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Invacouction

The stresses transmittcd between the opposite surfaces of cracks in concrete
bave a major cffect on the response of reinforced concrete. This has been
recognized by Schnobrich and coworkers (18,20) who introduced in finite clement
analysis the concept of reduced elastic shear stiffncss of cracked concrete.
‘The transfer of shear stress across the cracks, due to aggregate interlock, is
modeled by multiplying the shear modulus with a certain shear transfer factor
a, such that 0 < a, < 1, which is cither taken as constant or, more realistically,
s a function of the crack width (8,10). This modecl represents a rather significant
advance compared (o the previous complete neglect of the shear transfer (a,
= 0) and has scrved as a point of departure for the present work, in which
a further improvement is attempted.

The seduction of shear stiffness, however, does not give the full picture.
I the opposite surfaces of a rough crack are in contact, and if the normal
stress across the crack is zero or constant, any relative tangential displacement
8, (slip) between the opposite surfaces of a crack is at constant stress always
accompanicd by a relative normal displacement 8, (crack width). This is called
crack dilatancy. If 3, is kept constant, slip 3, leads to jamming of rough crack
surfaces (aggregate interlock) which produces not only a shear stress o), but
also a normal compressive stress o, transmilted across the crack by the contacts
of surface asperitics. This may be regarded as a manilestation of friction.

Thus, the effect of cracks in concrete cannot be described merely by a reduced
shear stiffness o, G resulting from the relation between 8, and the shear stress
o, trausmitted across the cracks. Rather, it must be described by a relation
that involves 3,, 8,, o, ,ando;,, i.e., not only tangential but also normal
displacement and stress components on a crack {2). A nonlinear model based
on tests was developed for this relation (2); it is however unnccessarily sophisti-
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cated when a linear structural analysis is carried out, which is normally lde&,
for the service stress design. Thercfore, it is of interest to develop a simpler,
lincarized model, and we will achieve it by introducing the simple ideas of
friction cocfficient and dilatancy ratio for the crack slip. .

Aside from finite element analysis, our model will also be intended for the
design of reinforcement on the basis of given internal forces. Currently, the]
service stress design (which is required for nuclear structures) is carrded out |
(7) under the assumption that cracks in concrete transmit no shear and normal
stresses. This classical design approach, which we will call the frictionless design
represents a correct approach if the cracks indeed bave the direction of principa
stress in concrete. It must be considered, however, that the stress state whi
produces the cracks is not the one after the cracks are formed. In fact, t
cracks may form even before significant loads are applied, due to shrinkagg
or temperature changes. Thus, the direction of cracks is highly uncertain
it is a safe practice, as generally accepted for limit analysis (3), to cons
that the cracks in concrete may be of any direction.

Is the principal stress direction the most unfavorable one? We will see that
usually it is not. This is similar to what has been alseady discovered for the
limit analysis (6), and is due to the fact that crack dilatancy produces extension
of reinforcement.

For limit analysis, the frictional approach, which has been verified by analysis
of test data (2,5) guarantees proper safety against crack slip; thereby it limits
the deformation (especially crack width) preceding faflure for cases where the
reinforcement direction substantially deviates from the principal direction of
internal forces. Similarly, reduction of deformation and crack width as well
as a more reliable determination of stresses and deformations may be expected
from the frictional service stress design method that we are going to develop.
A broader survey of literature may be found in Refs. 2 and 6.

3

Proatem anp Basic AssumeTions

The concrete is considered to be cither in a state of plane stress (slab, plate)
or in a state of plane strain, and only the in-plane behavior is considered.;
Concrele is assumed to contain one or two systems of straight, parallel, equidista
and continuous cracks. We disregard the fact that cracks in concrete often:
begin to form as a series of discontinuous microcracks and remain such a
long as 8, is very small. The spacing of reinforcing bars as well as the spacing
of cracks is assumed to be sufficiently dense so that the change of internal
forces from one bar to the next or from one crack to the next would be negligible.
At least one principal internal force is assumed to be tensile and concrete is
sssumed to have no tensile strength. We have to restrict attention to monotonic
loading, even though cyclic loading is important and some experiments hav
recently been carried out (14,15,16,19). To treat the composite action, we assume.
that the averaged strains in cracked concrete and in the reinforcing net are
the same. We will distinguish the case where the opposite crack surfaces sre
in contact (frictional cracks) from the case where they are not (frictionless
cracks). First we consider the frictional cracks.

Snrrness of Concrere wir Surema Fricionar Cracks of One Dinecrron
A fundamental property characterizing the response of cracked concrete b
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the relationship between the relative nonnal displacement, 8, and the relative
tangential displacement, 3,, between the opposite surfaces of a crack, and the
normal stress, o,, and the shear siress, o,, that arc (ransmitted across the
crack due to contact (or interlock) of concrete surfaces (superscript ¢ refers
to concrete) (sce Fig. 1). Although this rclationship is quite complex and nonlincar
(2), we may approximatcly treat it as friction, writing [0, } = ~kal, + ¢, and
if the crack is slipping we have

for 0, <0 joi|=-kol, +c (frictionalslip) ............. 1)
for 3,20: 3, =a |8,]+¢ (dilatancy). . . ............... Q)

in which k = friction coefficicnt; ¢ = cohesion; a, = dilatancy ratio; and
¢ = cxpansion (or initial dilatancy).

|___bond sirens
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FIG. 1.—Stresses in Cracked Reinlorced Concrete: {s) Orthogonally Reinforced Slab;
(b) Roughness of Crack Suifaces; () Actual Distribution of Stresses

. . - —
RO P L YR - \
Tangen)
. - - "/’
Rl % 'l )
oy o) _ ». )
Secont | 2
Z h 7
~Ja,
~ 9} -3 3,

FiG. 2.—Tangent and Secant Linearlzation of Friction and Dilatsncy Laws

In view of the actual nonlinear behavior, k and a, should be regarded as
the slopes of the tangeni of some nonlincar diagrams (Fig. 2) of o, versus o,
and of 8, versus 8,, and ¢ and ¢ as the offsets of these tangents on the vertical
axcs. Optimally, the values for &, a,, ¢ and e should correspond to the tangents
at points close to the actual solution, but in this respect we should kecp in
mind that the actual diagram of o}, versus o, is not unique and depends on
8., 8, and the loading history, and the same holds for the diagram of b, versus
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3,. In absence of information on the actual nonlinear behavior, we should use
c=e=0.

From the macroscopic point of view, the effect of the relative displacemeats
3_ and 8, on many densely distributed parallel cracks of mean spacing, s, is
to produce the averaged strains

s, 3
€ m— € =0 Y mE e 0)
s s _
in which y°, = shear angle = twice the tensorial shear strain component € .
The total strains of concrete containing many densely distributed parallel cracks
may then be expressed as

E= B & . e it e e e “)

in which ¢ = the column matrix (¢7,,€7,¥%)7, T denoting a transpose; and
e and ¢° are similar matrices representing the total strains and the strains in
the concrete between the cracks. To achieve equilibrium, the stresses in concrete
between the cracks must be the same as the stresses transmitted across the
cracks. Assuming the concrete between the cracks to be isotropic and clastie,
we may then write

E' -vE' 0
¢€=C.o°; C_ = E' 0 )... .. o, o)
sym. G:!

in which 0 = (05,,0%,,05)7; C, = the flexibility matrix of uncracked concrete;
and E_, v, and G, ate Young's modulus, Poissoa’s ratio, and shear modulus,
respectively, of solid concrete that does not contain coatinuous macroscopic
cracks. When the concrete is in a state of plane strain rather than plane siress,
E_ and v must be replaced by E, /(1 — »*) and v/(8 — v), respectively.

It must be remembered that Eq. 5 is an acceptable approximation only withim
the service stress level and that E, and G, should be taken as secant moduli.
Near ultimate loads, some stress components, e.§., the compression stresses
parallel to cracks, may become high even in cracked concrete, and then Eq.
5 would have to be replaced by a nonlinear constitutive relation (c.g., Refs.
13

If we substitute 8, = s(¢,, — ¢..)and3d, = s(y, — ;) (rom Eqs. 3 and
4) into Eq. 2, and express €., and y_, from Bq. 5, we get

Furthermore, noting that ¢, - ¢, and substituting o, = E ¢, + vo ., (Eq. 5) and
of, = Fha', £ c (Bq. 1) into Eq. 6, we obtain for slipping cracks

- 1 ' e
[ E + a?(;m‘)(tk)]u:, =¢,, +ve, Fa,y, + E:(:ta,)(:tc) -; (U]
Among the double signs at k and c, the upper ones go (here and in the sequel)
with o, = 0 and the lower ones with o, < 0; as for a,, the upper signe
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go with 8, = 0 and the lower ones with §, < 0. For admissible solutions the
signs of o, and 8, must maich, and then (ta ) tk) always equals a k. In
a computer program, however, it is not known in advance whether the solution
of a certain case will be an admissible onc; therefore, the expression (ta )1k)
cannot be replaced by ak and must be considered with all sign combinations;
the same holds for (x a )tc). .

Expressing o, from Eq. 7, and substituting this into Eq. 1 and into the
relation o, = E_ ¢, + vo,, (Bq. 5), we finally obtain

G mPa+l e 8)
in which
1 v Fa, 8. E*
E,
D=E®*| v — +v Fa v y 1= vg, E* .o (9)
E.
Fk Fhkv (ta Xxk) Fhg, E* 2 ¢
o V- o 1 €
(E*) ' = + — (a N tk), g, =—(ta Nte)—--....... (10)
€ G‘ Gl’ ’

Matrix D represents the stiffncss matrix of concrete containing slipping closely
spaced parallel cracks. Note that it is ponsymmetric unless k& = a,, which
is far from true for concrcte. When we use ¢ = ¢ = 0, D is a secant stilfness
matsix. For ¢ = 0, the value of crack spacing, s, has actually no effect on
the resulling stiffness matrix, Eq. 9. (This is aot true of the more realistic
nonlincar model in Ref. 2.) Note also that matrix D is singular because the
fast row is a multiple of the first row and the last column is a multiple of
the first column. This singularity is an incvitable consequence of adopling the
{riction and dilatancy laws (Eqs. | and 2) for approximating the rclation among
0., 0,,8,and8,. When thisrelation is modeled more accurately, the incremental
stiffncss matrix is obtained as ponsingular (2), but the theory becomes more
complex. We will see that (he singularity of D causes no problem when we
deal with reinforced concrete because the stiffoess matrix of the composite
Is nonsingulas.

A very important property is the cross cffect between ¢, and o, or between
¢, and o .. These cross cffects influence the response profoundly. They cause
the principal directions of stress in concrete and those of strain not to coincide,
while in the curreatly uscd approach these directions do coincide.

Srwrness or Concarre wii Surema Fuctionar Caacks of Two Dinecrions

Reinforced concrete may contsin parallel crack systems of (wo directions.
The angle between the two crack systems, genesally nonorthogonal, will be
denoted as § (sce Fig. 1), and all quantitics refersing to the second crack system
will be labeled by primes. For the second sysicm we again have:

for 00, 50; Jol|=-Kal4cs . oo, an
for 8,=0; M =alldj+e . ... ... .. ... ... 12)
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We allow k’, a), c’, and ¢’ to be in general different from &, a,, ¢, and
e, so as to admit that the disgrams in Fig. 2 could be lincarized about different
points.

Superimposing the strains due to cracks in both directions and transforming
the primed strains due to the second crack system to the coordinates of the
first crack system, we get

5, & 'Y 3 3

ot 2 costP ——~sin2p; € =—sin’2p +——sin2é . .. (13)
= Ty ¢ 2’ ¢ s’ 2
8, 8. ,
-yf,’,=——'+—'-sin2¢ +5C08% .. (14)
P | s
Also, by coordinate transformation
o =of cos’dtossin’b+olsin2d . ... ... ... (1%)
. 1
of,= -—-2—-(0,‘,,, —o)sin2¢ +o co82d .. ...l (16)
Substitution of these expressions into Eq. 1 and Eq. 11 yields
L I A O I an
in which

/. =fl[-;— sin2¢ + kcos2¢ F k' cos’d + (:tlc)(:tk')sin%];

1
A =fl ftc’ ¥ ccos2¢— (k' Xxc)sin24); fo= ;-sin% + k' sin’$ (18)

From Eqs. 4, 5, 13, and 14, we bave

e =2 cond 42 24 — o - ) a9
— - —— CcOS — =TT = VO,) e e e

s enu ‘1 co 2,' n E‘

8, L 4 s, 1

—my,— =802 ——COS2P — G ..o (20)
s s’ s G

e

Substitution of Egs. 19, 20, and 12 into Eq. 2 yiclds

| o, ol ~va,
S B O

+545 [coss — (£a,) sin 2¢|} ..................... )
s 3
in which
i
/,:;l'{:ta,cosub =Fa',cos’¢+[—2—+(:ta,)(:tn',)] lin2¢] ... (22
3

Egs. 4, 5, and 13 provide
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| | i e
€@ = (:ta',sin'# + — sin 2¢)&: +— (o f-vol)+—sin’p ... ()
s’ y) E, s’
Substituting Bqs. 21, 1, and 17 into Eq. 2], we get
ol = E e e, Faqutfy) - oo e 249)
in which
|

i
v/t fi(fi -9 + G

(E*)'= s (a Xxh) . . ... ... ... (25)

J £

1
ta,co082¢ Fa cos’ ¢ + [‘2— + (ta ,)(ia’,)] sin 24
Jo= ) — (26)
' :tazlin"-f?lin 2¢

im0yt taxze)

] E, 4 G‘ d
¢ ¢

—-——(cos’d Fa, sin2¢ +fsin’¢) .. ... ... ... .. .. Q@n
F 3

Finally, Eqs. 24, 17, and | yield the stress-strain relation in Eq. 8 with
1/, Fa, fLE*

D=E*} fi LS, TFaf, | (=\LE*+),

Fk T, (Fa N Fk) Fh,E*x ¢

Note that this stiffncss may be written also in the form D = E*a”b in
which a = (1, f;, ¥k), and b = (l, f,, ¥a,). This indicates that matrix D
is again singular. We may further obscrve that the cross effects between shear
stress and normal strain and belween shear strain and normal stress are again
present and the matrix is nonsymmetric. Note also that the values of crack
spacings s and £’ have no effect ca D.

For the special case where the first crack system is oriented in the principal
strain direction (i.e., we have frictionless no-slip cracks), the concrele is subjected
1o uniaxial compression paraliel to the first crack system, and if the second
crack system is slipping, it must form with the first system an angle ¢ such
that tcot ¢ = &k’ = [riction coefficient. Calculations of dcformations duc to
the second crack system yield an expression for the uniaxial compression stiffness
parallel to the first crack sysicm, as reduced by the presence of the second
crack system. However, since the sccant uniaxial stiffaess in compression is
well known from tests, it is preferable to assess it directly.

The case, where both crack systems are in the principal strain directions
(frictionless cracks) is a trivial one. Concrete can then transmit no stress and
the applicd loads must be alined with bar directions or else such cracks could
not exist. .

In our treatment of the simuliancous slip on two crack systems we neglecl
the effects of the mismatch at crack comers (Fig. 3(c)}. For the simultancous
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slips, 8, and 3/, to occur st zero normal relative displacements, 3, and 8,,
the triangles of sides 3, and 3, at crack comers would overlap (according to
our assumed simple kinematics) and the corners would have to get sheared
off, crushed, and removed. This effect should be negligible for small enough
3,and 3! because the area of the triangles 10 be sheared off (3, 3; ) is second-order
small, and so should be the normal and shear resultants from these triangles
as compared to o5, 0r 0 ,.

To avoid crack comer overlap and shear-off, the slips 8, and 3; would have
(o be accompanicd by additional dilatancies, A3, = 8,/2 and A3, = 8;/2, as
shown in Fig. 3(¢). We therefore propose that the way 1o account for crack
comer overlap is to consider increased values of dilatancy factors a, and a;
whenever there is simultancous slip on two crack systems. Because the ratio
of the sides of comer triangles to the total crack length is 8, or 8;, we may
consider that

a,=a%+c 8 e 29
in which a% = the dilatancy ratio when a single crack system slips; ¢, = an

FIG. 3.—Possible Crack Siip Patterns (s-d) snd Additional Dilstancy due to Comer
Overtap (o)

empirical positive constant; and 8 = the slip of the other crack system. However,
the correction ¢ |3/} is small and negligible for small enough slips.

Svirsness of Concnere Conranmma Convacriess Cracks on Nonsiwrma Caacks we
Conracy

If there is only one system of open cracks the surfaces of which have no
contact, Eq. 2 must be replaced by an inequality, 3, > a,|8,| + ¢ (> 0),
and Eq. 3 must be omitted because the sirains dueto cracks, €, are indeterminate.
Further we must replace the friction law, Eq. 1, with the conditions o, =
0,0, =0

Eq. 4 reduces to the relation e}, = o, / E, . Thus, the stiffness matrix of concrete
with one system of contactless cracks (Eq. 9) has the form

0 0 0
p=|o E, o
0 0 0
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This matrix differs from that preseatly used for cracked concrete (18) by the
botiom diagonal term for shear, which is here taken as zero rather than o, G,

It is interesting to note that the matrix D for concrete with contacting cracks
(Bq. 9) yiclds the matrix D for contactless cracks (Eq. 30) as a limiting casc
fork — o, a ,—» o (at k/a , ~ constant), except that the last diagonal coefficient
of the rcsulting matrix is obtained as G, rather than 0. However, this coefficient
is irrelevant when we scck the crack direction for which the shear steain is
zero.

If the crack surfaces are in contact but do not slip, the cracked concrete
behaves just like uncracked (solid) concrele and its incremental stiffness matrix
is, under the assumption of lincarity, given by Eq. §, i.c.,

D=C."' (contact, mo-slip) ... .............0 o ¢]))
Arrucanon 10 Fuens Evtment Anaivais

Matrix D from Eqs. 9 or 28 may be uscd as the incremental (tangent) stif{ness
matrix in finite clement analysis with successive small loading steps. For steps

in which the crack direction is already known the following rules are suggested.

cloasicel sel. (ae ollp)
100 . —

[{XIR1)

crack direction @8

RQ. 4—Type ol Solutlon lor Varlous Crack Angles, §, snd Dilatancy Ratlos, a , (Overall
Maxima of Stresses In Reinforcoment (Solld Clscles) and Concrete (Open Clicles),
snd Crack Width (Squares); on Lines AA’ snd BB’, ¢, = 0o, = 0]

Case 1. If there bhas been slipping contact in the preceding loading step,
le, c — kol, = 1o, and B, = ¢ £ aB, with certain of thesc signs, we
assume contact with slip of the same sign for the current loading step. However,
(a) if we get slip 8, of opposite sign we must switch to assuming contact with
slip of opposite sign; (b) if we violate o, = c/k for the end of the current
loading step, we must swilch to the case of no contact; and (c) if we violate
8, = e for the end of the current loading siep, we must switch to the case
of contact without slip (Eq. 31).

Case 2. If there has been no contact in the preceding step, .., 3, > o |8 |
+ ¢ and of, = 0, we assume the same for the current loading step, but if
we violate 8, > a,|8,| + ¢ in which 8, = s(c, — €.) and 8, = s(y,, —
v%,) for the end of the current step, we switch to the case of slipping contact
with the same sign of 8,.

Case 3. If there has been contact without slip in the preceding loading step
(Eq. 31), we assumc the same for the current step, but if we violate o, <
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e/k (0 if ¢ = 0) we switch to the case of slipping contact with the same sign
of of,.

Unless an explicit step-by-step algorithm is used, we should iterate calculation
of the step with the corrected assumption. The rules for two crack sysiems
must exhaust all combinations of the foregoing cases.

In the foregoing procedure, we disregard for the sake of simplicity the possibility
that a solution may exist for more than one case (verified by Fig. 4). The
conditions stated for cases 1(b), I(c), 2, and 3 result from Egs. | and 2 upon
noting that {o.,| = 0 and |8,] = 0. It might be preferable to replace them
by the conditions o, < 0 and 8, = 0, but then we would lose continuity
between cases 1 and 2or 1 and 3 if c # 0 ore # 0.

The case of no contact (case 2) is in reality obtained only if 3, = 0 (see
Ref. 2); however, in view of the simplifying Eq. 2 we must allow in case
of no contact a finite range of 5,, as stated for case 1.

Snirrness oF Cracxep Ranrorcep Concrere

If the cracks are densely distributed so that the change of stress from one
crack to another is not large, we may consider that, by reasons of symmetry,
the bars do not slip within concrete at the midpoints between two adjacent
parallel cracks (Fig. 1(c)]. Elsewhere there may be bond slip between the bars
and concrete, and we know that each bar must actually exhibit bond slip within
a certain distance (bond slip length) from the surface of crack because the
elasticity solution indicates an infinile bond stress at the surface of the crack.
The average strains in the reinforcement sre determined by the displacements
of the aforcmentioned midpoints at which there is ao bond slip, and these
strains must be the same as the macroscopic strains, ¢, ¢, and ¢, of the
cracked concrete.

The average axial sirains in the bars may be determined as

1
€, =¢,,cos’(w,—0)+ ¢,sin’ (w,— 0) + 7 v sin2(w, -0 ....... 32)

The macroscopic stresses, o], resulting from the axial forces In the steel bars
per unit area of reinforced concrete (not of steel) are

in which ¢, = axial strain in the /th system of steel bars; E, = Young’s modulus
of steel bars; and p, = percentage of reinforcement, i.e., cross-section area
of steel per unit area of the reinforced concrete slab.

It is possible to include in Bq. 33 the apparent increase of stiffness of
reinforcement due to the interaction with concrete. Between the cracks, the
concrete adjacent 10 the stecl bar is forced by bond siresses to extend together
with steel. This may be treated as if the cross-section area of sieel, i.c., P,
increased by a transformed cross-section area of & layer of concrete of a certain
thickness around the bar. However, in the numerical calculations this effect
was neglected for lack of precise information, which is on the safe side.

Writing the axial stiffness matrices of the bars in the n-t coordinate system,

S S—
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and summing them, we obtain the combined stiffness matrix due to the axial
stiffness of all bars:

N

D' =Y RIDIR, .o 09
‘ot

in which
p.E, 0 0 et s s

D)= 0 o0}, R=] s ¢ —es | ........... 05

0 00O ~25 23 -2

Here ¢ = cos (w, ~ 0) and s = sin (w, — 0). For an orthogonal net we have
N =2, w, = 0% @, = 90°. The combined stiffness of cracked reinforced concrete
is D + D, which follows from the relation o =o° + o = (D + D’)e, in
which ¢ = (0,.,0,,0,)" = column matrix of total siresses.

Masamums Stazsses m Concrre anp Sveer ano Crack Wiotw

The basic principle gencrally adopted in the design of reinforced concrete
is that the structure must be safe for cracks of any orientation. In our case
of & regular reinforcing net, we must, therefore, try all possible crack angles,
9, and determine the critical angle, 8, , for which maximum effects are obtained.
Different values of 9, must be expected for the attainment of maxima of various
design parameters, o.g., the siress in one or the other steel bar system, the
maximum principal stress in concrete, or the crack width. A computer program
(4) bas been set up 1o determine 0, and the maximum effects for a concrete
plate of a given thickness and given reinforcement, subjected to given loads.
The loads are given as prescribed principal internal forces of inclination o (see
Fig. 1).

Because the calculations are inexpensive, the maxima are found in the program
simply by scanning the entire range of 0. A series of discrete values of 6,
increasing from 0° to 180° by steps of 1° or 0.1°, is sclected. The stresses and
crack width are solved for each of them, and the cases giving the maximum
values are located among the resulis. The flow scheme of the program (4)
is organized as follows.

1. Data input (materisl consiants, reinforcement perceniages and angles,
principal total siresses a,, o, in the reinforced slab and their inclination, a,
etc.). Initialize the arrays for storing the maximum stresses and maximum crack
width.

2. Start loop on discrete crack angles 9, incremented by A0 from 0° (o 180°.

3. For each 8, solve the displacements and stresses for all possible cases:
(a) One frictionless crack without contact (classical approach); (b) one [rictional
slipping crack: (I) 3, = 0 and 0, = 0, o5 (1D 8, < 0 and o, s 0; (c) two
frictional slipping cracks: (I) 3, = 0, 05, = 0 and 8/, < 0, 0, < 0, or (1l
3,<0,0°,s0andB =0, of = 0; and (d) crack in contact without stip
(8, = 8, = 0), equivalent to no crack. (The case of two cracks, cases & and
b combined, is not considered for reasons explained after Eq. 28.) In each
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case sclect the proper signs in front of &, &°, a,, sad a’. Then set up the
stiffness mantix of cracked seinforced concrete and solve Eq. 38 for strains.
Then calculate the stresses and relative displaccments on the crack.

4. Check the solution.

Case a—one frictionless crack without coatact: 8, > a,|8,] + €7 Also store
|8,} = minimum for sll discrcte snglcs & considered so far (to find @ for which
B, = 0, which is the classical case.)

Case b—one frictional slipping crack: ¢, < 07 and () 3, = 0 and o, =
0 or ()8, s 0ando, =07 .

Case c—two frictional slipping cracks: o;, < 0, o, = 01 and (I) §, = o,
o, =01 and 8! 5 0, 0, < 0%, or (1) 3, 5 0, 0, <01 snd =0, al,
=0

Casc d—crack in contacl without slip: o2, = 07 (at 8, = 0). For all cascs,
o} = 07 (i.c., the maximum principal siress In concreto must be compressive).
This implies the check o, = 07 for the frictionless crack. (Note that BEq. 1
requires only o, = ¢/k for caso a, but we prefer o2, < 0.) If any one of
the conditions for the particular case is violated, the solution for this case
is inadmissible; discard it.

$. Check for all foregoing cases whether the admissible solutions of stresses
in reinforcement and concrete and the crack width exceed the previously attained
maxima for any of the particular cascs, and if they do, store the new maxima
and record the corresponding 6.

6. Go 10 step 2 uniess all discrelc angles @ have been considered.

7. Print maxima and corresponding angles 8, and stop.

As we see from this algorithm, the problem of solving the stresses in concrelo
and reinforcement and the deformations of cracked reinforced comcrete for
given total stresses is & rather complex nonlinear optimization problem with
many linear incquality constraints. The constraints are due to the linearizations
achicved by the concepts of friction and dilatancy, and to the acglect of tensile
strength of concrete. The solution nonctheless requires fewer matcrial parameters
than the full nontincar incremental solution of the probiem (2) in which these
constraints do not appear. Whercas the classical solution for frictionless cracks
in principal strain direction can be calculated by hand (7), the inclusion of
friction and dilatancy requircs a computer. However, the solution by computer
(4) is very inexpensive.

The classical approach (7) admits a solutlon only for one certain crack angle
0, whereas frictional cracks admit solutions for a finite and broad range of
angles 8 (sce Fig. 4). Thus the condition of maximum poasible streases or crack
width is indispensable for having a unique solution.

Calculation of the csack width requires knowledge of the crack spacing, which
may be estimated from experience. Theoretical prediction involves two effects.
One is the transmission of tension from bars into concrete by bond stresses;
another is stability and unstable localization of strsin isto cracks. Study of
these problems is beyond the scope of this paper.

Numemcar Stvois And Anarvsis of ResuLts

When the seinforcement is oriented slong the principal streases, frictionless
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cracks normal to the reinforcement represent a feasible solution and are, in
fact, the governing case. Thus, the difference between the frictional analysis
and the classical frictionless analysis may be expected to increase as the angle,
a, between the reinforcement and the principal siresses increases, and this
is indeed verified by aumerical calculations. We select here an example where,
as we shall see, the difference is significant: a = 30°; applicd principal stresses
o, =10 0, = 0.5; w, = 0° w, = 90° (orthogonal reinforcing net); p, =
P32 = 0.01 (seinforcement ratios); E, = 1.0; v = 0.18; E, = 7.0, and we use
crack spacing s = ). We trest E,, E,, a,, 0,, and s as dimensionless. We
will explore the solutions for various k and a,. For lack of experimental evidences
and for simplicity we assume that the coefficients characterizing the cracks
are constant, and we set k'’ = k, a,=a,, ' = 3, c = ¢ = ¢ = 0. For the
solutions shown here, the crack angle has been incremented in the program
(4) usually by A0 = 0.1°, but for Fig. 6 by 1°.

The results for the maximum stresses in reinforcement and concrete and
for the maximum crack width, 8., which are maximum with respect to crack
angles and various cases and sign combinations, are plotted in Fig. 5. They
are given in terms of their ratios to the maximum values of the maximum
reinforcement stress, 0§, the maximum principal compression, o {, in concrete,
and the maximum crack widih, 8_,, that are obtained for frictionless cracks
in principal strais direction (7). It is noteworthy that in many cases this ratio
is :nuch larger than 1.0 and that the smallest values are obtained when a,

What are the proper values for k and a7 No precise experimental information
exists but a crude estimate can be made. It scems appropriate 1o select values
that correspond to the load at which the cracks begin to slip and open significantly.
According to tests & ~ 1.7 when the crack surfaces exhibit large slip (17).
Examination of the calculated response curves based on a theory that was
calibrated by several test series (2) indicates also that k ~ 1.7 and, moreover,
a, =~ 1.0. The value a, = k which would correspond to a symmetric stiffness
matrix (and to 8 normality rule of plasticity) is definitely inapplicable.

For these typical values, the maximum stress in reinforcement is about 18%
larger than the value for the classical frictionless approach [sce Fig. S(a) and
(b)]; the maximum principal stress in concrete (for any crack angle) is over
30% larger [Fig. 5(c) and (d)) and the meximum crack width is about 8%
larger (Fig. 5(¢) and (f). These corrections are certainly significant. Similarly
to the limit analysis with crack friction (6), we thus find that a neglect of
friction on the cracks is not on the safe side.

Although, for some crack angles 0, the case of (wo crack systems prevails
over the case of a single crack system, the maximum values for all crack angles
are always given by a single crack system. This is shown by Fig. 6, in which
¢ = 0 corresponds to a single crack system. ’

As shown in Fig. 4, the range of angles 8 (between the first cracks and
the major reinforcement) for which frictional slipping cracks exist strongly
depends on a  although it is almost indepéndent of k. The range becomes narrower
as a, decreases, and for a, < 0.0] no admissible solution with slipping frictional
cracks is found (if A0 = 0.1° is used) and all solutions consist of contactless
cracks.

Note in Fig. 4 that the maxima of steel stress, of principal compression
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magnitude in concrete, and of crack width for a typical o, (and ¢ = 0) occur
at a crack angle which considerably differs from the principal strain direction
(assumed in the classical approach) snd typically cosresponds to a transition
from the case of contacticss slipping crack (3, # 0) to the case of friclional
slipping cracks, i.e., 3,/|8,| = a, (for ¢ = 0) and 0, = a, = 0. Thus, the
friction coefficient k has (for typical a,) no effect on these maxima. This is
certainly an interesting result, for in limit frictional analysis (6) the value of
k has a major effect while a, does not enter the solution.

The crack angles that lead to maximum steel stress and maximum concrete
stress or crack width are normally rather different. For very high a, the maxima
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HG. §.—influence of Angle between Two Cracks upon Maximum Stresses in Reln-
forcoment, Principat Compression Magnitude In Concrete, and Crack Width

can occur for slipping cracks with o, ¢ 0. The classical case of cracks in
principal strain direction gives neatly minimum (rather than maximum) crack
width 8.

The ranges of crack angle for various types of solution and the calculated
maximum stresses and crack widths for these ranges are summarized in Table
1. A single preexisting crack for the blahk domain in Fig. 4 does not permit
any admissible solution; neither do two slipping cracks in contact. This simply
means that 8 crack of a different angle will be produced by the load, and
the preexisting crack will behave as frictional without slip.

Thus, we sce that consideration of dilatancy is essential if we want to sccount
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I. The concepts of sccant friction coefficient and dilatancy satio for the
interlocked cracks in seinforced concrete lead to a simple stiffacss matrix for
cracked scinforced concrete (Eq. 9 or 28) which is suitable for finite element
analysis.

2. The relations for friction and dilatancy make the crack stiffncss matrix
singular; but this causes no problem because the sliffness of the reinforcement
makes the total stiffness matrix of cracked seinforced concrete nonsingulas.

3. The resulting stiffncss matrix is in gencral monsymmetric unlcss the
dilatancy ratlo equals the friction cocfficient, which is far from true for cracks
in concrete at the onset of large crack slip.

4. As in the currently used sliffacss matrix (18), the shear transfer due
to aggregate inteslock on the cracks is accounted for. The preseat stiffness
matrix is, boweves, more realistic as it also accounts for friction and dilatancy
on the cracks. This leads 10 cross terms relating shesr stress (or strain) to
nosmal straia (of siress) that are abseat in the currently used matsix, and causes
the principal stress and strain (o be non-coaxial.

S. In the present service stress design, and similasly fos the frictional Uimit
design, the principal strain direction (frictionless crack without contact) is not
the most unfavorable ciack direction, unless the seinforcemcat is laid in the
principal disection.

6. For the present *'service stress design with crack slip,” the maximum
steel and concrete strcsses and crack widih are never amaller than for the
classical service stress design withoui crack slip. If the angle of reinforcement
with the principal stress direction is between 20° and 45°, these maxima are
significantly lasger (while they are mcarly the same if the angle is less than
10°). This is a safer design approach, which is particularly important for nuclear
structuses.

7. For osthogonal ncts, the maxima of steel stress, of principal compression
magnitude In concrete, and of crack width (for ¢ = 0) are obtained for the
case of a single crack systcm, normally with a large slip. For typical dilatancy
ratios (and ¢ = 0) they occur at & crack angle at which the case of contaclless
slipping cracks (8, # 0) transits into the case of frictional slipping cracks. Thus,
the maxima arc characterized by vanishing stresses (0, = o, = 0) with the
crack-width-1o-slip ratio equsl to the dilatancy ratio (8,/]8,| = a, for ¢ =
0). Therefore, the friction coefficicat, k, normally has no effect on these maxima,
while the dilatancy ratio, a, has a major effect; this is contrary to the situation
in frictionat limit anslysis. For very high dilatancy ratios, however, the maxima
can occur for slipping cracks with nonzcro frictional stress. Moscover, the
maximum stress in the sccond bar system occurs, evea for typical a,, for
the case of frictional slipping cracks. Thus, the case of frictional alip cannot
be omitted. The crack angles that fead to maximum steel streas and maximum
concreie atress or crack width are normally rather different.

8. For crack angles other than thosc leading to maximum sircsses and crack
width, the resulls are strongly influcnced not only by the dilatancy ratio, a,,
but also by the friction cocfficieat, k. The classical frictionless solution without
crack slip Is obtaincd as the limiting case if both the friction cocfficient and
the dilatancy ratio tend to infinity.

9. The case of two intersccting crack systems generally gives higher values
of stresses and displacements than the classical solution, i.c., a single system
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of contactless (frictionless) cracks in principal strain direction (8, = 0). This
classical case also gives nearly the smallest (not largest) value of crack width,
8,. The present method gives significanily higher stresses than the classical
frictionless design without crack slip only when the direction of reinforcement
substantially deviates from the principal stress direction. These are cases for
which unduly large deformations and crack width bave been observed in practice.

10. The present method also allows the design for a specified crack width
provided that the crack spacing is known. '

L. When there are two crossing crack systems, the overlap of crack comers
and their shear-off are neglected in the calculations. This effect could be accounted
for by an increased value of the dilatancy ratio, compared to the case of a
single crack system, but a0 tesis to determine it are known.

12. Bond slip of steel bars may be approximately accounted for by an increased
appareat stiffness of the steel bars (tension stiffening effect). '

13. Dowel action of steel bars crossing the crack has been neglected in
calculations although it is no doubt significant. A method to account for it
is proposed, but the material coefficients are as yet unknown.

14. Although the effects of friction and dilatancy are based on test results
(2), uo test data seem to exist to verify our deductions for reinforcing nets.
Such test data are neoded.
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ABSTRACT: A model is prescnted 10 calculate stresses, deformations, and crack widih
for a concreic slab or a shell wall 1hat catrica in-plane forces and is seinfosced by a dense
segulas act of stcel bars and containing one or two systcms of straight, paraliel, equisdistant,
and deasely distributed cracks. Friciloa oa the cracks (» cgale Interlock) and dilatancy
duc 10 their slip ls approximately takea into account, and slipping ceacks without contact
stc also allowed. Iwusumu sliffncss matrix for concrete with fricional ciacks is

ymmetsic and lavolves cross-terms ului:r the shear stress (o sirain) and the nonmal
sirain (or siress), which implics that the prin stssins and stresses in concrele ate aol
co-axial. The proposed “‘sesvice stress design with crack slip uever predicts smalier values
of stresscs In sicel and coacrete and of crack widih than the cla frictionless desiga
without crack elip. Significantly larges valucs are obiaiacd whea the angle between sicel
bars and principal stress is large. A single sysicm of slipping cracks in contact is found
to be always the critical case for maximum stresses and crack widih.
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Intaooucnon

The stresses transmitted between the opposite surfaces of cracks in concrete
bave s major effect on the response of reinforced concrete. This has been
tecognized by Schnobrich and coworkers (18,20) who introduced in finite element
analysis the concept of reduced elastic shear stiffness of cracked concrete.
The transfer of shear stress across the cracks, due to aggregate interlock, is
modcled by multiplying the shear modulus with a cerlain shear transfer factor
a, such that 0 < a, < |, which is cither taken as constant or, more realistically,
as & function of the crack width (8,10). This model tepresents a rather significant
advance compared (o the previous complete neglect of the shear transfer (a,
= 0) and has served as a point of departure for the present work, in which
a further improvement is attempted.

The reduction of shear stiffucss, however, does not give the full picture.
If the opposite sutfaces of a rough crack are in contact, and if the normal
stress across the crack is zero or constant, any relative tangential displacement
8, (slip) between the opposite surfaces of a crack is at constant stress always
accompanicd by a refative normal displacement 8, (crack width). This is called
crack dilatancy. If 8, is kept constant, slip 8, leads to jamming of rough crack
surfaces (aggregate interlock) which produces not onfy a shear stress o;, but
also & normal compressive stress of, transmitied across the crack by the contacts
of surface asperitics. This may be regarded as a manifestation of friction.

Thus, the effect of cracks in concrete cannot be described merely by a reduced
shear stiffness o, G resulting from the relation between 8, and the shear siress
o, ransmitted across the cracks. Rather, it must be described by a relation
that involves 8,, 8,, of,,ando’,, i.c., not only tangential but also normal
displacement and stress components oa a crack (2). A nonlinear model based
on tests was developed for this relation (2); it is however unnccessarily sophisti-
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