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Elastic wave propagation in a one-dimensional grid of finite elements whose size if uniform from element to element 

except at one node is analyzed, using complex variables. It is found that spurious wave reflection, along with an increase 

of amplitude of the diffracted wave, takes place when a wave passes between two finite elements of different sizes. 

Spurious reflection is significant only for relatively small wavelengths (less than ten times the size of the larger elements) 

and is important even for very small differences in element size (10%). If the wave arrives from finite elements of smaller 

size, the transmitted wave has a larger amplitude than the incident wave although the mean energy flux is less. The consis- 

tent mass matrix is found to give much smaller spurious reflections than the lumped mass matrix and to enable resolution 

of smaller wavelengths. This contrasts with the fact that for numerical stability (and suppression of spurious grid oscilla- 

tions) the lumped mass matrix is better, and for suppression of wave dispersion a combination of lumped and consistent 

mass matrices is best. The study is restricted to explicit time-step algorithm, second-order (central) difference formulas, 

and finite elements with linear spatial expansions. In this case it is found that the time step has negligible effects. 

1. Nature of the problem 

Spurious wave motions are a basic problem in the dynamic finite element analysis of structures. 
Certain aspects of the problem such as spurious grid oscillations, numerical stability and wave dis- 
persion have been analyzed rigorously [ l-41. It is also well known that some spurious wave reflec- 
rions occur as an elastic wave transverses the boundary of finite elements of different sizes [ 1, 5-91. 
However, no clear information as to the actual magnitude of this phenomenon seems to exist in the 
literature. Therefore, a quantitative analysis of these reflections is chosen as the objective of this 
study. A one-dimensional grid of finite elements whose size is uniform from element to element 
except at one node is chosen as the idealized situation to be studied. The analysis will be restricted 
to the lowest order finite elements with linear interpolation function’s in space, and to explicit time- 
integration algorithms. 

2. Wave motion of the finite element grid 

Consider a homogeneous elastic medium which is subdivided by a rectangular finite element grid 
whose step changes at the plane x = O‘(fig. 1). For x < 0 the grid step is h, and for x > 0 the grid 
step is H. A longitudinal harmonic elastic wave arrives in the direction of the x axis. It ought to 
pass through the plane x = 0 without any reflections because the actual elastic medium is homo- 
geneous. However, since the grid step on each side of this place is not the same the appearance of 
a spurious reflection should be suspected. 
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I:ip. 1. One-dimensional finite element grid 

Assuming the interpolation (shape) functions of the finite elements to be linear, the elastic nodal 

forces acting on node k are 421~ - uk_ ,)I:‘/h from the left and (H~+~ ~ I/$//I from the right. where 

k’ = Young’s elastic modulus, the subscript k indicates the number of the node, and 11~ is the displace- 
ment of the kth node. While the mass density p of the actual elastic medium is uniform. the finite 
elements may be considered to have a part of their mass density rup distributed uniformly through- 
out each element and the remaining mass densitv ( 1 ~ rtz)p lumped into the nodes. The case 111 = 0 
obviously yields the lumped mass matrix. and the case 1~ = 1 yields the consistent mass matrix. 
(The case m = 0.5 corresponds to half of the IIMSS being lumped into the nodes. and the case ~7 = 1 .S 
corresponds to all the mass bein g lumped into the centroid of the element.) The inertia force asso- 

ciated with the lumped mass matrix is -( 1 - m)ph’i,. where superimposed dots are used to denote 
time derivatives. The inertia forces that correspond to the distributed mass matrix in element 
(k ~ 1, k) and derive from ii, and z’i,_, are triangularly distributed, and their resultants in node k 

are tnpii,tz/3 and nlpii,_,h/3, respectively. Similar forces result from element (k. Ii + 1). With all 
forces put together, the following equations of motion arc obtained: 

for k < 0: 

for li = 0: ‘(:1 p[h(ii_, + 211,) + //(‘ii, + ii,)] + (1 ~~ r~l)piz,ii, =$ (11, - o II ) ~ 5u Ir o (L_~). 

(lb) 

where Ii = 0 is the node at x = 0. Note that the same right-hand sides could be obtained by applying 
the finite difference method - this is due to the fact that only finite elements with linear interpola- 
tion functions are considered. 

The numerical integration of the equations of motion of the finite clement grid is carried out in 
time steps T at the discrete times t, = 1.7, I’ = 1, 2. . . We shall consider those step-by-step time- 
integration algorithms in which the second time derivatives are replaced by central difference ex- 
prcssions: 

This leads to the usual explicit algorithm for structural dynamics [ 21 Other algorithms could be 
analyzed in a completely analogous manner. 

Let the incident wave be zlk = exp[iw(rT ~ k/z/u)]. in which i = imaginary unit, u = wave velocity 
and w = circular frequency = 27~u/Z, where 1 = wavelength. At the dividing node I< = 0 we must ex- 
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pect the generation of a reflected wave of amplitude /3 and a diffracted wave of amplitude y (this 
is similar to the arrival of a wave at an interface of two materials [ 101 ). Furthermore, since k = 0 
is an atypical node of the grid, the amplitude o( of its oscillation may also be different. Consequently, 
we assume the solution to be in the form 

for I< = 0: ZLO = Oceiwr’ , (3b) 

in which V represents the wave velocity in the finite element grid of step H. 
Eqs. (3a)-(3c) may now be substituted in eq. (2) for k, k - 1 and k + 1, and these may in turn 

be substituted, along with eqs. (3a)-(3c), into eqs. (1 a)-( 1 c). The exponentials in these equations 
cancel, and we obtain a system of three linear complex algebraic equations, which may be brought 
to the form 

fork=O: az2a -- pa,, P + Pa,,7 = - azl lp , (4b) 

for 1; > 0: a31 (Y + (Pa,, + P2a,,)y = 0 , (4c) 

in which 

- iwh/u t-‘=e . 

a11 

_ 2in$ + y2 
3 ( 1 11 ’ 

a21 = a11 ’ 

i _I 
2 

$ = sin y , 

Here u. represents the wave velocity in the continuous medium. 

Vo=a. (9) 

p = ,-iwIf/V . 
(5) 

a13 =a11 ’ (6) 

a22 = 

a33 = a31 ’ 

Eqs. (4a)-(4~) may be used to solve for the complex amplitudes fl and y of the reflected and 
transmitted waves. 

The special case of m = 0 and 7 = 0 is analogous to propagation of a wave through the interface 
between two regular crystal lattices. This problem was solved long ago [ 11 I. 
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3. Relations stemming from propagation through uniform parts of the grid 

Before turning attention to the full solution of the foregoing equations it is necessary to formulate 
certain relations between $, 7. JJ. V. L = wavelength and @ = wH/V = 27rH/L which characterize the 
propagation of the wave along the uniform parts of the finite element grid. Therefore, consider now 
eq. (4~) alone, which yields 

u31 (eiwHIV + e-;wHIV) = _a32 (10) 

(As a check, note that eqs. (4a) and (4b) become identical to this relation if cy = y = 1, /3 = 0 and 
h = H.) Substituting for uS1, as2. we obtain 

(11) 

This equation relates V to L/H and the time step 7. Noting that V/u, = (L~~)(H/u,,~)/c$, inversion 
of eq. (1 1) allows us to deduce 

Izig. 2. (a) Wave dispersion due to dependence of wave velocity 

limit for numerical stability. 
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L/H (log-scale) 

0 0.5 I.0 1.5 

m 

(12) 

u on wavelength L (uo = wave speed in the continuum), (b) time-step 
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For a vanishing time step (7 -+ 0). i.e. for the exact solution in time this reduces to 

(13) 

and for H + 0 this yields I/ = uO. 
Eqs. (1 l)-( 13), which will be needed in the subsequent complete solution of eqs. (4a)-(4c), 

agree with the well-known results on wave dispersion and numerical stability. Eq. (13), plotted in 
fig. 2, describes the well-known wave dispersion due to the effect of the grid size on wave velocity. 
No wave propagation is possible (i.e. V = 0) when d, = 2n or L = N. Note than an increase in m 
makes V larger (fig. 2). For lumped mass (m = 0), V is alwas less than ug, while for consistent mass 
(m = I), V is always higher than V0 (fl,. ‘n 2). This explains why the consistent mass matrix gives 
spurious motions ahead of the exact continuum wavefront [7], while the lumped mass matrix does 
not (and preserved a sharp wavefront). 

The condition of numerical stability of the time step algorithm (for h = H) is equivalent to the 
condition that either w be real of Im (w) > 0 for any L/N. Substituting V = wH/# into eq. (12), 
we obtain 

v()r * 

r 1 sin “$ 
f-1 

i 
* = tt, = __L73 (sin_$J2 . 

l-FsinT i 
t 1 

(14) 

To satisfy the stability condition, the right-hand side must obviously be less than or equal to 1 for 
any @. Thus, it is clear that (for m = 0) numerical stability requires that uOr/H < 1 or 7 < H/v,, as 
is well known. For m > 0 the right-hand side of eq. (14) attains its maximum when sin(G/li) = 1, 
and so numerical stability requires that (u,, T/H)~ < 1 - 2m/3, or 

(15) 

where o0 represents the first fundamental frequency of free vibrations of a uniform finite element 
grid. We see that the nL~merica1 stability condition becomes more stringent when m is larger. For a 
consistent mass matrix (m = 1) the limit on 7 is one-third of that for the lumped mass. Therefore, 
from the viewpoint of numerical stability the lumped mass (m = 0) is optimum. It is also seen that 
for numerical stability we must have m < 1.5 (thus, all the mass must not be lumped in the centroid). 

Numerical stability is usually examined by setting uk = ar exp[iHKl (instead of eq. (3~)) and 
requiring that Re(a) < 1. Since ar = exp[r In(a)] = exp[iov] for iwr = In(a), the stability con- 
dition Re(a) < 1 is equivalent to Im(o) 2 0. Accordingly, the free vibration uk = exp[I’WTr] 
X exp[iHK] could be substituted into eq. (lc) - this would yield again eq. (15). 

5. Energy flux in the finite element grid 

For physical interpretation it is useful to calculate the percentage of the energy flux that is re- 



fleeted. The energy flux to the right represents the power ;P (rate of work), which is the product 
of the nodal force t*‘k acting on node k from the left and the velocity of the node. i.c. 3 = k‘, li,. 
When 14k is complex. we must write 

9 = R~tt*‘~) Re(b,) (16) 

Here I’k is the sum of the elastic force and the inertia force: 

(17) 

where the inertia term represents the reaction at the node due to the linearly distributed inertia 
forces within the element. Substituting eq. (17) and zlk = y exp[itl, where t = w(t - kH/V) = wt 

- kqb, into eq. (16), we get 

.E 1 -- cos q5 
3 = y2 cd -H ---5----- sin 2[ + sin 4 sin* l n I 1 

n2pH u2 ’ 1 + cos @I 
6 -~-7 t 

-~ sm I?$ - sin C#I sin* t 
13 

The time average of 3 yields the average energy flux: 

(3) =y2w &[ 1 +J$ (e)‘]sin y; 

(18) 

(19) 

This expression ‘is valid for exact integration in time (7 + 0). For a finite time step the rate of work 
cannot be defined exactly. but eq. (19) still represents a consistent approximation. 

5. Calculation of wave reflection for nonuniform grid 

To analyze the wave reflection at x = 0 when Iz # H, we must calculate amplitudes o(. /3. y and 
the associated powers 3, and ;Pr for various chosen values of grid step ratio Ii’ = If/h, relative 
wavelength L’ = L/H and relative time step T’ = 7/T. = c+,r/H. where T, = H/u, = time of passage 
of the wave across the element. The calculation proceeds as follows. 

Expressing 4 = 2n/L’, we may calculate $ from eq. (12) and evaluate w7 in terms of $ from 
eq. (9). Then the relative time step for the grid on the left 7’ = ~/(Jz/uO) is obtained as 7’ = T’ff’. 

Solving for @I in terms of $ from eq. (12) and replacing T’ with 7’ and 4 = w/z/v = 27rh/l, we obtain 

$ = 2 arcsin [(yl? +I;:)-“‘]. c20> 

This may be used to evaluate 4 (which is the same as @ but refers to the grid of step size 12 rather 
than H). Subsequently, we may calculate I’ = I/h as I’ = 3n/@‘, as well as V/u,, = or/@T’ and u/u, 

= w-/~T’H’. Now we may evaluate WY/V = cx/(T’V/uo) and oh/u = o~/($u/u,,) and calculate 
complex P and p from eq. (5). Then we may evaluate coefficients ull, azl, a33 from eqs. (e)-(8) 
and solve the system of three algebraic complex eqs. (4). This yields complex amplitudes (Y. p, y. 
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L/H = 2.5 

2.5 
/_----_-- 

Fig. 3. Amplitude I yl of diffracted wave. 

Finally, the ratios of the transmitted and reflected average energy fluxes (3,) and (P,) to the in- 
cident average energy flux (9,) may be determined using eq. (19): 

CdH 

@Y) _ y2 
sin -.-~ 

V 
---_ ---. 111- 3 
(3~~) H’ cd 

sin -- 
u 

(21) 

According to the law of conservation of energy, the sum of these two ratios must equal 1, which 
serves as a check on the calculations. 

The foregoing calculation procedure has been programmed for a computer. The results of the 
computations are plotted in figs. (3)-(5). 

6. Conclusions and analysis of results 

From the numerical results the following conclusions may be drawn: 
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1. Although elastic waves propagate without reflection in a uniform finite element grid, there is 
wave reflection when a wave passes between two elements of different sizes (see fig. 1). This reflec- 
tion is spurious because in a homogeneous continuum which the grid approximates no wave rcflec- 
tion takes place. When explicit algorithms and finite elements with linear expansions in space are 
considered, it is shown that spurious wave reflection at boundaries of finite elements of different 
sizes is significant for wavelengths L that are not much greater than the size H of the larger finite 
element (figs. 3-S). The limit is L = ION for lumped mass and L = 6E-I for consistent mass - these 
values correspond to a reflected wave which is 2.5% of the incident wave in amplitude and 0.1% in 

average energy flux. Furthermore, at short wavelength the spurious wave reflection is significant 
even for very small differences in the size of adjacent finite elements (10%: see figs. 3-5). There 
are only two ways to avoid it - either use a uniform grid or filter out the highest frequencies. 

2. If the wave arrives from the finite elements of smaller size, the amplitude of the transmitted 
wave is larger than that of the incident wave (but the energy flux is of course less) (see fig. 3). 

3. The magnitude of the time has a negligible effect on spurious wave reflection. Accordingly, 
the error due to the central difference operator assumed (2) has no significance in spurious wave 
reflection. This is however restricted to explicit algorithms: in the case of implicit algorithms this 
would undoubtedly cease to be true because of the much larger time step. Since the error of the 
central difference operator is known to balance the error of mass lumping, the comparison might 
become more favorable to the lumped mass matrix, in the case of implicit algorithms. 

4. As far as spurious wave reflections are concerned, the consistent mass matrix is superior to 
the lumped mass matrix (see case UI = 1 in figs. 3-5). giving about one-half of the amplitude and 
one-third of the energy flux for the spurious reflected wave (see case rn = 1 in figs. 3--5). In other 
words, the consistent mass matrix allows resolution of shorter wavelengths, which might have been 
expected from the well-known fact that the consistent mass matrix allows more accurate frequency 
representation. This advantage of the consistent mass matrix contrasts with the fact that the lumped 
mass matrix is superior in terms of numerical stability as well as spurious high frequency oscillations 
of the grid (see fig. 2b), and that for the wave dispersion (due to a change of wave speed in the grid 
as a function of wavelength) a combination of the lumped mass matrix and the consistent mass 
matrix is much better than either one of them (see fig . 2a). Consequently, the choice between the 
lumped mass matrix and the consistent mass matrix is ambiguous and depends on which aspect is 
more important in the given problem. The cost of computation, which is not discussed here, may 
often be the major factor. 

A few more comments are appropriate. To prevent spurious wave reflection as well as wave dis-. 
persion from overshadowing the true dynamic response, it is necessary to eliminate all wavelengths 
which are less than about 10 times the size of the largest finite element. This may be achieved for 
example by expanding the applied loads in Fourier series and deleting from the series all high fre- 
quency terms. Alternatively, these terms may be filtered out from the response [ 121. 

The present analysis can be easily extended to reflections at the interface of two different 
materials. For small wavelengths the ratio of finite element sizes on each side of the interface will 
undo~~btedly affect the percentage of the reflected energy flux. 

Finally, observe that the conclusion about the effect of the time step does not necessarily hold 
for implicit algorithms. The present conclusions apply to these algorithms only in the limit for 
vanishing time step, for which all time-step algorithms converge to the same solution. It is con- 
ceivable that the large time steps used in implicit algorithms significantly alter the spurious reflec- 
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tions. A more detailed analysis of the time step influence on spurious reflection for implicit algo- 
rithms is in order since recent experience with unconditionally stable finite time elements has shown 
that higher order operators exhibit minimal dispersion in nonuniform grids (even without numerical 
damping) and stabilize the wave response albeit at the cost of some loss in accuracy (private communi- 
cation by J.H. Argyris, Stuttgart. on results obtained as a sequel to [ 13 ] ). 
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