called com- 
paction measure ~", is introduced here. Its purpose is 
to model inelastic volume change due to hydrostatic 
stress, which has been neglected in ref. [2]. This effect 
is important only at high hydrostatic pressures. From 
the shape of the hydrostatic loading and unloading 
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Fig. 10. Fit o f  triaxial failure envelopes for proportional 
loading tests of  Aschl, Linse and St6ckl. 

curves shown in figs. 8 and 6, it is apparent that the 
hydrostatic stress-strain relation is curved and irre- 
versible, and that the unloading curve is initially at 
least as steep as the initial loading slope (see fig. 8). 
For such a behavior, the endochronic formulation is 
suitable. The softening function 11(o) increases the 
inelastic volume change if the hydrostatic compression 
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Fig. 12. Fit of  Shah and Chandra's data on ratio of  lateral to 
axial strains in uniaxial tests at high stress. 
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grows but becomes constant at higher compression 
levels. The less inclined medium portion of the hydro- 
static curve is governed by the linear term in h(r/'), 
and the subsequent stiffening is achieved by the qua- 
dratic term in h(r/'). 

Variable X' represents the shear compaction which 
appears at the beginning of inelastic deformation, as is 
sketched in fig. ld and confirmed by test data in fig. 
8; (it is also encountered in sands). The function 
I'(X'), eq. (18), prevents X' from exceeding a certain 
limit, and the function L'(X', t ,  a) causes dX' to 
vanish for large shear strain (large J2(¢)) and also for 
all compression tests but the triaxial ones  (Omi n :/= 0) .  
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Fig. 11. Fit o f  Sinha, Gerstle and Tulin's data on unloading and hysteresis loops in the s t rain-softening range. 
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(This is not quite true for uniaxial data in fig. 5, but 
the fitting error is small.) For tfiaxial tests in which 
ami n is tension, L' makes dX' positive (dilatancy). 
By contrast to dilatancy ~, compaction ?,' is assumed 
to have no effect on elastic moduli G and K1, eq. (17), 
since it is not associated with opening of pores such 
as cracks. 

Coefficient F4 in eq. (9) serves the purpose of 
shifting down the tail of the softening branch in 
biaxial compression; see fig. lb and the resulting fit 
in fig. 4. Coefficient F s in eq. (9) adjusts the triaxial 
response curves at large strains; it shifts the end of 
the curve downward when the confining pressure p is 
high, and shifts the end upward when p is very low; 
see fig. le. 

Coefficient gl controls the differences between 
the standard triaxial tests, for which (122 = (133 = 

constant and at t grows, and the proportional tri- 
axial tests, for which all stresses are increased keeping 
the ratio (111 : az2 : 0"33 = constant. Note thatg 1 is 
zero for standard triaxial tests ( (1med  = (1min), as well 
as for uniaxial compression tests ((1med = (1min = 0 )  

and biaxial compression tests ( ( 1 m i n  = 0 ) .  

Due to gi 1, the value of coefficient gl increases 
with O'me d in proportional triaxial tests, and due to 
gl z, coefficient gl increases in these tests also with 
On-tin ; see fig. la. Coefficient g2 has the purpose of 
adjusting the response curves in proportional triaxial 
tests with low (1mha and standard triaxial tests with 
low confining pressure O'mi n = (1meal; see fig. lg. 

Corrections furnished by coefficients gl and g2 
are mainly needed to obtain the correct peak stress 
values and the corresponding triaxial failure enve- 
lopes for proportional triaxial tests [7] (such tests 
have just been completed in Munich); see fig. 10. 
Without these corrections, the peak stress values 
would deviate considerably from test results, even 
though the standard triaxial tests are represented 
well even without gl and gz. The inelastic dilatancy, 
X (fig. lc), is of the same form as before [2], but the 
values of coefficients have been altered. The depen- 
dence of G and K upon dilatancy X is similar as before 
[2], but the expression is different [eq. (4.17)], yiel- 
ding a slower decrease of G and K with X at high X 
(fig. 4.1h), such that G and K cannot become nega- 
tive for any X. This variation of G and K agrees with 
the observations based on energy dissipation [8,9]. 

By contrast with the previous formulation [2], 

the present one gives reasonable shapes of strain sof- 
tening branches up to very large strains in uniaxiai 
as well as biaxial and triaxial tests. Previously [2], 
the ends of these curves were too high in uniaxial 
and biaxial tests (figs. 2 and 3), and did not give a 
long flat plateau in triaxial tests at moderate p, as in 
fig. le. 

The response curves have been also considerably 
improved for cyclic uniaxial tests at very large strains 
producing progressive deterioration of strength. The 
peaks of the subsequent hysteresis loops now decline 
in good agreement with test data (fig. 11). Neverthe- 
less, the model is not yet perfect in that the area of 
the loops (fig. 1 d) after several cycles is much too 
small and the mean slope of loops is not declining 
with the number of cycles as strongly as test data indi- 
cate (fig. 1 1). 

The dependence of material parameters on strength 
fie is improved. This enabled adequate representation 
of triaxial test data for concrete of various strengths; 
see figs. 6-10.  The fact that the peak stress point in 
uniaxial tests shifts to larger strains as lower strength 
is considered is also properly represented (fig. 2). 

All test data fitted in ref. [2] and not shown here 
are represented by the present formulation at least as 
closely as in ref. [2]. 

4. Application in finite element analysis 

A numerical algorithm for solving an incrementally 
loaded concrete structure with the help of the endo- 
chronic constitutive relation has been presented in ref. 
[2]. The algorithm uses central difference formulas for 
the increments of stresses and strains and employs 
iterations at each loading step. This algorithm has 
been applied in conjunction with the finite element 
method to predict the response of cylindrical speci- 
mens in double punch bearing stress tests, in which 
the load is applied only over a portion of the area 
of the end of the specimen. This is a problem of con- 
siderable practical importance, which has been exten- 
sively studied [10-14],  and it is a problem in which a 
good constitutive relation that works both at small 
and high confining pressures is necessary. Therefore, 
endochronic theory seems particularly suited for sol- 
ving this type of problem. 

The endochronic theory as presented here does not 
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apply for tensile cracking. An extension to include 
gradual tensile cracking is possible - see F3 in eq. (11) 
of  ref. [2] - but it is more realistic to introduce an 
independent criterion for tensile cracking. This approach 
is widely used for the analysis of  concrete structures 
and one recent version [15] has been applied here. Dis- 
tributed cracks, normal to the direction of  maximum 
principle tensile stress, are assumed to occur when the 

tensile strength, f~, is reached. The cracking criterion 
is checked at every iteration of  the loading step, and 
the incremental properties are revised according to 
the latest preceding iteration. The matrix of  incremental 
elastic moduli is then modified [ 15] and becomes ortho- 
thropic, with zero stiffness in the direction normal to 
the crack. The original stress which is released by the 
cracking is distributed to other finite elements by  
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Fig. 13. Chen and Hyland's double punch bearing stress test (a); finite element grid used (b); comparison with test results (c); and 
calculated stress and strain distributions in typical cross sections (d-f). 
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applying equivalent nodal forces at the nodes of the 
element. A second system of cracks may form subse- 
quently, being assumed to be normal to the first sys- 
tem. The shear transfer factor across the cracks, due to 
aggregate interlock, is taken to be 0.5. Since, in cracked 
concrete, large compressive stresses may develop in the 
directions parallel to cracks, the endochronic relations 
with the inelastic strains are used even for cracked con- 
crete. 

The test data chosen for comparison with the pre- 
diction are the sets no. 17, 18 and 19 from ref. [16], 
which reports bearing tests of cylinders having a diam- 
eter of 6 inches (152 mm) and lengths of 6 inches 
(152 ram), 3 inches (76 mm) and 2 inches (51 ram). 
The diameter of the steel punches, considered as rigid, 
is 2 inches (51 mm). Concrete is of compression 
strength fc = 6000 psi (41.36 MN/m 2) and tensile 
strength ft' = f c /12 .  The finite element mesh used is 
shown in fig. 13b. Owing to symmetries, only one 
quarter of  the axial cross section has to be analysed. 
Finite elements are chosen as three.node axisymme- 
tric triangular ring elements [17]. Stresses are evalu- 
ated for the centroids of  the elements and the cracking 
criterion is checked only for the centroids. The bound- 
ary condition under the punch was considered as a 
smooth sliding contact. 

The results of the finite element analysis are plotted 
in fig. 13c for various lengths of  specimen. Also shown 
are the results for elastic perfectly plastic limit analysis 
[18]. It can be seen that the endochronic theory gave 
distinctly better predictions of failure loads. The devi- 
ation for mean length specimens might be due to fric- 
tion under the punches, whose value is uncertain. The 
calculated distributions of stress and strain in typical 
cross sections of  the specimen are shown in figs. (13d-f) .  
The corresponding measurements are not available. 

5. Conclusion 

The present refinement of  the endochronic theory of 
concrete consists mainly in taking into account: (a) the 
inelastic strains due to hydrostatic compression; (b) 
improved descriptions of  strain-softening behavior, (c) 
cyclic loading in strain-softening range, and (d) volume 
change in strain-softening range; (e) the differences 
between proportional and standard triaxial tests; (f) 
triaxial failure envelopes; and (g) dependence of material 

parameters on strength. The formulation consists fully 
of continuous functions, and for numerical analysis it 
has the advantage that it contains no inequalities. 

The present expressions are, admittedly, rather com- 
plicated and contain many parameters. However, for 
computer calculations this is not an insurmountable 
drawback. The agreement with test data is far superior 
to any other constitutive law found this far - virtually 
all currently known basic properties are modeled (see 
also ref. [2]). The value of all material parameters are 
given, their dependence on concrete strength is identi- 
fied, and a broad range of normal weight concrete is 
covered. Nevertheless, it is hoped that some day 
another formulation which would be at least as power- 
ful but simpler than the present one will be discovered. 
It should also be expected that some significant disagree. 
ment with test data will be found when good experi- 
mental information on non-proportional loading paths 
becomes available. 
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