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The double power law, which was previously shown to be capable of representing test data quite
closely, is here developed as a model for practical prediction of creep at constant humidity and
temperature from the composition of concrete mix, strength, age at loading and load duration.
Extensive supporting comparisons with test data from the literature are given.

INTRODUCTION

Time-dependent deformations of concrete at
constant temperature may be subdivided into a load-
independent part, called shrinkage, and a load-
dependent part, called creep. Prediction formulas for
shrinkage have been dealt with in Part I, and the
prediction formulas for creep at constant humidity and
temperature, called basic creep, will now be the object
of our attention.

In setting up a prediction model for creep, two levels
of sophistication and complexity may be distinguished,
depending on the treatment of humidity and size effects:

(a) the most simple model is obtained when the time
shape of the creep curves is considered to be the same
for basic creep and drying creep, in which case the
effects of humidity and size are introduced merely by
multiplicative correction factors which scale the creep
curve vertically;

(b) physically more correct, but also less simple, is to
recognize that the time-shape of the drying creep curves
and the basic creep curves is different. This is because a
drying creep curve is roughly a superposition of the
basic creep curve, which is independent of size, and the
shrinkage curve, which is strongly dependent on size
and also has an entirely different shape and humidity
dependence.

All code formulations have thus far taken approach
(a), and the best practical model that can be achieved
with this approach is probably that of Branson
([351.[35 a]) (*), adopted by ACI Committee 209 [35 b].
The time shape in these formulations is a compromise
between the shapes of basic and drying creep curves,
and thus it gives inevitably some flattening of the creep
curve near the end of the log-time scale, which is not
true for the basic creep and causes underestimation of
the long-time basic creep (mass concrete). Moreover,
since the additional drying creep term behaves like
shrinkage, the size effect consists in shifting the curve of
this additional term left or right in the log-time scale,
rather than in scaling the curve of this term vertically.
Consequently, the compromise approach (a) inevitably
overestimates the long-time drying creep of thick
specimens, and underestimates the long-time drying
creep of thin specimens. Therefore, approach (b) which
was proposed in [4] (and is similar to a proposal made
by Wittmann; cf. [4]) is adopted herein, even though it
cannot be as simple as the compromise approach (a).

Among the existing creep formulations, one may
basically distinguish those which try to separate the

(') Reference numbers not listed at the end of this part are found in
the preceding part. )

total creep strain in a reversible (delayed elastic) part
and an irreversible part (flow), and those which do not.
In the latter case a product of a function of age and a
function of load duration is usually adopted, which is
well supported by tests. The formulation in the new
C.E.B. Model Code (1978) is of the former type, while
Branson’s model (ACI 209) belongs to the latter type,
and so does the formulation in the sequel, which may be
regarded as a logical refinement of Branson’s model
once the decision to distinguish between the time shapes
of basic creep and drying creep and their disparate
humidity and size dependences is made.

FORMULAS FOR BASIC CREEP

Our considerations will now be restricted to linear
creep models which follow the principle of superposi-
tion in time [5] (). Among various possible simple
formulas, the creep function for basic creep can be best
approximated by the double power law which was
proposed in reference [5] and verified by test data in
references [2], [6]. We will introduce here the double
power law in the form

J(t, t')= i +Co(t, 1), )
Fo 5 (11)

Colt, )= (¢ =mray(t— 1.

which represents a slight generalization of the
previously used form, consisting in the addition of
parameter « that indicates the (theoretical) creep for
infinite age at loading; J (¢, t')=creep function =strain
at time t caused by a unit sustained uniaxial stress
acting since time ¢'; Cy (¢, t')=specific creep; E,, @y, o,
m, n are material parameters. The mean values of
exponents m and n are about 1/3 and 1/8.

It is characteristic of the power-type creep law that
there exists no final value of creep. Indeed, the test data
for basic creep normally rise at constant or increasing
slope in-log-time as far as the measurements go. (A
decrease in slope near the end of creep curves may be
observed in drying creep, but this is due to the
superposition of shrinkage curve; see Part II1)
Formulas for basic creep which imply that creep reaches
a final value have no experimental justification.
Moreover, such formulas are generally more complica-
ted. However, although some designers might feel more
comfortable if a final creep value were given, the
question is largely academic, for the difference between
the 50 and 100 year J-values according to equation (11)
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is only about 8 9;. For practical purposes, the 50 year
creep value may be called the final one.

Power functions of t —t’ as well as ¢’ had been used
for the creep function before the double power law was
introduced. A strong argument for the power function
of t —t' is presented by the activation energy model of
Wittmann (cf. [4] and [49]). A stochastic process
model of creep based on creep mechanism also logically
leads to a power function of ¢—¢' [3]. Normally, the
power functions of t—1t’ were fitted to test data only
after a certain measured initial strain, corresponding to
anywhere between 1 min. and 3 hour load duration,
was subtracted from the measured total strains. It
appears, however, that the optimum values of m and n
are extremely sensitive to the value of the initial strain
that is subtracted, and the initial strain lacks,
unfortunately, an unambiguous definition. Taking the
initial strain as the strain for some load duration
between 1 minute and several hours is illogical because
creep curves in log-time are smoothly inclined
beginning with extremely short load durations
(0.001 second). This also yields a too high value for n
(around 1/3 which leads to overprediction of long time
creep by the power curve, as noted in [12].

In introducing the double power law, the basic idea
was to exploit the smoothness of the complete creep
curves in log-time and to use a formula which would
hold not only for the long-time loads (beyond 1 day)
but all the way to the shortest load durations.
Surprisingly, the increased time range did not require a
more complicated formula. By virtue of making E,
much higher than the actual elastic modulus, it allowed
the power dependence to be used simultaneously for
t—t" and t’, and it even caused the creep formula to
become simpler, making it possible to do away with a
separate formula for the age dependence of initial strain
or elastic modulus.

Thus, the conventional static modulus as well as
dynamic modulus as functions of age may be expressed
also from the double power law, setting ¢t — ¢’ =0.1 day
or t—t'=10"" day, respectively, in equation (11); ie.

1
—/: 7 =J [l+0.1, tl
E(W)  Em() " )
1 @y _
= + 20 m ),
£ T 07T (12)
_ = J(t'+1077, 1)
Edyn(t)

1 Py . _
= — 4+ =107 (@™ . 13
E, + E, 0"""(t' ™+ a) (13)

Experimentally, from [36], the ratio E,,,/E was found
to be about 1.20 and E probably corresponded to
t—1t'~0.001 day. From the double power law fitted
to the data from [36], [9], [37], [38] one gets
J(28+0.001, 28)/J (28 + 1077, 28)=1.27, 1.28, 1.28
respectively, which is close enough and confirms
equation (13). The load duration of t—t'=0.001 day
might be more typical of the duration that corresponds
to normally measured initial strains, but 0.1 day gives
values which roughly agree with ACl and CEB
recommendations; see the curves in figure 13, compar-
ed with data points indicating the measured
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1/E-values at 28 days of age as reported in the
creep data sets used herein.

The standard creep coefficient is obtained from
equations (12) and (11) as @ (¢, t)=E () J (¢, t')—1.

It must be emphasized that E, called the asymptotic
modulus, does not represent an actual modulus for any
load duration measured; it represents merely the left-
side asymptote of the creep curve in log-time. It seems
to be because of this fact that the power laws in t—¢'
and t’ acquire their broad applicability.

The addition of parameter « was instrumental for
achieving more consistent values of material parame-
ters for various concretes, as compared to the
previously used form [6]. Introduction of « s, of course,
not only opportune but also logical because an infinitely
old concrete (t'— o) should still exhibit creep.
However, this is chiefly a theoretical argument for (¢') ™
alone (without &) becomes negligible only well beyond
the range of interest.

It is an important property of the double power law
that the effect of ageing (i.e. of t') can be controlled
independently of the shape of the creep functionin t —¢'.
This contrasts with another traditional formulation still
in use — the rate-of-creep (or Dischinger) method and
its improved versions, in which the elastic modulus is
replaced by effective modulus treatment of the so-called
reversible creep component ([14], [39], [6]). In this
formulation, J (¢, ¢') is assumed to be a sum of functions
of one variable, which severely limits its capability to fit
test data; in particular, the effect of aging (i.e. of t') and
the shape of creep curve are tacitly assumed to be
described by one and the same function of time, which is
far from the truth. Furthermore, unlike the double
power law, this formulation forces J(t, t') to be
separated into the so-called reversible (delayed elastic)
creep and irreversible creep (flow). This is neither
thermodynamically justified in case of an aging
material, nor is it supported by test data on creep
recovery [40]. And it is not needed for keeping
structural creep calculations simple. As far as the fits of
the basic creep curves are concerned, this traditional
formulation gives a much poorer agreement with test
data than the present model (compare the fits in the
sequel with those in [41]).

As is well-known from chemical thermodynamics
and thermodynamics of mixtures, a time-variable
reacting system must be decomposed into its time-
invariable reacting components. Thus, the only correct
treatment of reversibility and thermodynamics of aging
creep must be based on modeling hydration as volume
growth of, or bond formation between, time-invariable
components [42].

PROPOSED DEPENDENCE ON COMPOSITION
AND STRENGTH

It appeared that not all five material parameters need
be considered independently as functions af composi-
tion. Namely, it seems that approximately

1 21 2

= =2t 1), 14
Eq 3E13(1t1) (14)
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in which t{ =28 days, t; —t; =0.001 day, and substitu-
tion in equation (11) then yields

103n

P

By optimization of data fits, performed similarly as
described for shrinkage, the following empirical
formulas have been identified:

1 1

=—, =028+ —, 16

o yrp m=0.2 +(f92 (16)
0.07 x°

for x>0:n=0.12+m—6; (17)

for x2£0:n=0.12,

2.2
x=|i2.l$ FO1(f)1S (%)1/3 (g) ]a1 —4, (18)

where f, must be in ksi (1 ksi=1,000 psi
=6.895 MN/m?) and a, is a coefficient taken as 1.00 for
ordinary cements of ASTM types I and II, 0,93 for
cements of type III (rapid hardening) and 1.05 for
cements of type IV (low heat).

When a measured value of the conventional elastic
modulus E (static modulus for t—t'=0.1 day) for the
given concrete is available, 1/E, may be readily
calculated from equation (12). If J (¢, t') for t'=28 days
and t—t'=0.001 day is known, then 1/E, is 2/3 of
J(t, t'); equation (14). When a directly measured value
of E is unavailable, one might think of using the well-

known ACI formula (57,000 \/ﬁ) or the analogous
CEB formula. However, these formulas did not appear
to be sufficiently accurate in the context of characteri-
zing creep at various ages and compositions. Therefore,

an explicit empirical formula for E, has been developed
(fig. 12) as well:

1 1 2
E, 0.09+ 72 z;=0.00005p% 1., (19)
in which p=unit mass of concrete in Ib/ft?
(=16.03 kg/m?),fisthe 28 day cylinder strength in ksi
(=6.895 N/mm?) and 1/E, is in 107%/psi
(=145.0x10"¢% per N/mm?). When substituted in
equation (12), this formula can be also used to
calculate E(t’). The resulting values are in good

correlation with the familiar ACl formula (57,000 / f7);
see figure 13.

According to equation (16), the ratio of creep of
concreéte loaded when old to creep of concrete loaded
when young decreases as the strength increases. Creep
of concrete loaded at high age also increases as the
water-cement ratio increases. Furthermore, according
to equation (18), the ratio of creep to elastic
deformation and the ratio of long-time to short-time
creep increase with the cement content at a fixed
aggregate content and a fixed water-cement ratio. They
also increase with the water-cement ratio, and this effect
is more pronounced at a higher water-cement ratio and
a higher sand-gravel ratio. The influence of aggregate-
cement ratio and sand-gravel ratio according to
equation (18)is rather complicated and cannot be easily

Z. P. BAZANT - L. PANULA

described; these aspects of equation (18) are concoc-
tions of the machine —they were hatched from the
optimization program. Nevertheless, inclusion of a/c,
s/cand a/ g in equation (18) significantly improves data
fits; the formula works. The creep curves are highly
sensitive to changes in n, even as small as 0.005. The
values of n generally lie between 0.10 and 0.17, and
usually they are between 0.125 and 0.145.

For illustration, the values of n have been calculated
from equations (17) and (18) for all mixtures considered
for basic creep in the sequel (figs. 14, 15) as well as all
mixtures in Part III that will deal with drying creep.
These n-values are plotted in figure 16 ¢ which
demonstrates that strength alone does not suffice for
predicting exponent n.

COMPARISON WITH CREEP TEST DATA

The method of optimizing the data fits was the same
as described for shrinkage. Fits of fourteen different
comprehensive data sets on creep under uniaxial
compression ([9], {43, [37], [38], [44], [25], [36], [45], [46),
[47],[48],[20], [22], [23], [55]) are exhibited in figures 14,
15, 17, 18. Three types of fits are shown.

The solid lines in figures 14 and 15 represent the fits
when all parameters are calculated from equations (16)-
(18) except that 1/ E, is optimized individually for each
data set. These fits indicate how good the prediction
formulas for creep parameters are when the error in the
elastic modulus is minimized.

The dashed lines in figures 14 and 15 represent the fits
when 1/E, is determined from the measured 28 day
elastic modulus using equation (12). These fits show
how good the formulas are when there is no error in the
elastic modulus.

Finally, figures 17 and 18 show the optimum fits
when all parameters, including 1/E,, are determined
from the strength and the composition of concrete mix.

The figures also show the values of the relative root-
mean square deviation from (hand-smoothed) measur-
ed creep curves, which is defined as

1 M 1/2 1 M 1/2
(53 2 5) / (2% @

in which J; are the points of the experimental (hand-
smoothed) creep curves, spaced uniformly in log-time
except for being crowded more near the end of each
curve to give a higher weight to the final values; 4; are
the deviations from these experimental points.

The fits are quite satisfactory, as compared to
previous models. A very substantial improvement is
achieved when the elastic modulus is known. In fact,
much of the disagreement in figures 17 and 18 is due to
the poor prediction of elastic modulus, E. In Dworshak
Dam data (fig. 14) the beginning of early age creep
curves is fitted poorly because pozzolan caused slower
than usual strength development (especially  at
t'=1 day and t'=3 days).

An idea of the accuracy of the formulas (17) and (18)
for the prediction of n may be gained from figure 16 c.
The variation of m is plotted in figure 16 b.
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A number of other test data (e. g., [49], [50], [51]) not
shown in the figures were analyzed. Fits of these data
are not exhibited, however, because in each case some
important information on the test data was missing and
could not be acquired.

One difficulty in interpreting the test data as reported
by various authors is the lack of a clear and uniform
definition of the initial “elastic” or “instantaneous”
strain that was subtracted by the experimentalists from
strain measurements to get the creep part. Private
correspondence with some of the authors helped to
resolve the question, but in many cases this trivial
problem precluded using potentially valuable test data.
For structural creep analysis it is only the sum of elastic
and creep strains which matters, and comparisons with
test data should always be done in this manner, which is
adhered to in this study.

The basic information in the test data used is
summarized in Appendix II.

The fits achieved are not perfect, but this must be
judged in the light of the statistical scatter viewed in the
perspective of previously available models. Further
improvements are possible —e. g., when the 2/3 ratio in

equation (14) is replaced by a function of composition,
but whether further complications are worthwhile
remains to be seen.

ASYMPTOTIC PROPERTIES OF CREEP
FUNCTION

When the rate-type models for concrete creep were
first studied ([52], 1966), it was thought that the rate-
type creep function must satisfy the condition

o2, t
ﬁ =0, @D

which is equivalent to the condition that
oJ (¢, £1)/0t=0J (t, ty)/ 8t for any t;>t,. For the
double power law, condition (21) reads

ne,
E,
x[(A=n) (' ™+ &) (t—t)" —mt'"""1]<0. (22)

(t—ty!
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Fig. 17. — Fits of Creep Tests by L’Hermite, Mamillan and Lefévre (1965, 1971) [9], Hanson and Harboe (1953, 1958) ({37, {38]) for Canyon Ferry
Dam, Ross Dam and Shasta Dam, Pirtz (1968) [44] for Dworshak Dam and Browne, Blundell and Bamforth for Wylfa Vessel ([46], [48]), 1/E,

calculated from proposed formula.
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Fig. 18a. — Demonstration that Superposition Principle Applied to
Experimental Creep Curves Gives Non-Monotonic Recovery.

Condition (21)is necessary and sufficient for ensuring
that the creep recovery curves obtained from the
principle of superposition have a decreasing slope at all
times. From equation (22) one can check that the
double power law violates condition (22) for

1—
f—t'> — T (L+ae™), (23)
m

i.e., for long enough durations ot creep recovery, which
means that the creep recovery curves obtained by linear
superposition begin to rise (slightly) after a certain
period of decline. Recently, the double power law has
been criticized precisely on the same grounds
([53], [54]). The same also applies to Branson’s model
([35], [35 a]) used by ACI [35 b).

However, there is an implicit assumption in these
arguments, namely that the principle of superposition
should apply for creep recovery. This contradicts test
data, and in fact the only way to fit the creep recovery
data closely is to use a nonlinear creep law (as has been
found in a simultaneous investigation in which the
concept of kinematic hardening was applied). More-
over, there exist some test data in which a reversal of
creep recovery from a declining to a rising slope is
observed [40].
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Although the principle of superposition is not
applicable when strain decreases as in recovery, some
authors use it as a crude approximation, and some even
propose to adopt the recovery curves as the primary
basis for formulating the creep function. It is
overlooked, however, that the experimental long-time
creep curves themselves usually give non-monotonic
recovery when the recovery is predicted from them by
superposition. This is shown in figures 14 and 15 for
some of the data from Part II. First the measured creep
curve J, for one age at loading ¢} is plotted, and then
the measured creep curve J, for loading age t; is
subtracted from curve J, as shown in figure 18 a (the
end of curve J, for Dworshak Dam was traced
according to the trend of the adjacent measured creep
curves which are not shown.)

Criticizing the double power law, Nielsen further
made an energy argument based on positiveness of the
energy dissipation rate, D (p. 126 of [53]). This
argument, however, rests on the tacit and unwarranted
assumption that a decrease in recoverable energy U
stored in the material may occur only if the strain is
decreasing. This is not generally true for an aging
material, as one can readily check by expressing dU/dt,
e.g. for the Maxwell chain, with increasing elastic
moduli. A thermodynamic explanation may be found
in the effect of the chemical energy of hydration on the
overall energy balance [55 a]. Thus, no thermodynamic
requirement that would lead to condition (21) appears
to exist, unless aging is negligible as in very old
concrete.

Nevertheless, a weaker, asymptotic condition,
namely
22 J(t, t)

1i -0,
ot

=

(24)

might be appropriate. This condition, set forth in the
spirit of the fading memory principle, states that at very
high age the differences in creep rate for loads applied at
various young ages should become negligible, i.e., the
creep curves should become parallel at large
enough t—t'. If we considered recovery curves based
on the principle of superposition, condition (24) wouid
be equivalent to stipulating that the recovery curve
must tend to a horizontal asymptote, whether there is a
recovery reversal or not.

From equation (23) we see that the double power law
does not satisfy condition (24). However, this seems to
be of no practical consequence since the values of
time ¢’ at which condition (24) would be realized appear
to lic well beyond 50 years (which is corroborated by
simultaneous studies of alternative creep laws).
Formulas which are more complicated than the double
power law and give a transition from power-type curves
at small creep durations toward parallel inclined
straight lines in log-scale at high creep durations are
possible; such formulas would benefit some fits, notably
those of L’Hermite and Mamillan’s data [9], which are
peculiar by the fact that in log-time the creep curves for
higher ¢’ tend to turn sharply upwards.as if they were to
become parallel for all ' when t—t'>1,000 days.
However, no other data exhibit this trend within the
time range of measurements, and so the introduction of
such more complicated formulas would be of



questionable usefulness. Therefore, it seems to be
appropriate to stick to the simpler double power law.

Many other possible formulas for the creep function
have been also analyzed, in addition to those listed
in [2].

APPENDIX II

Basic Information on Creep Data Used

L’Hermite and Mamillan and Lefévre’s Creep Tests (1965,
1971) [9]. — Prisms 7 x 7 x 28 cm, in water, 28 day strength
370 kp/cm? (36.3 N/mm?); room temperature; concrete
French type 400/800; cement content 350 kg/m?>.
Stress=1/4 strength; water-cement-sand-gravel ratio
0.49 : 1:1.75 : 3.07. Seine gravel (silicous calcite).

Hanson and Harboe’s Creep Tests for Shasta Dam (1953,
1958) ([37], [38]). — Cylinders 6 x26 inch (152 x 660 mm)
sealed at 70°F (21°C). 28 day cylinder strength= 3,230 psi
(22.3 N/mm?); cement type 1V; max. size of aggregate 0.75 to
1.5inch  (19-38 mm). Water-cement-sand-gravel ra-
tio=0.58 : 1 : 2.5 : 7.1 by weight. Also measured was short-
time creep for t' =2 days[J (¢, t')=1.362,1.386 x 10~ %/psi, at
t—t'=12.7 and 19 days} and ¢ =7 days (J (¢, t)=0.712,
0.718, 0.783, 0.735, 0.798, 0.754, 0.810, 0.824, 0.843,
0.819 x10~%/psiat t—t'=2.8,17.5,18, 25,27, 30,42, 52,67,
79 days respectively. These were not fitted because the early
strength development was unusually slow (cement type 1V).

Pirtz’s Creep Tests for Dworshak Dam (1968) [44]. —
Cylinders 6 x 18 inch (152 x457 mm) sealed, 70°F (21°C);
28 day cylinder strength 2,080 psi (14.33 N/mm?).
Stress < 1/3 strength. The mix contained 196.7 kg of type 11
cement per m* and 68 kg of pozzolan per m3. Ratio of water-
(cement + pozzolan)-sand-gravel =0.56 : 1 : 2.79 . 4.42.
Granite-gneiss aggregate with max. size 1.5 inch (38 mm).

Meyers and Maity’s Creep Tests (1970) [43]. — Mix A:
Prisms 14 x3.5 x 3.5 inch (356 x 89 x 89 mm) sealed, 70°F
(21°C). 13 day prism strength 4,350 psi (30 N/mm?2).
Portland cement of type III. Applied load ~40% of
ultimate prism strength. Water-cement-sand-gravel ratio
0.85 : 1 :3.81 : 3.81 by weight. Crushed limestone aggregate;
local quartz sand (from different batches for mixes A and B).
Mix B: same as mix A except: 12 day cyl. strength 5,200 psi
(35.9 N/mm?). Applied load ~ 35 %, of ultimate cyl. strength.

Hanson and Harboe’s Creep Tests for Canyon Ferry Dam
(1958) ([37], [38]). — Cylinders 6 x 16 inch (152 x 406 mm),
sealed, 70°F (21°C); 28 day cyl. strength=2,920 psi
(20.1 N/mm?); stress<1/3 strength; cement type II; max.
size of aggregate=0.75 to 1.5inch (19-38 mm). Water-
cement-sand-gravel ratio=0.5 : 1 : 2.87 : 10.37 by weight.

Hanson and Harboe’s Creep Tests for Ross Dam (1953,
1958) ([37), [38]). — Cylinders 6 x 16 inch (152 x 406 mm)
sealed, 70°F (21°C); 28 day cylinder strength 4,970 psi
{34.3 N/mm?). Cement type II; max. size of aggregate
1.5inch (3.8 cm). Water-cement-sand-gravel ratio
0.56:1:2.73:7.14.

Mossiossian and Gamble’s Creep Tests (1972) [25]. —
Cylinders 6 x 12 inch (152 x 305 mm). At 1009 relative
humidity, 70°F (21°C); 29 day cylinder strength 7,160 psi
(49.4 N/mm?). Cement type IIl. Max. size of aggre-
gate 1inch (2.54 cm). Water-cement-sand-gravel ratio
049 :1:1.35:2098.

Browne, Blundell and Bamforth’s Creep Tests for Wylfa
Vessel Concrete (1969, 1971, 1975) ([46], [47], [48]). —
Cylinders 6 x 12 inch (152 x 305 mm), sealed, 20°C; water-
cement-sand-gravel ratio 0.42:1:1.45:295. Ordinary
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portland cement and crushed limestone aggregate of max. size
1.5 inch (38 mm); 28 day average (6 inch, 152 mm) cube
strength 7,250 psi (50 N/mm?). Measured were also creep
curves for t'=28 and 180 days which were excluded from
analysis because they exhibit an increase rather than a
decrease of creep with increasing t'.

Keeton’s Creep Tests (1965) [20]. — Cylinders 3 x9 inch
(76 x 229 mm) and 6 x 18 inch (152 x 457 mm) at 100 %, rel.
humidity, 73°F (23°C); 28 day cyl. strength 6,550 psi
{45.2 N/mm?). Portland cement of type I1I. Applied stress
309 of the ultimate compressive strength of the specimens.
Max. aggregate size 3/4 inch (19 mm). Water-cement-sand-
gravel ratio 0.457 : 1 : 1.66 : 2.07. Each creep curve appears
to have been hand-smoothed in the actual time scale.

York, Kennedy and Perry’s Creep Tests (1970) [23]. —
Cylinders 6 x 16 inch (152 x 406 mm), sealed, 75°F (24°C).
28 day average cyl. strength 6,200 psi (42.8 N/mm?);
Portland cement of type II. Applied axial stress 2,400 psi
(16.6 N/mm?). Max. size of limestone aggregate
0.75inch (19 mm). Water-cement-sand-gravel  ratio
0.425:1:203:2.62.

Rostasy, Teichen and Engelke’s Creep Tests (1971) [36]. —
Cylinders 20 x 140 cm at relative humidity 2959, 20°C

temperature. 28 day  cube  strength 455 kp/cm?
(44.6 N/mm?). Applied axial stress 94.7 kp/cm?
(9.3 N/mm?). Aggregate Rhine gravel and sand,
max. size 30 mm. Water-cement-sand-gravel ratio

041:1:243:3.15.

Ross’ Creep Tests (1958) [45]. — Cylinders 4,63 x 12 inch
(118 x 305 mm) stored at 93 9 relative humidity and 17°C.
28 day strength 6,400 psi (44.1 N/mm?). Rapid hardening
Portland  cement. = Water-cement-sand-gravel  ratio
0375:1:1.6:28.

Gamble and Thomass’ Creep Tests (1969) [55]. — Cylinders
4 x 10 inch (102 x 254 mm) tested at 94 % relative humidity,
75°F (24°C). Cement type I, crushed greywacke aggregate
and beach sand, max. size 3/16 inch (4.76 mm). Stress-
strength ratio 0.36. 28 day cylinder strength 4,850 psi
(33.4 N/mm?). Water-cement-sand-gravel ratio
0.7:1:2.04:3.06.

McDonald’s Creep Tests (1975) [22]. — Cylinders
6 x16 inch (152 x406 mm), sealed, 73°F (23°C); 28 day
average cyl. strength 6,300 psi (43.4 N/mm?). Applied axial
stress 2,400 psi (16.6 N/mm?). Cement type II, limestone
aggregate max. size 3/4 inch (19 mm). Water-cement-sand-
gravel ratio 0.425: 1 :2.03 : 2.62.
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RESUME

Un modéle de prévision pratique des déformations du
béton en fonction du temps. I. Retrait. — On propose un
modele de prévision pratique du fluage et du retrait du
béton a partir de la composition du mélange, de la
résistance, de I’dge au chargement, des conditions
d’ambiance, des dimensions et formes, etc. Les princi-
pales caractéristiques sont : la loi de double puissance
pour le fluage de base, la loi hyperbolique quadratique
pour le retrait, leffet d’échelle du type « diffusion de
Phumidité », un terme ajouté de fluage de séchage lié au
retrait et la prise en compte des effets thermiques par
lénergie d’activation. On s’est servi des techniques

d’optimisation afin de faire concorder les nombreux

résultats d’essai publiés. Ce travail est la continuation

d’études antérieures et se divise en plusieurs parties. La
2N . . . p

premiére partie traite du retrait.

II. Fluage de base. — La loi de double puissance que
Pon a précédemment montrée comme étant apte a
traduire avec une trés bonne approximation les résultats
d’essai est développée ici en tant que modéle de prévision
pratique du fluage d humidité et température constantes a
partir de la composition du mélange, de la résistance, de
Page au chargement et de la durée de celui-ci On donne a
Pappui des comparaisons que Pon développe avec les
résultats d’essai publiés.
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