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&tract-Endochronic and non-associated pkstic formulations are compared by introduciag an “itselastic 
stiffness locus”, defined as the locus of all strain increments in the strain space whkb give tbe same 
magnitude of inelastic strain increments. For classical plasticity the locus is a straight Jitk. whfk for 
endo~fuonic fcwmuhhs it is a circk, sphere or a quadtatii surface (&psoid). Sktikrly to vertex 
hardening modek and the deformation theory of plasticity. endocbfoak ttkory rives Waatic sttak for 
strain increments tangential to the current loading surface. while plasticity gives perfectly elastic response. 
However, in contrast to vertex hardening, the endochrottk inelastic strain for taagential strata incmments is 
normal to tbe loading surface. Consequently, endochronic theory is St&r than vet&x bard&tg for thii 
loading direction and is kss prone to indicate instability. However, it is softer than pkstkity. Among all 
possibk constitutive tektions. plasticity (without yield vertex) is lust prone to indii mat&al instabiliiy, 
and so it is the least safe model to assume if test data are inconclusive as far as the type of constitutiin law 
is concerned. 

Tangential liswiwin of the endochroaic inelasticity is presented. The tensor of tangential moduli, 
with all of its components. depends continuously on the strain iacmuent dire&m in the strain space. 
Endochronic analogs of the loading surface and of kinematic and isotropk hatdettb rules are indicated. 
and stress-induced anisotropy of the quadratic form detining intrinak titme Mameats is fomtulated. It is 
shown that for propottknal kadiag an endochmnic formuktkn can be taadify convat to an equivaknt 
plasticity formuktion. The fracturing material theory in which the lodial function depends on strain rather 
than stress is also anrlyzed and it is shown that its inelastic stitlness locus is simii as for pkatkity. 

implications for material instability, and especially for stab@ of the mspoaae to paka&tg bads of 
small amplitude. are discussed. By contrast to plasticity, but similarly to viscopkmkity, the eadocbmttic 
ioelasticii viola& Jiapuuov-type stab&y conditfotts, but it meets a proper amtitt& caodkkn. 
Refinements to satisfy both are possibk. but questionabk if oue deals with matat& aach as @ogkal 
materials, which are unstable or exhfbit strain softening. Intmducittg u&adiag aad reWlieg ctiterk and a 
certain type of kinematic hardening, the et&chronic formuktion may be refbted so as to model cyclic 
strain accumulation yet satisfy Drucker’s postulate for the hysteresis loops. 

1. OBJECTIVE 

Viscoplasticity with strain-rate dependent viscosity [ 1.21, which has crystallized as e&chronic 
theory[3-191, is now receiving considerable attention and is being employed with remarkable 
success for modeling the experimentahy observed inelastic proper&s of certain materials, 
expecially those in which the prevailing mechanism of inelastic strain is not plastic yield but 
microcracking or grain rearrangements with separations, as is characte&tic of geobgkd 
materials (soils, rooks, concrete)[4,5,8-10,13-191. Recently it has been discovered, 
however, that certain new, more sophisticated, plasticity formulations are capable of mod&g 
the available experimental data for these materials nearly as well. Apparently, one faces a 
situation where the problem of identifkation of the constitutive relation from the test data 
available at present does not have a unique solution. 

Therefore, rather than trying to fit further test data, an attempt win be made to compare the 
types of threedimmsional response which various formulations give, and to determine what 
are the menrid differences between classical incremental plastioity (assocmted and non- 
associated), vertex hardening plasticity, and endochronic inelasticity. 

A reader who might expect this effort to involve a good deal of thermodynamics must be 
warned that it will not be so. Application of thermodynamics provides for the eortstitutive 
relations important restrictions, which have essentially been worked out both for classical 
plasticity[20,21,11] and e&chronic forms of viscoplWicity[l,2,6,7,11,12]. However, the 
information furnished by thermodynamics is quite limited, and rather than further refming the 
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rigorosity of ~~~~y~~~c treatment it seems to be more profitable to turn attention to thQse 
~ee~~~n~ tensorial properties on which thermodyn~~~s yields no isolation. These 
are the properties which result from the microstructural mechanism of inealstic deformation 
and are macroscopicaUy manifested by the shape of the loading surfaces in stress and strain 
spaces and the tangential stiffness for strain increments in various directions. Analysis of these 
properties and their use for comparing endochronic and plastic formulations is the main 
objective of this paper (based on report [IO]). 

2,PROTOTYPEFORMULATfON OFNON-ASSOCIATED 
INCREMENTALPLASTICITY 

Recently it haa become ciear that plasticity of many materials, expeciahy geological 
mater&k (soils, rocks and concrete), is not associated with the yield surface by means of a 
no~ty ruk and Drucker’s ~st~te[~-~~. The deviation from no~~ity seems to be due 
mainfy to istekatk diktancy and internai friction due to hydrostatic pressure. A simpk way to 
handk it is to bagin wi&h associated stress-strain relations and then relax normality only as far 
as necessary, i.e. or@ as far as hydrostatic pressure p is concerned, as has been done by 
Rudniehi and Rice(26,27J. The resulting stress-strain relations may be written as 

de,@ = de: + de$, de = de” + deP’ (1) 

with 

For (dd? + @ do;)/(2L) ZB 0: 

for (d? f /?’ du)&‘th ) c 0: 

Here subscripts i, j, k, m refer to cartesian coordinates wi (i = 1,2,3): sii = q - S, a/3 = deviator 
of stress terkor uy, Q = o&$/3 = -p = hydrostatic stress, S, = iCro@ter delta, eg = em - &e/3 = 
deviator of (smalI, lin&g&) strain tensor ib l = 4*/3 = voluti strah component, #If, e$, 
cd, cs’ = da& and pkstic vat of eu and c; ? = stress ktensity; G, K = ekstic shear 
and bulk modti, h = pkstic h~&niug modulus. #$ = diWncy far;tor, #Y = co&cknt of inter- 
nal friction. Parameters h, #I and @’ are, in general, fuu&ons of ah and evenhlptly also sy. 
Whcn~=~‘,tbe~yrukissatiofiedaadfor~#~’itisndIf~=~‘=O,eqns(2~4) 
reduce to Pram&I-Reuss relations and are associated with von Miaca-type ykk surface. 

For reader’s convenknce, a brkf sketch of the derivation of the inerernen&aI pkstic 
rektfons (2)-(4) for the case of norm&y #? = /3’). may be given. It is iqpor%mt to realize that 
incremental plasticity rcats on two baa& hypotheses, which are rerqo&k but by no means 
necessary. One basic hypothesis ia the exit&once of a scakr yield fun&en, F, SUCB tbar h&t&c 
stin occws if d ody if dF > 01221 and F is independent of the is&&c strain. Equations 
(l)-(4) correspond to the form 

F(cril, &) = ‘?i’ g(a) - H, = 0, TCS (5) 

where H, = hardening parameter. Choosing (afla&)d& to be negative when loading takes 
place, and noting that (S%%q) dq + (d~~~k)~d~~ = 0, it is obvious that dci&aflamf) > 0 when 
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plastic hardening occurs, and daii(afitiii) d 0 when it does not. The second basic hypothesis is 
that the dependence of de!’ upon dcij is linear[22]. Then, d& - duii(afl&ij) or 

dr$ = gij aF da*. 
au&m 

where gij are some constants. NOW, adopting Drucker’s postulate doij de?/ * 0[22-251, and 
comparing this inequality with the condition doij(Sflao,)bO for continued plastic loading, it 
follows that de;’ - aFl&i,+ Furthermore, comparison with qn (6) yields gij - W&r&, and so one 
may set de$’ = (aR&ij) dr’ with dF’ = (llIr)(W&~) dub. For the special yield function in 
qn (5), this may be written as 

dr =&-(di+j3’du) (8) 

where @’ = dg(cr)/du = friction coefficient, dr = dp’/2, and h = plastic hardening modulus. The 
ratio of volumetric and deviatoric plastic strain increments for pure shear is dr%/dy“’ = 
d&/2 dc$’ - +‘/s,, = @’ (because for pure shear 7’ = s*,), which confinns that normality occurs 
when B = B’. 

3. PROTOTYPE FORMULATION OF ENDOCHRONIC INELASTICITY 

The basic concept in endochronic formulations is the characteriza&n of inelastic strains in 
terms of one or several non-decreasing scalar variables whose increments depend on strain 
increments. This variable, which has been initially caged reduced time[ 1,2], is now generally 
known as intrinsic tune. This term was introduced by Valanis[3], who was first to apply the 
concept successfully to complicated nonlinear behavior, particularly cyclic loading and cross- 
hardening of metals, and coined the Greek term “endochronic”. The theory is most properly 
regarded in the context of viscoplasticity[l-31; it is obtained as a special case of viscoplasticity 
with strain-rate dependent viscosity (introduced by Schapery [ 11) if one imposes the rquire- 
ment that for a strain rate approaching infinity the ratio of inelastic and elastic strain increment 
magnitudes must be neither zero nor infinite (see Appendix). The intrinsic time for time 
independent behavior may be geometrically interpreted as the length of the path traced by the 
states of the material in a strain space of suitable metric. A variabk of this type has been in use 
since the early 1950s (Hill, Ilyushin, Rivlin and Pipkin, see [3,4]). Thermodynamics of the 
viscoplastic constitutive relations based on intrinsic (or reduced) time has been formulated by 
Schapery[l, 21, Valanis[3,7,12] and ot.hers[ll]. 

Endochronic formulations of inelastic behavior lack the concept of yield surface and 
suggest physical interpretations in terms of damage, microcracking, gram rearrangements and 
internal friction. Thus, endochronic formulations seem to be more suited for geological 
materials than for metals, in which the mechanism of inelastic strain is frictionless plastic slip 
(or dislocations). Therefore, the general form of the practical endochronic constitutive 
relation[4,5,8] which have met with great success in modeling geological materials exhibiting 
strain-softening, pressure sensitivity and inelastic dilatency[5,8,9,13-191 is chosen to serve as 
the prototype endocbronic formulation. Restricting attention to time-independent deformations, 
we may write the constitutive relation in the form of eqn (1) in which 

de# = Si\ d& de@ = dA (9) 

with 

dS = F&-T. I, 3) dS, dA = F2(a, g, A 14, dt = (i deti de,,) I’. (10) 



(a) 

Ft. I. Loadins and unloading for cndochronic theory. 

Were 6 is called intrinsic time, f is called deformation measure, A = inelastic dilatancy (due to 
shearing), F,, FZ = positive-valued scalar functions called hardening-softening functions. 

The most conspicuous feature of the ordinary cndochronic formulation (cqns 9 and 10) is 
that no distinction is made between loading and unloading, provided that at the start of 
use the in&&c stress increment can bc assumed to bc non-zero and equal to that for 
continued k&b To illustrate it, consider the case of uniaxial strain, etl, with all other gij 
being zero [S]. Then, dropping subscripts ii, df - jde1 and daP’ - @)de(. The incremental relation 
is de = doJE f de@, which may bc rewritten as da = E dr -daP’, where daP’ = Ed& or 
d& = Bco#tr(, c being some constant. Increments da” = E de and du”’ arc dcpictcd in Fig. 1 
for positive dr. Consider now that positive de is followed by negative de, i.e. loading is rcvcncd 
to unload& obviously, da changes sign but W’ does not change sign bceausc it dcpcnds on 
[de!, as is shown in Fii 1[8f. Thus, the irreversibility at unloading the salient feature of all 
in&u& b&&or, is mod&d by the endochronic formulation in a very simple manner, without 
the need for any inequalities for expressing the unloading criterion, provided that the material 
response is adcquatcly dcscribcd by the implied assumption of equality of the Mastic strains 
for continued loading and for the start of unloading. 

4. LOADING FUNCTION IN ENDOCHRONIC THEORY 

In assoeiatcd plasticity, the tensor of inelastic strain increments is derivable from a scalar 
potential, called loading function or yield function, F(qj), i.e. dr$’ - W(u&&. Even though 
in non-assoeiatcd plasticity and in endoehronic theory the concept of yield surface lacks 
physical fan, it seems rcasonablc and useful to retain this concept for the cndocltronic 
fobs and continue to speak of lading function. All practical endochronic f~ui~~s used 
thus far satisfy this concept. The dcviatoric part of the cndochronic relations in cqns (9X10), 
which wcrc shown to agree with extensive test data, is associated with von Mises loading function 
bccausc d&- sfi - AIz*/aSii. In the volumetric cross section, the loading function of the 
cnductttonic theory is a curve (like that in Fig. 3b) with the slope 0 = Wba given by the relation 
~~~~~ = d&” f d.4 in which, from the rcfation ~~~~~sij = de$ =L Sij dg, OIBG fin& k * I&. Thus, 
j?’ = aF/atr = dA/d& and so the endochronic formulation in cqns (9)-(10) may bc written as 

de@ - * dg I - acq ’ 
with F(aii) x ’ Zj Sij&j + g(P) - HI = 0 (11) 

WLp_= dA F&GA) 
du dS Mz t 5) 

w 

HI being a parameter indcpcndcnt of @ii components. Note that here 8 inevitably depends not 
only on current g and uii but also on its history, and that dti, = -(a@&~,) dad#fWdH1) = 
Sii ds;i + @ do. 

In the dcviatoric strain space, a loading direction which is normal to the loading functions 
associated with cqns (3) and (9) coincides with proportional (radial) loading paths. Most 
experimental data pertain to such loading paths or to paths rather close to them. Even the 
standard triaxial tests are essentially of this nature, because the hydrostatic stress, applied first, 
causes little inelastic strain, with no directional damage (no stress-induced anisotropy), and the 
uniaxial load which is sub~qucntly su~rimposcd is itself a Fro~~ion~ (radial) loading. 

If attention is restricted to propo~ional or almost proportional loading, it appears from 
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numerical studies that the main experimental data available can be fitted reasonably closely by 
either formulation, i.e. both endochronic theory and plasticity with dilatancy and friction can 
represent the behavior of concrete under these conditions reasonaMy well. However, the two 
formulations are vastly dierent in nonproportional loading. Of most interest are the strain 
paths or stress paths which have a sharp comer. Such a comer must always be considered in 
investigating instabilities (e.g. strain localization) due to material nonlinearity[28,29]. In case of 
instability, the strain or stress path can proceed in any direction in the strain or stress space, 
and generally it will not proceed in the direction of the preceding strain path. 

The strain increment dg in the strain space will be called “normal loading” or stnaighr- 
ahcud loadhg wbcn it is normal to the loading surface corresponding to tensor dc$‘, and 
“tangential loading” or loading to the side when it is tangential to the loading surface. For the 
loading functions associated with eqns (3). and (9) this corresponds to proportional loading 
direction and directions normal to it, respectively (see Fig. 2). 

5. INELASTIC STIFFNESS LOCUS 

For compariug the endochronic and plastic formulations it is useful to d&e the foIlowing 
property. 

Definition. Inelastic stiffness locus is the locus of all strain increments dg which give for a 
given initial state the same magnitude Il<l&[ of the inelastic strain increment tensor dt$‘. The 
xtu@ude (or norm) may be defined as the length of the vector drf in a six-dimensional strain 
space of suitable me& or IkJe[ - Id& defy’ + Mt(de6)2]‘n where MI = y#vcn constant. 

Note that der is pqortional to the plastic tangential modulus in the de,,direction. Thus, 
the farther a point is on this locus from the current state in a given diction, the stiffer is the 
plastic response in that direction. 

To determine the locus just defined, it is necessary to express de$’ in terms of dcy. Consider 
first the plastic formulation. Equations (l)-(4) may be regarded as a system of linear algebraic 
equations in which def are the unknowns and dq are given. First, dp must be expressed in 
terms of dtu. To thii end, eqn (4a) may be used to caMate d5= 2h dp -@‘do = 
2h dp - KB’(3 dc - 28 dp) = 2 dp(h + @3/3’) - 3?93’ de. Then, from eqns (l)-(3), ds, = 
ZG(deb - sh dcJ73, and so d;- sh dsk32;= (sd2;)2G(dcb. - SL, drli). Equating both 
expressions for d?, one obtains an equation which yields 

2?(h + G + K/l/3’) - (13) 

It is now convenient to define inelastic stress increments as dsf: = 2G def’ and d#’ = 3K de’! 
Then daf = ds$’ + S, da”’ = 2(Gsi, f K&) dp/f where 8, = Kronecker delta. Substitution of 
eqn (13) for dp yields 

D'& = [(G//)su + KBs,][(G/fls, + KjY&,,, 
h+G+Kj?@ 

These are the tangential moduli for inelastic stress increments. Note that they are symmetric if 
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and only if /3 = 6’. and that they are different from plastic tangential moduli defined by the 
relation daii = C$,,, dck. 

It is now obvious that if D?$,,, deb is constant, ail components of da{’ are constant and then 
Ilda$‘H as well as id&I is also constant. Substituting eqn (15) one finds that this happens for 

where C is some constant (So de, = sh de&. 
To interpret this result gtometricaily, consider the material state (uf& eii) plotted as point A 

in superimposed stress and strain spaces in Fig. 3, separately for the deviator% com~nents and 
for the volu~~~tric cross section. Also imagine that a space of infinites~ increments deii is 
superimposed at point A in Fii. 3. The six components of sil and de, may be im&ed to form 
vectors s and de. Then, eqn (16) at constant de may be written as s * de = const.; this is a scalar 
product, and the equation means that the projection of vector de upon the direction of s (or s(i) 
must be constant. This shows that the inelastic stiffness locus is a plane in the six-dimensional 
space of d+ In the twodimensional picture of Fig. 3(a), this locus is given by a straight line. 
The normals to the current yield surface have the direction of sii, and the inelastic stiffness 
locus consists of a straight tint parallel to the tangent of the yield surface at point A. Similarly, 
in the volumetric cross section, the inelastic stiffness locus is a straight line parallel to the 
&gent of the current yield surface (see Fig. 3b1. 

Let attention be now turned to the e~~~o~ fo~~tion. Here, according to eqn (9), 
constant values of dt$ are obtained when dl = const., which corresponds to dt = const. if @ii 
and q are fixed. Hence, the locus of the end points of all strain increments de or dei which 
give the same values of inekstic strain increments dcPj’ is given by the equation 

de,, dq = const. (17) 

or de * de = coast. Consequently, in the deviator& strain space, the in&tic sti@ness locus is a 
hypersphere around point A, which appears in a twodimen&~nal picture as a circle (see Fii 
4a). Due to hardersing and softer&g functions of the endochroaic theory, the diameter of this 
i~~~~ circle varies as it is dragged through the strain space, but the sirape of the locus 
always remans a circh. In the full strain space, eqn (17) represents a hy~cy~r, and in the 
two~~5~~ voku&ric cross sections (Fig. 4) the ineiastic sti&ess locus appears as a set 
of two parailel straight lines. 

Note that for both plastic and et&chronic formulations, not only @ej;‘i but all components 
of de$’ are the same for ail vectors dq endii on the inelastic stifFness locus. 

Consider now the dependence of the tangent modulus of inelastic stress 

upon the dei,diiction, characterized by angle u in Fii. (3x5). By definition, &is$‘l is constant 
for all vectors deii on the inelastic stillness locus, and so l/H is proportional to the distance, 
we& from point A to the inekstic sMness locus along the a-direction. The plots of llff vs a 
are shown in Fri. 6. 

(a) (0) 

Fig. 3. in&W ~tifkss locus for plasticity theory. 
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(a) 

1 Sll I e11 J -6.~ 

Fii. 4. Mastic stiffness locus for endochronic theory. 

(a) 

Fii. 5. helwtic stihcss locus for vcttex hardettiqt and endochronic theory with unbading aitwbn. 

(a) 

The inchtstic tstihess locus rev&s the fundamental difference between piastic mui eudoch- 
rouic formulations. If botb are &ted to the same data on proporktml Iondiug, then the phstic 
formulation is stiffer for loading to the side. For the tangential loading dire&m, phkity gives 
perfectly elastic response (H = 0), while endochrouic theory gives inelastic respond (H > 0). 
NeverMess, it must be real&l that in both these formuhtions the Mastic strain iuuument 
dc$’ for all loading directions of de,, is always in the straight-ahead dktion, given by the 
normality rule (fbw ruie), and the components of de+, in the tange&l direction are purely 
elastic: see the vectors detj’ and dr# shown in Fm. 3 and 4. 

' 6. RELATIONSHIPTOVERTEX HARDENING EFFECTS 

In recent developments of plasticity theory, the creation of coruers(vertices)ontheyield 
surface, called “vertex hardening”, has received considerable attention. Acco&ug to chssical 
plastic formulations (eqns 14) the inelastic strain is created only by the normal (st&ht&e&) 
component of dQ, whereas the tangential Wding to the side) conWmemcawesnofwther 
inelastic strain, with the consequence that the response for load incmneuts totbCSidCkOvgsn 

much stiffer than it is for straight-ahead loading. For pure load& to the side (Fig. Z), no 
inelastic strain is produced at all. This feature has been recognkl to con& with the 
predictions of microstructural pofycrystalline models of plasticity, which (111 in&ate that the 
“loading to the side” should also produce inelastic stmin[30,31]. 

To correct this defect various forms of vertex hardening mo&is have recently been 
introduced. In some of them, the yield surface is assumed to form a vertex (corner) at the 
current state point on the loading surface, which indkates the in&& st&ess locus to &Ire 
the shape shown in Fii. 5(a). A different type of vertex hardening ~WI receutly been propo& 
by Rudnicki and Rice [26]; they considered linear incremental equations in which the expres&m 
for de$ from eqn (3) is augmented by the term (+ dslj - sri d?)/2hl? where hi -plastic moduhrs 
for loading to the side; this term is derived from the requirements that it must vanish for 
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straight-ahead loading (dq - Sii) and must be linear in dsih When unloading takes place, this 
term is omitted (along with the straight-ahead term Sii dpl?). With the addition of the foregoing 
term, the formulation still retains the linear form, which is formally identical to the original form, 
provided that G. h, /3. @’ and K are replaced by the following parameters[26]: 

d = (l/G + I/h,)-‘, h= (l/h - l/h,)_‘, 6 = @i/h, 
(19) 

/? = @‘Ii/h, If = [l/K + &?‘/(h, - h)]-‘. 

It is now ckar that Rudnicki and Rice’s vertex hardening still leads to the linear incremental 
relation (14). in which however, D& is replaced by &,,, and is expressed in terms of d, z’, 6, 
6 and $‘. However, the true elastic stress increments are not dsii = 2e deif but 2G de,,. Noting 
that the elastic moduli are given as Dlk, = 2G&&, + (K - 2G/3)6&,,,, one must remove from 
&,, dr*, the false elastic stress increments b &de, and add the correct elastic stress 
increments D&, d-, i.e. 

According to eqn (15), it is now necessary to replace eqn (16) for the inelastic stifIness locus by 
the equation 

(21) 

where C’, are tin constants for a given stress state. It is apparent that, due to the last term 
in eqn (21). the projection of vector de upon vector da is no longer a constant but depends on 
the loading direction de. So, the inelastic sti@ness locus can no longer be a straight line. The 
expresaioa within 1. * -# is I&, and thug qn (21) may be written in the form of a quadratic 
quation for d& compomts. Therefore, Rudnicki and Rice’s vertex hardening mode1[26] 
gives the inelastic stif!ness locus in the form of a quadratic curve; this curve must intersect the 
s&#&a&ad direction orthessaelly (see Fw. Sb or 7b), and its curvature is a function of 
mod&us k, for Io&ng to the side. (It mat be pointed out, however, tbet this vertex hardening 
model was &en&d[26] oaly for load& directions which are close to the s&aigbt&ead 
direction.) 

There exists one e81cntio1 Werence from the previous cases. For classical pks&ty as well 
as endochroti theory, not only the m@tudc of dc$’ but al1 its compaaeuta are the same for 
all veot~s &J en@& pa the inqlastic ati&eas locus, whik for R&i&i and Rice’s vertex 
hardening, only the magnih& is the same whik the individual components of dc$’ vary when 
moving along the locus. This means that the direction of dc$’ depends on the direction of deii, 
while for endochronic aad plastic form&ions the direction of dc$’ is unaffected by the 
direction of <ko On the other hand, by introducing modifkd elastic moduli the inelastic stillness 
locus for R&&i and Rice’s vertex hardening can be transformed to a straight line, whereas 
for the endocbronic forant&& this is impoasibk. However, the endochronic foneulations and 
vertex harden& formuUons share one moat important property-name ly, for both the 
loading to the side creates Wastic strain. This property, for exampk, made it possibk for 
Vataais to model “crosa-hac&&g of metals”, such as the effect of plastic twist on s&sequent 
axial extenoiag diagmma, which was the ear&at success of the en&chronic formuWion[3]. 

The @&ence of mt modu4us H for inekstic stress is depicted in Fig. 6 for vertex 
harden&g from Fig. S(a). This depe&ence is not smooth w.& for the endochronic theory as 
well as R&&i and Rice’s vertex hardening it is smooth. This mig4t be preferabk also for 
itera&ive numerical so&ions of struc@al problems. In contrast to both claaaical plastic and 
en&&& fWuk&iona, the in&&c ti increments are generaUy not in the straight-ahead 
direction and include ineWic colspoMllt0 orknted to the side (Fig. Sa). The tangent modulus 
&dacCy (no sum) for loading to the side ia a reduced modulus, whik for en&chronic and 
plasticity theories it equals the unreduced elastic modulus for that direction. 
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7. STRESS-INDUCED ANISOTROPY OF INTRINSIC TIME 

In tk light of the preceding discussion it seems appropriate to consider a generaiiition of 
the endochronic theory in which the inelastic stiffness locus is not restricted to a circular 
(hyperspherical) shape. Indeed, it would be purely by chance if for some real material the shape 
were exactly circular. Modifkd shapes can be achieved by replacing @ from cqn (11) with 

d5 = (i piti deif d% )” (22) 

in which pim(Q) are coefficients which are not constant but depend on stress tensor [CQ] - 6. in 
fact, since there is no reason for pb to be independent of q, one must expect that pIwln 
depends on p. For an initially anisotropic material, eqn (22) but with constant pip, was 
proposed by Valanis[3]. A complete anisotropic formulation has been developed for clays[19]. 

For isotropic materials, pe must form an isotropic tensorial polynomial in q, and for Q = 0 
codlticients pm must form a constant isotropic tensor (as is the case for eqn IO). Thus, 
coefficients p& exhibit stress-induced anisotropy, in the sense that the quadratic form 
pw dq dh is invariant with regard to the direction of de8 only if the material is stress-free. 
The simplest car&ate for practical characterization of a material will be the case where the 
fourth-order tensor p% is given as a linear isotropic tensorial function of IQ Then, 

or, as a special case, 

2 dt* = deij dq + PISir de& de* 

where po, . , ., p4 = constants, and de,, de2, de:, = principal deviatoric strain increments. Thcfirst 
expression can be shown to correspond to the most general symmetric form of a four&o&z 
tensor, pe, linear in au (as known from h~~stic~[32]~. The second expression, eqn (241, 
is the most genera! form which is independent of vohnnetric cmpucnts da and m as might 
be reasonabk to assume for many materials We the arguments in Refs. [3] and M). with dqrrs (23) 
or (24), the inelastic stWness locus becomes a quadratic surface, which would appear in aby 
tw~i~nsion~ cross section of strain space as an cUipse, par&& or hype&& @ii 7a). 
However, the latter case in which the quadratic form in eqn (24) becomes hyperbaric is 
inadmissible for it would give imaginary d6. As a remedy, de’ would have to be set equal to zero 
whenever it would be obtained as negative, which is equivalent to imposing an urdo&~crifcnion 
(Fig. 7b). Neverthekss, it is possible to choose such pi that ensures e&pticity of eqn (24) for &j 
stress states expected to be sustained by the material. This is achieved by choosing 1 +p&_l r0 
orpi r-l/is,lwheres m*x is the principal value of Su which is largest in absolute v&e among all s~j 

expected to occur. 
bin (24) describes an ellipse located syrn~~~y ahout point A. It gives d&rent 

Fa. 7. Inelastic stiBncss locus for endochronic theory with m 7 (a): fi w 
criterion (bl: and with piecewise-linmr i&&c thse m 
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plastic hardening moduli for loadings to the side and straight ahead, but the same moduli for 
straight-ahead loading and unloading. The latter feature is questionable, and it can be removed 
by a different type of stress-induced anisotropy: 

dt= 
[ 
l (d&t + POQ df’)(@ + POQ dF)]“‘. df = [ideir deu]“*. (25) 

For this expression, the inelastic stiffness locus is a circle which is not centric about point A but 
is shifted towards the origin (Fig. 7a), giving smaller inelastic strain for unloading as compared 
to loading. 

Alternatively, of course, dC could be defined so as to give a locus of deu that is piecewise 
linear (hyperpoiyhedron). An example is the inelastic stifIness locus in Fii 7(c), for which, 
e.g. df = a(detI + bbe~j + cldsl, where del, de2 and de, must be the principal deviator strain 
increments in order to satisfy the tensorial invariance restrictions, and a, b and c depend on sip 
In such a case, the inelastic stiffness locus becomes similar to that for certain vertex hardening 
models. Conversely, it is possible to construct plasticity-type formulations with vertex harden- 
ing for which the inelastic st.ifFness locus approaches that for the usual endochronic formulation 
(eqns 9 and 10) as closely as desired. This is obtained when the set of all orientations of dei, 
(directions a), is subdivided into many cones (hypercones in the full strain space, and angular 
segments in (de,,,dep) space). Within each directional cone, linear incremental equations are 
used, giving a piece-wise linear inelastic sti#ness locus (describing a hyperpolyhedron). In the 
limit for the number of direction cones approaching infinity, this locus approaches a smooth 
surface characteristic of the endochronic theory. 

8. REMARKS ON MATERIAL STABILITY 

One property which is intimately connected with loading to the side and vertex hardening is 
the question of material stability and unstabk strain locaRzati~[2%, 29,261. Due to the fact that 
loading to the side produces inelastic strain, the material response to the side is “softer” than it 
is for the classical plastic formulation, and this can be expected to have a destabilizing 
effect [26,271. For Rudnicki-Rice type vertex hardening, which gives inelastic strain for vectors 
de4 that are pamhe to the yie4d surface, Drucker’s postulate is not satisfred and stability of the 
mate&J is not guaranteed. while some materials are stable, most mat&& must indeed be 
expected to violate Dru&er’s postuiate and the normality rule at su&ieutly large strain, and 
permit mat&l ius&&ks[26,2!& An important cxampk is the class of geo&i& mater&, 
such as sat&, clays, rocks and concrete. In these materials, the iuelas& straiu ckpends on 
frictiou, aad in such a case the normality rule aud Drucker’s &ah&y post&& do not 
appCy [ZO, 33). Micro-fractutiug in these materials, and the inherent di&taney, are uudoubtedly 
also sources of possibk material instabilities. 

Recently, it has ban shown that these phenomena give rise to behavior which is ap- 
proximately mod&d by vertex hardening, and that the vertex harda&g has a profound 
&stablii effect, promoting instabilities in the form of a localization of a strain in a narrow 
baudE26*27,2% 

hrlstcriol instahihty is also caused by strain-softeniug[34], which is kuown to exist in 
concrete, rock and soils, as recent tests in tension, compression and torsion indicate. Strain- 
softening can only be observed on specimens of micro-iubomogeue9us mate&l w&h are 
std3iciently small to prevent unstable strain-localization and are loaded by a sufeciently stiff 
displacement-controlled testing machine. Strain-softening is not allowed by Drucker’s 
postutate[23], but is admitted by an analogous approach, called fracturing material theory[35- 
371. Agreement with experimental data on strain-softening has so far been obtained only with 
the endochronic formulation[8]. 

Thus, it is clear that for materials which do exhibit unstable strain localization, or 
strain-softening, such as geological materials, the e&chronic formulation, compared to 
plasticity with a smooth yield surface, stands at the proper place of the scene-it does allow 
plastic strain at loading to the side, similarly to the vertex hardening models, and it does allow 
strain-softening. With classical plastic formulations satisfying Drucker’s stability postulate, 
such effects, if they exist, are inevitably missed. 

On the basis of microstructural polycrystalline models[31], it has been found that already 
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for a relatively small strain the current zero-offset yield surface, representing an envelope of all 
points which can be reached from the current state without causing inelastic strain, shrinks 
almost to a point. The point is quivaknt to an intlnitesimal circle, and precisely this happens in 
endochronic theory. This fact serves as a physical justi6cation of the endochronic theory. 

The fact that for loading to the side the endochronic formulation gives generally a softer 
response (lower stiffness) than plasticity means that the model is more prone to indicate 
instability. Thus, the endochronic formulation is on the side of safety in case of stability 
predictions, whereas classical plasticity is, among all possible inelastic constitutive relations, 
the least conservative and the least safe model that can be assumed if test data are inconclusive 
as far as the choice of the type of constitutive relation is concerned. On the other hand, vertex 
hardening models are still more prone to indicate instability because for tangential loading they 
exhibit inelastic strain components in the tangential direction while the endoehronic inelastic 
strain is entirely in the straight-ahead direction. Thus, it might be appropriate to incorporate 
into endochronic theory some vertex hardening features, e.g. the model of Rudnicki and 
Rice [26]. 

9. RELATIONSHIPTODEFORMATIONTHEORY 

A simple prototype of Hencky’s deformation theory of 
stress-strain relation [24,25]: 

OF PLASTICITY 

plasticity is given by N&i’s 

(26 

in which 124 = (1/2)s~+r~ = F2 = second invariant of stress tensor crb prseSr and others have 
shown that this type of formulation has certain serious defi&n&s, such as i&pe&nq from 
the loadii history[24,25]. On the other hand, from experiments it is known that the &for- 
mation theory happens to give better predictions than the incremental theory of plasticity (qns 
14) in many cases, one of which is loading to the side[38]. 

To discuss loading to the side, eqn (26) may be dikentiated: 

Consider now a state in which s11 and CII are non-zero, all other sil and Q being zero. The 
straight-ahead (radial, proportional) loading is here represented by de,,, and the loading to the 
side is represented, e.g. by den or by dei2. The corresponding atress inuementr, ds,, or dsr2, 
are obtained from eqn (27) as dsp = f(J2”) de, and ds 11~ f(J2@) detz. Thus, tbc mt modulus 
for load& to the side is less than the elastic moduIus and quals the current secant elastic 
modulus [38]. 

In the present context, the foregoing result means that in the deformation theory there exists 
inelastic strain for loading to the side WI, which is a type of loading for which the deformation 
theory often gives good agreement with experiment., This is in r&nil&y to vertex harden& 
and partly also to the endochronic fomtuIation, and in contrast to classical plastic formulations 
(qns ld), which give purely elastic response at loading to the side. 

lO.ENDOCHRONIC KINEMATIC HARDENING AND 
OTHERLOADINGFUNCTIONS 

The endochronic formulations used so far (such as qns 9 and 10) CMcIpolld to isotropic 
hardening, and so does the plastic formuIat.ion in qns (lH4). This is because dc# - su - 
aJ2”/as,, where I2@ = const. characterizes in plasticity theory a yieki surface which is always 
centered at the origin of stress space (Fu. 8) and d&es while retai&g the same ahape. 

So, it may be of interest to identify a coWerpart of anlaotfopic &de&g ntks known from 
plasticity, especially kinematic hardening. Here, the ykId surface not only dilates but also 
moves as a rigid body. Considering, e.g. Prager’s kinematic harder&~ ruk[u, 251, an analogous 
generalization of eqns (9) and (10) would be obtained by deriving de# from a loadir@ function F 
which, in addition to expanding radially (isotropic hardening) also moves as a rigid body 
(kinematic hardening). Thus, adhering to von I&es-type loading function for deviator defor- 
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Fw 8. Endochronic kinematic hardening. 

mations, the endochronic loading function from eqn (11) may be generalized as 

F(q) = [ ~tsi,-aI)tsif-ail)lq +&a-a~)-HI =O @I 

and according to eqn (11). eqns (9) for 4 = 1 are generalized as 

Coedicients a& a0 (with w = 0) indicate the current center of the loading surface. 
One could, of course, furWr specukte on the ruks for the increments dau and da, as 

functiona of diyr &ru and a For exampk, simikrly to Shield and Zkgkr’s hardening rule in 
piasticityE24 251, 

da,, = k, ds$ = 2Gk, de$‘, dao = ko daP’ = 3 Kk,, d& (30) 

where ko and k, are constants and 0 B k, S 1 may be expected. (According to a private 
communication by C. L. Shkh of Northwestern University, the use of k, -0.15 and b-0 
distinctly improves tbc fits of aaymeetric hysteresis loops for highly strained concrete.) 
Equation (30) yields pure isotropic hardening for ko = 0. 

For the endochronic formui&ms corresponding to a Maxwell chain model[8,14], a cor- 
repponding osaclalizrtion wouhl be to use d4$ = (srt, - 2G,k, de,,) d&,, subscript c referring to 
relaxation time TV. 

R&ements within the isotropic loading functions are also possible. For exampk, it seems 
that a some&at imp&& description of concrete is possibk with F(q) = 
I2 + c.&~ + g(c) - HI where 1, = s,s,,,,.43 = third invariant of sifi Equation (11) then yields 

def = ( sli + CS& dg. (31) 

However for a clear answer one needs more accurate test data than are available at present. 
In endochroaic theory there is, however, one important practical diderence in hardening 

ruks as compared to pkaticii theory. This is due to the fact that in plasticity there exists the 
property that all states within the current yield (loading) surface can be reached without 
inelastic suaining, whik in endochronic theory no state can be reached ‘in this manner. 
Therefore, points of the loading surface which are at a finite distance from the current state A 
(Fu. 9) are irrakvant for the endochronic formuiation. The only rekvant property of the 
loading surface is the local curvature of the lo&ing surface at the current state A. This 
curvature is rdbcted in the cturent location q of the center of the loading surface. In the light 
of these considemtions, it soems that the absence of yield surface in the pksticity sense might 
be a useful and simpliiying feature of the endochronic theory. It makes it possible to cease 
worrying ahout the entire current loading surface and reduces attention to the local properties 
of the current loading surface near the current state. 

IO. TANGENTIAL LINEARIZATION OF ENDOCHRONIC FORMULATION 

The stress-strain relations of incremental plasticity are linear in stress and strain incre- 
ments, and therefore it is possible to relate the increments daii and deii by a matrix of tangential 
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Fii. 9. Tangential lineari: ation of the inelastic stillness locus for the endochronic theory. 

moduli, &,,, ; i.e. [24] 

(32) 

For the plastic formulation in eqns (l)-(4), Dh = D$,,, - D&,, where Of&,, = 
2G6&,,, + (K - 2G/3)6&,,, and l)g$,, is given by eqn (1s). As will be seen, for the endochronic 
formulation moduli 0,~ can be expressed only if the direction of vector de (or dq) is known. 

In analyzing material instabilities, it may often be necessary to linearize the incremental 
stress-strain relation so as to obtain an eigenvalue problem. For this purpose, the curved 
(circular) inelastic sti&ess locus of the et&chronic theory must be rep@ced by a plane (or a 
straight line) which is tangential to the curved locus at the point of assumed strain increment 
direction, dq = bii; see Fig. 9. The iineari& formulation wih then be equivalent for all d+ 
directions which are sufficiently close to dq = bk So one must replace (de de&)lR by a 

linear expression which represents, for fixed df, a plane that is normal to vector b,j in the 
six-dimensional strain space; i.e. df = kb . de or dt = &brl d+ Constant & must be such that for 
de,, = bU the correct value of df be obtained. This requires that dt = (bhbJ2)” = &,,,b~, 
which yields 

d[ = Bij deij, with Bii = 
i&%5 

(33) 

The tangential linearization can, of course, be also obtained without resorting to geometrical 
considerations. Let deU = bii + pii where tensor pii is small compared to bti in the sense that 
(bgul 4 b&. Notiug that (1 + i3)ln - I + s/2 if S 4 1, one may arrive at qn (33) by the following 
transformations: 

d{ = (i dcij de,i)ln = [i (bii + p,)(b, + pi,)Im 

(33a) 

A similar linearization may be applied in the general endochronic theory to the expression 
dl = (pW deu deJn. 

Substituting eqn (33) into the stress-strain relations of endochronic theory, the formulation 
becomes equivalent to plasticity without normality. If eqn (33) is substituted in eqn (10) or (1 I), 
one obtains a plasticity formulation which is identical to the endochronic formulation for the 
cases of propotiionof (radial) loading, efr = A$ Here 

Bij = e&j for eij = Ad 04 
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where Aii are given constants, and B,r is also a constant. Furthermore. assuming that the test 
data available are essentially of the proportional loading type, for which bii - Q the substitu- 
tion of 

(35) 

in the endocbronic fortnuiation should allow (for any &) an equally good fit of test data. 
Moreover, parameter & in this expression allows the ratios of inelastic strain at ioading and 
use to be controUed. 

Having karized tire incremental stress-strain relations, it is possible to put them in the 
form of eqn (32) and express the fourth-order tensor of tangential moduli &,,. For this 
purpose, qn (33) for dt may be substituted in eqns (9) and (lo), yielding 

dstt = 2G dq - 2GF,srfB, de,, 

da,, = 3K de,,,, - 9K&B, de,. 
(36) 

Insertion of do& - dsU + $ Q,,,,/3 and rearrangement yieIds 

Subsequently, introducing de, = da, - 6, de,d3 = (S&L - L&/3) dh, one obtains an equa- 
tion of the form do,, = L& d6r, (qn 32) in which 

.cl(+r* = 2G&& + (K -2Gl3)8& - f’ZGF,q + 3KF&XB*. - 113B&ti)* (3%) 

To illustrate the linearization, consider a simple endochronic formulation for a materiai with 
only two stress-strain components: 

da,, = E,, de,, + E,z de + Fu,,tl(dr:, + de&, 
(39) 

duz = B2, de,, + Err dezr + Fo&(dr:, + de&), 

where E,,, En, En, Ez, are dastic moduli, F = constant, and tire squnre-root expression 
corresponds to de from eqn (10). Assuming that the strain direction is (1,O) or de,, > 0, den = 0, 
one has B,, = 1, BE = 0 and (de:, +de$)‘n - B,, de,, = de,, near the assumed direction. Equa- 
tion (39) may then’be brought to& form 

dull = (&I + ~110.d de,, + En de, 

da= = (Bz, + FB,,u& de,, + Et2 den. 

On the other hand, if the strain direction is assumed as (0, t) or de= > 0, de,, = 0, one has 
B,,=O, BP= 1 and (de:, +d&)*12= B~dep = den near this assumed direction. Equation (39) 
then becomes 

When the loading path is smooth, then the, direction dcy in each loading increment can be 
based on the direction in the preceding increment. However, when the loading path forms a 
sharp comer (paths AA,, AA*, A& in Fig. 2), and this must always be assumed in analyzing 
material ins~ity, then the direction bii of dry is unknown. 

The dependence of I&,,, on the unknown direction of de+ will undoubtedly cause difkulties 



Endochronic inelasticity and incremental plasticity 705 

in numerical analysis of material instabilities by finite elements. However, for the plastic 
formulations the situation is partly similar, in that the matrix Diw is different for loading and 
unloading. For some types of vertex hardening, different matrix 4,~ applies for several 
segments (cones) of directions: unloading, loading straight ahead, loading to the left in 
(e, ,, e&plane, loading to the right in (cl,, e&plane, etc. 

12. STABILITY, UNIQUENESS AND CYCLIC LOADING 

It has been known since their inception that the endochronic formulations violate the 
normality rule and Drucker’s stability postulate. On the basis of this fact it has been suspected 
in a recent critical study[39] of the endochronic formulations that they could lead to numerical 
difiiculties, especially in cyclic loading; and it was concluded that the endochronic formulations 
may, therefore, be unsuitable for numerical structural analysis. In this respect it must be noted, 
however, that the violation of Drucker’s postulate per se cannot be objected and is even proper. 
It is well established that unstable materials and strain-softening materials do exist and are quite 
common. It is, in fact, of main interest to detect situations when this is not so. Various studies 
of unstable strain localization and of vertex hardening are motivated by efforts to reveal 
material instabilities. It is the purpose of structural analysis to predict such phenomena. When 
an instability is encountered, the numerical algorithm cannot be stable, and convergence cannot 
take place. Thus, the aforementioned numerical difficulties might often be just an indication that 
material instability has been reached. For materials which are suspected of developing unstable 
strain localization, or which are known to exhibit strain-softening, it is actually imperative not 
to use a formulation which satisfies Drucker’s postulate, or else real instabilities could be left 
undetected in the numerical calculation. In view of this, and because endochronic formulations 
are “softer for loading to the side”, they will yield more conservative (safer) designs than 
plasticity formulations. 

However, it must be admitted that there is at present little experience with the use of 
endochronic theory in finite element codes. Some numerical di&uities which have nothing to 
do with actual material instability, i.e. with the question of validity of Drucker’s postulate, 
might be found, and methods to cope with them will then have to be investigated. 

The feature of the endochronic formulation which has been repeatedly criticized in 
discussions at technical meetings and is also elaborated upon in Ref. [39] is the fact that 
inelastic strain can be getting continuously accumulated without bounds if a cyclic loading of 
arbitrarily small amplitude s is superimposed on constant stress ao, with the result that 
instability of response and lack of uniqueness may occur. However, the choice of the precise 
nature of the stability and uniqueness condition is debatable, and so a reexamination is in order. 
Like in Ref. [39], let attention be restricted to uniaxial behavior, and consider the uniaxial 
endochronic formulation[& 131: 

dr da u =z+Ed[, dl=& da = F(r) d& df = lde/ 

in which f(q) = hardening functionp, 4,8] and F(r) = softening function[4,8], which are non- 
decreasing continuous functions of r) and E, respectively, and a, e now are the uniaxial stress 
and strain. (The subsequent analysis could also be applied to the e&chronic formulation given 
by eqn (42) with e = /dal, which was introduced in 1%9 on pp. 7&71 of Ref. [40].) 

Consider now a pulsating load in which the stress is prescribed in the form u = CT,,+ s sin lat, 
where t is a loading parameter. Let the strain produced by static load uo at t = 0 ar~I 0 c s 4 a0 
be denoted as % Because for s +O the pulsating stress is physically equivalent to static stress 
uot uniqueness and stabiity requires that the response c(t) approach in some sense the value 5 
produced by static stress a0 alone. However, it is arguable precisely in which sense this 
approach must take place. The following three different conditions of uniqueness and stability 
may be considered: 

Ir( t) - rd < S for all t and some (su5ciently small) s (43a) 

I~(t)-6l<~ for all t (43b) 
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lint [e(t) - eO] = 0 for any given t 
J-0 

(43c) 

where 6 is a given arbitrarily small positive number and e. is the value of c for u = u. at t = 0. 
The first condition, eqns (43a). is a strict stability condition of Liapunov type, like that used in 
dynamics. The second condition is a weaker one, and the last one is merely a continuity 
condition, which is required for the problem to be properly posed and is the most reasonable 
condition from the physical point of view. 

Although none of the endochronic formulations guarantees fulfillment of the strict condi- 
tion. eqn (43a), unless an unloading criterion is introduced, all endochronic formulations satisfy 
eqn (43c) and some also satisfy eqn (43b). To show it, integrate eqn (42). It is easy to check that, 
for UO>S >O, 

UO--S 
-p,<r(t)-coo< Y@I with @,=I ‘drl 

0 f(v) 

in which a, is a continuous nondecreasing function of n = n(t). For the pulsating load given 

qo + koseo)~ < rl-= qo + k,sF(s)t VW 

&o = k,= (4%) 

in which Q, = constant, E, is the initial tangent modulus at t = 0, and E. is the initial unloading 
moduhts at I = 0. The inequality ensues from the fact that as pulsation goes on the hardening 
function causes the current tangent loading modulus to increase and the current unloading 
modulus E. to decrease, while always E, < E < E. (see Fii. 1). 

Sinre @, C f,(d) where fl is an increasing continuous function, with f,(O) = 0 and bounded 
for finite st, it follows that lim d+ for s +O at any fixed t is 0. According to eqn (44), this means 
that the weak condition in eqn (43c) is always satisfied. 

According to eqn (4Sa). lim n for t +m is 00, and, in consequence, the stronger stability 
condition in eqn (43b) is satisfied if lim @, for t +a is bounded, i.e. if the inverse of the 
hardeniog function f(q) is integrable up to 00. This is not true for Valanis’ hardening function[3] 
f(q) = 1 + flrq, for which rI+ = (l/&) In (I+ &n) + constant. Equation (43b) is satisfied, 
however, if 

f(q) d Aq”, m > 1, for sufficiently large n, (4) 

where A is some constant. This is true, for instance, if 

fbt)=1+h+B2v2 W.B2>0) (47) 

which is the fun&n that has allowed improvement in fits of cyclic test data{& 
The strict stability condition (eqn 43a) could be satisfied only if lim (0, for t +w and fixed s 

approached 0 as s -PO. This would require that lim rl for t + m approached n(O) as s +O, and 
according to eqn (45a) this is never true because lim 11 for I +Q) is m. 

Another case studied in Ref. [39] was the pubating strain. Thus, consider that e(t) = 
60 + e sin cat. with 0 < e 4 CO. Rewriting eqn (42) as da + a d[ = E dc, it is seen that Au + u,& = 
0 for each pulsation cycle, and so (for e a ~0) the response is stress relaxation of the form: 

u(t) = u. exp (-a,) (48) 

in which 0, is again given by eqn (44) and 6, = ket, with k = 2&r. Further arguments are similar 
as before and the conclusions are the same, except that u(t) always satisfies not only the 
condition of the type of eqn (43~1, but it always satisfies also the stronger condition, eqn (43b). 
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For comparison, consider now a typical, classical formulation of viscoplasticity. Its simple 
uniaxial form may be written as de = do#E + Jr{& dt with +(a) = I + kd, k > 0. The response 
to static stress a(t) = 00 applied suddenly at f = 0 is r(t) = ti+ #u&t, with l o = uJE. Assuming 
that (r > 0, E > 0, the response to pulsing stress dt) = co + $(I+ sin art), s > 0, satisfies the 
inequality: 

eo+ (6(UC&+ S)f c e(t) c co+ dr(uo+2s)f. (49) 

Thus, the difference between the responses to static and pulsating load is a(2) - ~0 = at, where 
0 c #b. + s) - &uo) c a C sli(uo+ 2s) - +(r(ob). Since c(t) - 6 growsbeyond any bound, only the 
condition in eqn (43~) is satisfied. However, the stronger conditions in eqns (43a) and (43b) are 
not satisfied. If this is admissible in classical viscoplasticity, it must be admissible in endoch- 
ronic inelasticity. 

In viscoplasticity, the strict stability condition in eqn (43a) becomes satisfied in the limit of 
infinitely rapid deformation, i.e. if o -rm, making the response perfectly elastic. If desired, the 
endochronic theory, too, can be formufated so as to make the response for o -+ 03 as close to 
perfect elasticity as one pleases. To this end, it suffices to use a time-dependent endochronic 
formulation associated with a Maxwell chain model[8, 141 whose shortest relaxation time is 
sufficiently short compared to the oscillation period. 

FultlIlment of the strict stability condition in eqn (43a). if deemed desirabIe, can be achieved 
also in other ways. One other way is to inco~~te into the endochronic formation an 
unloading criterion. This is not at all against the spirit of endochronic theory, as the absence of 
the unloading criterion is not the essential feature of endochronic theory, anyway. (Rather, it is 
the curvature of the inelastic stiffness locus.) As an alternative way, eqn (43a) may be satisfied 
by making hardening function f(v) depend on the energy dissipated up to current time, D, is 
such a way that a certain value of D depending on 1;“) could not be exceeded. 

The violation of uniqueness and stability ~qu~ements was suggested in Ref. [39] to give rise 
to serious numerical difhculties and preclude the use of endochronic formulations in practical 
numerical analysis of structures. However, within the context of eqn (43c), the physically 
reasonable condition, this could be true only if Q) were arbitrarily large; butthis is impossible, 
because o can never exceed the first fundamental frequency of the grid used (not even for a 
step load history). In a continue, o can, of course, be arbitrarhy large, but then a time- 
dependent et&chronic fo~uiation based on Maxwell chain with a sufBcientIy short first 
relaxation time should properly be used. Moreover, the period of osciuation of the grid due to 
numerical error would be very short, probably shorter than the time step used, in which case 
the oscillation could not be reflected in numerical solution. 

Therefore, the claim of innate numerical unsuitability of endochronic formulations[39] 
appears to be an ex~e~t~n. 

13. UNLOADING. RELOADING AND NON-VISCOUS HYSTERESIS 

By contrast to plasticity, the response curves for the ordinary e&chronic formulations 
(cqns 9 and 10) exhibit at the start of unloading a slope that exceeds the current elastic modulus 
E. For metals, experimental data clearly contradict such behavior. However, for geological 
materials the inte~re~tion of experimental data is not &ar because the current elastic 
modulus E gets reduced by microcracking, as compared to the initial modulus &, which causes 
that the unloading slope which does not exceed & may or may not be higher than E, depending 
on the value of E. 

However, if a reduction of E due to microcracking is not considered, or if it is too mild, it 
may be appropriate to introduce an expedient combination with plastic fo~u~tions, in which 
an endochronic unloading criterion is postulated and strain de:: is either reduced or completely 
canceled whenever unloading occurs. Some unloading criteria have already been suggested for 
endochronic formulations: dJ&) < 0[8], and sr;! def C O[ 1 I]. Valanis’ concept of internal 
barriers [ 121 is also a form of an unloading criterion. When df is taken as zero for unloding, the 
inelastic stiffness Iocus for the endochronic theory assumes the shape of a “bulge”, as shown in 
Figs. 5(b) or 7(b). With such a criterion the endochronic fo~ulation can be made to satisfy 
ticker’s postulate. 

Ss Vd. 14. No. 9-B 
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Consider now again cyclic loading, directing particular attention to the work A W dissipated 
due to non-viscous (rate-independent) hysteresis during unload-reload stress cycles of arbi- 
trarily small amplitude s. This work consists only of second order terms A W = duii d&/2 
because the hrst order terms uii def cancel with the work of applied loads, owing to the 
principle of virtual work. Although there is no fundamental necessity to satisfy the condition 
A W ~0 @tucker’s postulate), it may be reasonable to do so, especially at lower stress levels, 
unless there is some good reason against it (e.g. when a release of frictionally blocked elastic 
energy is expected due to friction reduction). The ordinary endochronic formulations (eqns 9 
and 10) violate this condition, because for the unload-reload cycle A W is negative (being 
represented by the cross-hatched area 123 in Fig. 10)[39]. Classical plasticity, as well as the 
afore-mentioned endochronic formulations with unloading criterion, gives A W = 0. This 
satisfies Drucker’s postulate but does not permit representation of cyclic strain accumulation 
(cyclic creep, “ratcheting”). This is a rather important phenomenon, whose mechanism cannot 
be explained by plastic slip (and calls for other effects, such as the “ratchet effect”[4042]). So all 
existing formulations are inadequate. 

Fii 10. Smsll cycles stress of straio superimposed on st8tic stress or strain. 

To model cyclic strain accumuIation, the end point of the cycle (point 3 in Fii. 104 must be 
to the right of the starting point of the cycle (point 1 in Fii. lOa). Obviously, the only way to 
obtain this and yet satisfy A W a 0 for arbitrarily small amplitudes s is to meet these conditions: 

(1) At the start of unloading (point 1). as well as at the start of reloading (point 2), de; may 
not be of the opposite sign as de 

(2) Inelastic strain of the same sign as de, must be produced right after the start of 
unloading and again right after the start of reloading. 

(3) During reloading the inelastic strains must be more pronounced than during unloading, 
but less pronounced than during virgin loading. 

These conditions can be met as follows. Conditions 1 and 2 require the use of kinematic 
hardening, such that aii (center of loading surface) (eqn 29) is set equal to sii at the start of 
deviator& unloadii and again at the start of deviatoric reloading; and similarily a0 is set equal 
to a0 at the start of volumetric unloading or reloading. An unloading-reloading criterion must, 
therefore, be introduced. This criterion can neither involve only stresses, for strain-softening 
may not he interpreted as unloading, nor can it involve only strains, for in symmetric hysteresis 
loops the return branch would make the transition to virgin loading too late. This fact, along 
with the fact that Drucker’s postulate[22] is concerned with work, suggests that the criterion 
be expressed in terms of internal volumetric and deviator& work W and W’, defined as 

dW=3ade, d W’ = Sii de+, (50) 

The inelastic strains from eqn (9) may be redefined as 

de”’ = (a - a& dA, de$’ = (q - aii)C’ dl (51) 

in which 

(1) fordWa0and W= Wo: c=l 

for d W’ B 0 and W’ = W$ c’ = 1 (virgin loading) (524 

(2) fordWc0: c = C” 
fordW’<O: c’ = c; (unloading) (52b) 
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(3)fordWaOand WC Wo: c=c, 
ford W’ a 0 and W’ < Wh: c = c; (reloading) (52c) 

with 1 d c, < c,, 1 d c;r et; W. and W; are the maximum values of W and w’ attained up to 
the current time. Coefficients air or a0 are set equal q whenever ds$ deir or d& de becomes 
negative, which assures that each of these expressions always remains positive (Il’iushin’s 
postulate). (According to a private communication by C. L. Shieh, this formulation works quite 
well for cyclic loading of concrete as welt as sand.) 

Consider now the uniaxial equivalent of eqns (50) and (51): 

&=da+~ 
E E +c d5, t$=(u-a)m-‘, dl=da 

f(7)’ 
dq = F(a)jdrj (53) 

where a is the current center of yield surface, corresponding to ati, ao, and function 4 is added 
as it is useful to control the dissipated work during the cycle. (This form has a rnulti~~ 
counterpart in setting q = (m + f)f2 in eqn (28) for the loading function.) The second order work 
dissipated during an unload-reload cycle is A W = A WI -A W2 where A W, and A W2 are the 
areas shown in Fig. 11. For a very small amplitude s, A W may be easily calculated from eqn 
(53), because F, f, and E may be considered constant during the cycle. Equation (53) for the 
unloading branch as well as the reloading branch may be written as d6 = E(1 - &“) dd in 
whichb=o-ae,e=E-6,u= cfffE at the canning of the cycle, to = strain at the beginning 
of the unloading branch. For small CF this equation is equivalent to db = (1 + a8“) dcTIE. The 
area @ above the unloading curve or below the reloading curve satisfies the equation 
d 6’ = B dc = (I+ ab”)ti d6fE. Integration of these two equations yields 

(54) 

Superimposing the strains and the areas for the unloading and reloading branches, one finds that 
the net strain increment and the dissipated work for the unload-reload cycle (Fig. 11) are 

Ar _ F&r - cd E(m+I)f(2s)“+‘~ ~=~(c~-~)(2s)~ 

in which W, = (2~)~/2E = elastic work of 6 during reloading. 
It is now evident that cyclic strain accumulation will occur if c,, < c, To also ensure that 

A W ;L 0, it is necessary that 

This is the condition under which an inelastic constitutive law exhibits cyclic non-viscous 
strain accumulation, yet satisfies Drucker’s postulate. This condition is of general validity, 
because for smaI1 enough s the Ioop can always be approximated by power curves, for any 
constitutive law. 

The ratio A WI W, characterizes non-viscous hysteretic internal damping. Equation (55) for 

AW = AW,-AW,*O 
E_ 

Fig. 11. Cyclic creep with small hysteresis loops for positive enaty diuipltioa. 
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be seems to give best agreement with Whaley and Neville’s test data on cyclic creep of 
concrete if m = 2i3, although m = 1 is also acceptable. 

It can be shown in the same manner as before that the present formulation again satisfies 
only continuity condition (43a), and possibly also (43b), but not the Liapunov-type condition 
(43a). despite the fact that Drucker’s postulate is not violated by the cyclic response. The 
opposite case, in which a frictional material is Liipunov-stable yet violates Drucker’s postulate, 
has also been pointed out[33]. Thus it must be concluded that Drucker’s stability postulate is 
not a reliable indicator of Liapunov-type stability. 

The preceding treatment of hysteresis can be readily adapted to plastic formulations using 
the tangentiai linearization (eqn 33). 

14.lNELASTIC STIFFNESS LOCUS FORFRACTURING MATERIAL_ 

The strain-softening, i.e. the decline of stress at increasing strain, as commonly observed in 
geological materials. is very hard to model in terms of plasticity theory. Even the modeling of a 
limit state, in which du/dr + 0, is difficult. One suitable formulation for limit states and the 
subsequent strain-softening is the endochronic formuIation. However, another possibk formu- 
lation which is similar to plasticity has been recently proposed simuitaneously by 
DougilI[35,34] and by Naghdi and Trapp[37j. w assumes that uu = &,,&,, where 0~ 
are the elastic moduli which decrease as the strain grows, &,,, = I&,,&), so as to model the 
effect of microeraeking in an inhomogeneous material. By differentiation this yields 

The main question now is how to determine df&. To this end, DougiIl postulates a “fracture 
surface” F(ccif. I&) = 0, which is defined as an envelope of all states eU which can be reached 
from the current state without further fracturing (m&~ra&ing); I& are fracturing parameters. 
Choosing (afla&)dH, to be negative when fracturing occurs and noting that dF = 
(ad&r) de,, + (dfla&) d& = 0, it iS dear that 

when fracturing occurs and dfldq SO when it does nOta ConseqUendY 

where gy are some constants. Now, imposing Il’iushin’s postulate[35,371, dcrfi 4 * 0, which is 
a complementary form of Drucker’s stability postulate, and comparing this with eqn (58). it 
follows that dd; - -dFIat, Furthermore, comparison with eqn (59) yields gir - -W&Q, and so 
one may set 

For a d&ant pressure-sensitive material, a suitable form for F is here proposed to be 
F(q) = 7 + h(r) - HI, with f = (eiieir/2)“. For this case eqns (6Oa.b) yield 

d.=df+cx’dr=v+cc’d, 

where 4 is an empirical coefficient, which can depend on uij and % a’ = dh(cr)idc and a = a’ 
according to eqns (6Oa,b). Similarly as for the effect of inter& friction on plastic shear, it is 
possibk that shear fracturing depends on volume change or c Then, a# a’, and the normality 
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rule, expressed in qn (6Oa), no longer applies for volume changes. For cyclic loading it seems 
appropriate to introduce kinematic hardening by replacing eii with eij - oil in the expression for 
F. 

To compare the fracturing material formulation with other formulations, it is of interest to 
determine the inelastic stifkss locus, defined again as the locus of the end points of all vectors 
deli which give the same da$. According to eqn (6Oa) it is necessary that drc be constant. 
Hence, according to qn (6Ob), the plastic stiffness locus is a plane (hyperplane), which appears 
as a straight line in a two-dimensional picture. The plane is oriented tangentially to the current 
fracture surface except in case of eqn (62) where for 4’ # Q normality is not satisfied in the 
volumetric cross section. 

Thus, the inelastic stiffness locus is the same as in plasticity theory, and the difference 
consists only in the facts that hardening is governed by strain rather than stress and that elastic 
moduli decrease rather than being constant. So, the fracturing material theory as described here 
exhibits no inelastic strain for loading to the side, which must be questioned when material 
instability is to be investigated. 

IS. CONCLUSIONS 

(1) A meaningful way to compare the endochronic and classical plastic formulations is by 
studying the locus of all strain increment vectors which give the same magnitude of inelastic 
strain increment, called inelastic stiflness locus. 

(2) For classical plasticity the inelastic stifkss locus is a straight line, whereas for the 
endochronic theory it is a circle or a sphere, and for its refined versions it is an ellipse 
(ellipsoid) or a bulge on a line. The basic Mereace of endochronic formulations from 
incremental plastic formulations consists in the fact that the inelastic stidness locus is curved, 
rather than straight. This causes that for a strain increment which is tangent to the current 
loading surface (loadii to the side) the et&chronic theory exhibits plastic strain, malting the 
response softer, while the associated or non-associated plasticity gives purely elastic response. 
The latter is in contradiction to the prediction of microstructural polycrystalline models, which 
show that the current yield surface may shrink almost to a point or it&itesitual circle, as in 
endocluonic theory. 

(3) Endoehronic theory is similar to the vertex hardening models and to the deformation 
theory of plasticity in that the inelastic stiffness locus is not a straight line and that inelastic 
strain accompanies strain increments tangential to the loading surface, while in plasticity the 
response is elastic. Therefore, among all inelastic theories, classical plasticity is least prone to 
indicate material instability. 

(4) In endochronic theory as well as classical plasticity, the inelastic strain is always normal 
to the loading surface, while in vertex hardening models it is not. Thus, endochronic formula- 
tion is stiffer than vertex hardening for strain directions parallel to the loading surface, and so 
it is less prone to indicate material instability. 

(5) The decision whether the plastic or the endochronic formulation is correct is solely up to 
the test data or a microstructural model for a given material. The classical plasticity formulation 
with normality rule is the least safe assumption when the material is expected to exhibit 
instabilities (unstable strain-localization) or strain-softening, and when one is interested in 
finding these instabilities. The experiments which are most relevant for making the choice 
between these two theories are not only unloading and cyclic loading but also loading to the 
side of the previous path in the strain space, and loading into the strain-softening range. 

(6) For the loading surface and the hardening rules of plasticity, such as isotropic and 
kinematic hardening, one can define their counterparts in endochronic formulations; but these 
are relevant only as far as the “local” hardening rule near the current state is concerned. 

(7) It is reasonable to expect that the intrinsic time increments dt exhibit stress-induced 
anistropy, such that the quadratic form defining # consists of invariants of de,, only if the 
material is stress-free. This type of stress-induced anisotropy distorts a circular inelastic 
stiffness locus into an ellipse or an eccentric circle. 

(8) Whii in plasticity theory it is possible to formulate the matrix of tangential moduli, one 
for loading and one for unloading, in endochronic theory the matrix of tangential moduli can 
only be expressed if the direction of the strain increment vector is known. Otherwise, the entire 
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matrix of tangential moduli continuously depends on this direction, which is unknown when 
material inst~ility is to be analyzed. For propo~ion~ loading, the endoc~onic formulation can 
be converted to equivalent non-associated plasticity formulation. 

(9) By contrast to plasticity, but similarly to viscoplasticity, the ordinary endochronic 
formulations do not satisfy a stability condition of Liapunov-type, as is revealed by studying 
the response to pul~~g loads of small amplitude. This is because Drucker’s stability postulate 
is violated, and it must be so for materials which exhibit internal friction and microcracking. 
Physically, however, only a continuity condition is justified, and this condition is satisfied by 
endochronic formulations provided that the frequency of oscillating stress is bounded (which is 
always true for finite element grids). Various regiments are possible to make endochronic 
formulations satisfy the stronger stability condition and/or prevent unbounded accumulation of 
inelastic deformation during cyclic loading. 

(10) Introducing unbading and reloading criteria and kinematic hardening such that the 
center of the loading surface is moved to the current stress. point whenever loading reverses to 

unloading or vice versa, the endochronic formulation can be made to satisfy Drucker’s postulate 
for hysteresis loops, while at the same time not guaranteeing Liapunov stability. 

(II) The fracturing material theory in which the ioading surface depends on strain rather 
than stress is similar to plasticity in that the inelastic stiffness locus is also a straight line. 

t 
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APPENDIX 

E~DOCHRONIC THEORY AS VISCOPLASTlCITY WITH 
STRAIN-RATE DEPENDENT VISCOSITY 

Consider the viscoplastic constittttive rehnion 

dei, P 4u, do*, f de;, de;=gdr. dr=* 
a@, $1 

in which t = time; z was initially calkd reduced timeIl.21 and is now better known as intrinsic time [3]. in classical 
viscoplasticity, the viscosity coefficient, a. is a function of o and possibly also c However, as suggested by Schapery [I, 21, 
generally II must be considered to depend also on the straii rates &, which mi be assumed in the form a = a@, @2(i). 
If the inelastic strain develops gradually, function as(f) may be expected to be continuous and smooth. Then ahyl& 
series expansion is admissible: 

(02($)]-’ a p0 + p&j + p&&i& + p#&)lf&&~ t . . . 161) 

where I = some exponent to be bedim later. The series will be truncated after the cubic terms. The iinear and cubic 
terms must be, however, discarded (pe = pw = 0) bccausc they wotdd violate the cot&ion that u must deemase as hl 
increases. 

Furthermore, it is of interest to examine the limit case for infinitely high strain rate;@+=. From qn (64): 

(65) 

On physical grounds, for k1-m this ratio must tend neither to intinity nor to zero. The latter case, which represents 
perfectly elastic instantaneous response, is obtained for 2 - r < 0. The former case is obtabwd for 2 - r > 0. Tbarefore, the 
only possibility left is 2 - r = 0 or r = 2. Bquation (64) may then be rewritten in the form 

=&@‘odr’+~+dei/de&? 
_’ * 

Note that for a certain choiie of piti, the reduced time coefficient II is a non-negative function of the total octahuM 
strain rate. as suggested in I%8 by Schapery (p. 279 of Ref. III). The particular square root-type form. deduced here (and 
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in Ref. [S]) from physically reasonable conditions, was the starting assumption of Valanis[3]. Equation (66) may be 
rewritten as 

(67) 

in which I/T, = ~@r)/ol(o, l @, P* = Z12peia12. Z, = constant; TV is a cluuactcristic retardatk time whose dependence 
on u and f models class&l viscoplastic behavior. For rapid deformations, dadt +*, dt drops from eqn (67) and z = aZ,, 
w&b mak eqtn (67) md (63) quivalent to a&s (9) and (IO). Coedlcieats Pih are variabk. whiih may be most simply 
described by a scalar hardening function of I, as proposed first by Valanis[3]. 

Tha fom&tg aaatysis shows that endocbronic theory is a speciai case of general viscopiasticity and the intrinsic time 
is equivalent to the reduced time used in viscoplasticity. 


