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thermodynamics~lg, 2Oj. Continuum thermodynamics, which is at present reasonably well 
understood, gives only a very limited information on material behavior, and investigations of 
the special tensorial aspects of the inelastic behavior, on which thermodynamics can yield no 
information, are more profitable than efforts to refine the rigorosity of the thermodynamic 
treatment. 

?. LOADING CRITERION 

We may distinguish two characteristic types of inelastic phenomena: 
1. Plastic strain, which results from dislocation motions and is caused by yield on crystal 

slip planes. Ideally this phenomenon does not cause de~adation of elastic mod&i (see the 
parallel unloading slopes in Fig. la) and does not lead to a decline of stress at increasing strain. 
The plastic deformation is irreversible (Fig. la). 

2. Fractu~ng relaxation, which results from micro~~cking. This phenomenon obviously 
causes an irreversible devotion of elastic moduli (see the unloading slopes in Fii. lb) and 
may lead to a decline of stress at increasing strain. Ideally, the deformation is reversible upon 
complete unloading[26,27] (Fig. lb). 4 simple example of fracturing relaxation is given in Fig. 
2; an elastic plate is extended (path 01) and then, while holding the length constant, a crack is 
cut, which causes reaction o‘ to drop or relax (from point 1 to point 2, Fig. 2). Then, while the 
length is reduced to the original value the crack closes and the strain and stress both return to 
zero (point 0); i.e. the strain is reversible. 

We will assume that inelastic phenomena are produced by loading and are absent at 
unloading. To achieve a tensorialiy invariant formulation, inelastic phenomena must be charac- 
terized, as is well known, in terms of scaiar loading functions. In case of isotropic materials, the 
loading functions may depend on the stress and strain tensors only through their inva~a~ts. 

The plastic strains are conveniently ch~a~teri%ed in terms of a loading function, F, which 
depends on the stress tensor components, F+ This is because of the physical nature of yield as 
a stress-dependent phenomenon, and also because a dependence on strain would cause some 
regimes of increasing stress at decreasing strain to be considered as loading even though no 
yielding can take place at decreasing stress. The strains, though, may appear in function F as 
state parameters. 

The fracturing relaxations should, on the other hand, be properly characterized in terms of a 
Ioading function, a, which depends on the strain tensor com~nents, eih There are two reasons: 
First, microcracking may lead to a decline of stress at increasing strain, calied strain-softening, 
which must be considered as loading. Although strain-softening can be modeled with the help of 
stress-dependent loading functions[21,28,29], it is more suitable to use str~nde~ndent 
loading functions, since in terms of stress we can not easily distin~ish loading from unloading. 
This is because the stress decreases for both of them (Fig. lc), whereas the strain decreases 
only for unloading. Second, the fracturing relaxations must be related to the degradation of 
elastic moduli, while the plastic strain must be unrelated to the degradation, and since the latter 
depends on stress, the former should not depend on stress. The stresses, however, may appear 
in function @ as state parameters. 

We must also reject, except as a special case, the possibility of a common loading function 
depending on both the stress and the strain. This is because plastic strain and frac~ring 
relaxation would have to occur always simui~n~usly, whereas a realistic theory must admit 
plastic strain without fracturing or fracturing relaxation without plastic strain. Therefore, we 
need two independent loading functionslll: 

F(Cr,, I#;) = 0 (plastic); cttfq, &Q) = 0 (fr~ctu~~~ (11 

(0) Phlstitlc (b) Fracturing (cl Plastic -Fracturing 

Fig. 1. Characteristic tmiaxial responses of plastic, fracturing and plastic-fracturing materials. 
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Fig. 2. Physical justi~cation of reve~ibiiity of f~cto~ng material with elastic matrix, 

where vii and e;ii are the stress and strain tensors in Cartesian coordinates referred to by latin 
subscripts (i = 1,2,3), and &(k = 1,2 ,..., No) and II; are some parameters for inelastic behavior 
(e.g. hardening parameters of plasticity). As remarked, eii may appear in F as some of 
~rameters II&, and aii may appear in # as some of parameters Hi, 

The purpose of the loading functions is to distinguish between loading and unloading. 
During loading the material remains in the plastic or fracturing state and so we always have 
dF = (aFf&ir)dai/ t (JE;lt?H&M& = 0, and similarly for d+. Now, choosing the second term to 
be negative for loading, we may introduce the loading criteria as follows: 

g daij > 0 (plastic loading) (21 
ii 

$ dcij > 0 (fracturing loading) (3) 
ij 

where repeated indices imply summation, Equations (1) and (3) for # were introduced by Dougill 
for a purely fracturing material126 271. 

3. INFINITESIMAL LOADING CYCLES AND STABILITY IN THE SMALL 

From plasticity theory we recall the Bucker’s pos~iate~l~2SJ which may be written as: 

AW=’ 2 drlj dc$’ > 0 (for plastic loading) (4) 

where de$’ are the plastic strain increments. This expression, which equals area 123 in Fig. 3(a), 
represents the second-order work (Helmholtz’s free energy in case of isothermal conditions) 
done on a unit material element during an infinitesimal cycle in which stress increment daij is 
applied and removed. The first order work, represented by area 1345 (Fig. 3a), need not be 

al Plottic b) FrocturinQ C) Pt~stic-Fmcturi~Q 

Fig. 3. Work inequalities, and distinction between plastic strain increments and fracturing stress 
decrements. 
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considered if the body is initially in equilibrium because, according to the principle of virtual 
work, the first-order work is canceled by the work of the loads which equilibrate g+ 

If A W > 0, work must be supplied to produce the deformation and so the deformation would 
not happen if the work is not supplied, which is a stable situation. Therefore, fulfillment of 
Drucker’s postulate (4) ensures stability of the material (stability in the small or local). If 
A W -=c 0, work is released during the deformation, which may be, but not necessarily is. an 
unstable situation. Thus, condition (4) is a sufficient, albeit not a necessary condition of material 
stability[l8,20,30,31]. 

An analogous condition for inelastic behavior governed by a swain-dependent loading function is 
represented by Il’yushin’s postulate [26,27]: 

AII = k dcr{,r deij > 0 (for fracturing loading) (5) 

where da$ are the inelastic (frac~~ng) stress decrements. This expression, which equals area 
123 in Fig. 3(b), represents the second-order complementary work (Gibbs’ free energy) done on 
a unit element of the material during an infinitesimal cycle in which strain increment deii is 
superimposed and removed; see Fig. 3(b). The first-order work, represented by area 1345 in Fig. 
3(b), need not be considered because in equilibrium, according to the principle of virtual work, 
it is canceled by the work of loads. If AII > 0, work must be supplied to effect the deformation, 
and so the inelastic increment would not happen under controlled strain conditions if the work 
is not supplied[32,33]; this indicates stability under controlled strain conditions. If Ail < 0, 
the material could (but not necessarily will) be unstable even under controlled strain, 

When plastic strain increments de$ and fracturing stress relaxations (decrements) dq$ are 
produced simultaneously, i.e., when there is loading for both the plastic and fracturing 
behaviors, we could also base our theory on the inequality: 

AU = i (dcii de$’ f dr{; deij) > 0. 

This expression equals area 123 in Fig. 3(c). Ineq~lities (4) and (5) imply (6). But they are not 
implied by (6) unless we make a further assumption, namely that (6) must hold even when either 
de$ or da$ is imagined to be separately held zero (frozen). This assumption is in fact implied 
when we apply inequalities (4) or (5) to a plastic-fracturing material. 

The cycle 123 in Fig. 3(c) termbates neither at the initial CJij (as in Fig. 3a) nor at the initial 
erj (as in Fig. 3b), but at the line 13 that has a certain slope &ii&b. To be able to distinguish 
between d& and dt$, this slope must be determined from an inde~ndent ar~ment, which has 
nothing to do with work inequalities and is explained in the Appendix. 

4. NORMALITY RULE 

Let us now try to determine the most general expression for inelastic strain permitted by the 
preceding scalar ineq~lities. We consider ftrst the case of plastic strains alone. According to (2) 
and (4) for plastic loading, we require that: 

For$duii>O: AW=idciide$‘>O. 
ij 

(7) 

We must, however, also pay attention to the limiting case of neutral loading, and for this case 
we require that 

ForFdgij=O: either AW=id*ijde$=O @a) 
Ii 

or AW>O. (gb) 

This condition has been hitherto invariably considered as an equality (eqn 8a), tacitly excluding 
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Fig. 4. Responses that are stable (a) and not necessarily stable (b). 

the possibility of A W > 0 for neutral loading (i.e. for loading increments tangential to the 
loading surface). There exists, however, no good reason other than convenience to exclude this 
possibility. Nevertheless, for the purpose of exposition we at first restrict attention to the case 
of equality, eqn @a). 

Since both expressions in eqn (7) are positive, their ratio must be positive, and so we may 
set 

de:’ dcii 
aF 

= dp > 0 (plastic loading). (9) 

K d%, 

Conversely, if the denominator is positive and if dp >O, it follows that the numerator is 
positive, too. Thus, eqn (9) is equivalent to inequalities (7). Now, multiplying (9) with the 
denominator, we get for plastic loading: 

detdUii=O, where de$=de$‘-gdp. 
II 

We should note at the same time that this equation is also satisfied for neutral plastic loading 
with A W = 0 (eqn 8a). Conversely, eqn (10) requires that A W = 0 for neutral loading. So, eqn 
(10) is equivalent to conditions (7) and @a) combined. On the other hand, for neutral loading 
with A W > 0 (eqn 8b) eqn (10) would not be satisfied. 

Equation (10) must hold for all stress increments duii which represent plastic loading. This can 
be achieved in two ways: (a) Either de; = 0, (b) or de; # 0. We consider the case dci = 0 first and 
we have 

This is the famous plastic flow rule of Prandtl and Reuss, also known as the normality rule[l6, 
17,22-251. We introduce the notation drp to indicate that this type of plastic strain increment is 
normal to the current loading surface. The expression for dp we will discuss later. 

The second way to satisfy eqn (10) is to require that the vector which represents dr$ in the 
nine-dimensional space be normal to drib Then 

de;’ = de; + dr; (12) 

where dr$, which we will call transversal plastic strain, can be represented by any vector that is 
normal to da, (Fig. 5). It is a plastic strain which does no work. It seems that the possibility of 
such plastic strain has passed unnoticed so far, and only the case of normality, obtained for 
dr& = 0, has been considered. 

In case of normality rule, the direction of dc$’ is totally determined by the current loading 
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Fig. 5. inelastic strain increments that do no work. 

surface which corresponds to the current initial stress state. This situation, which ceases to be 
true in the general case of eqn (12), as well as all other expressions for dcfj’ considered in the 
sequel, is by no means necessary. This may be illustrated by Mandel’s example (Fig. 6a)[28] of 
a frictional block loaded by shear stress T and also by a spring which causes that the slip limit 
depends on the slip and thus models plastic hardening. We assume the block to be at the point 
of sliding under vertical stress (T ( < 0) and spring force S. A small vertical stress increment daii 
obviously causes the block to slide horizontally, in which case the inelastic deformation is normal 
to the applied force increment and does no work. 

The question whether normality should hold can be decided from the microstructural 
mechanism of inelastic strain. Theoretically, if normality holds on the microstructural level, as 
is true of perfectly plastic slip, it must hold on the macroscopic level[34-361. If, however, 
normality does not apply on the microstructural level, which is the case when we have frictional 
slip, microcracking or formation of voids and some hardening processes in polycrystals, we 
must expect that it does not apply on the macroscopic level. This is typical especially for 
geomaterials (rocks, concretes, soils). 

A completely analogous analysis can now be made with regard to the fracturing stress 
decrements d$. According to (3) and (5), for fracturing loading we require that: 

and for the limiting case of neutral loading we require that 

Forgdcii=O: either AfI=kd~$dei~=O 
II 

(13) 

Wa) 

or AfI>O. (14b) 

We again at first restrict attention to the case when AII = 0 (eqn 14a). Since both expressions in 
eqn (13) are positive, their ratio must be positive as well, and so we may set 

daC deii = dK > 0 
2 ds, 

(for fracturing loading). (15) 

Conversely, if the denominator is positive and if dK > 0, it follows that the numerator is positive as 

(0) (bl 

Fig. 6. Frictional block at the point of sliding, loaded by a spring (a) or by a constant force (b) 
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well. So, eqn (15) is equivalent to inequalities (13). We may transform it, by multiplying it with the 
denominator, to the form 

doi deii = 0, where da; = dr$ -e 
&j dK* 

We should note that this equation is also satisfied for neutral fracturing loading with AII = 0 
(eqn 14a), whereas it would not be satisfied for neutral loading with AII > 0 (eqn 14b). 

Equation (15) must be satisfied for all possible d+ One way to achieve it is to require that 
dafr vanish; thus, 

dufi’ = da;, da; = a~ edK. 
ij 

This is the fracturing rule or normality rule in the strain space[26,271, analogous to eqn (11). 
Similarly as for plastic strains, a more general way to satisfy eqn (16) is to require that dr$ 

be normal to dg Thus we have, more generally, 

du$ = do; + dut (18) 

where dg$, which we will call transversal fracturing stress decrement, can be represented by 
any vector that is normal to derr in the nine-dimensional space. Obviously, da$ does no work. 

Remember that the normality rules, eqns (11) and (IS), were obtained under the assumption 
that A W = 0 and AII = 0 for tangential (neutral) loading. The cases where this is not true (eqns 
8b, 14b) will be analyzed later. 

5. TYPES OF STRESSSTRAIN RELATIONS BASED ON NORMALITY RULE 

We must now relate the proportionality coefficients dp and dK to deij and doih It will be 
expedient to first rewrite eqns (11) and (15) in the rate form 

where ii and ti; are the rates of normal plastic strain and of normal fracturing stress. Because 
we still consider A W = 0 and AII = 0 for neutral loading, these rates must vanish for such 
loading. This occurs when, according to (2) and (3), 

(20) 

respectively, vanish. When these expressions are positive, if and (i’;, respectively, must be 
nonzero. This condition can generally be satisfied if and only if j.i and i, which determine the 
magnitudes of g$’ and Cg, depend on X and Y, respectively: 

li = (P,(X), i = a+(Y) (21) 

where functions 9, and aZ must be continuous, smooth and monotonic functions, such that 

(P,(O) = 0, @2(O) = 0 

@,(X)>OforX>O, @s(Y)>Ofor Y>O. (22) 

Alternatively, either O,(X) or a*(Y) could be zero for all X or Y, but in that case there would 
be no inelastic stress and strain. 

Let us now consider some important special cases. 

SS Vol. 16. No. ILB 
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Assume that functions @, and az are linear and that the rates are time rates, i.e. C; = dp/dt, 
@’ = dep’/dt, etc. where t = time. We may then set @r(X) = X/h and @(Y) = 4Y, where h and 
C#J are some scalar coefficients depending on pi, and eiP Then, substituting (20) into (21) and 
multiplying with dt, we obtain the well-known expressions[37, 261 

dp _ l aF ---dokm, dk = 4 
h aflkm 

2 darn (23) 

where h > 0,4 > 0. Function F may always be chosen so as to have a dimension of stress and h 
then has also a dimension of stress and may be called the normal plastic modulus. Furthermore, 
function C#J may always be chosen as non-dimensional and C#J must then have a dimension of 
stress and may be called the normal fracturing modulus. 

The first of eqns (23) is the same as in the classical theory of incremental plasticity[37, 
22-251. We see that dab and de, are involved linearly, wherefore the stress-strain relations 
are incrementally linear. 

From eqn (23) we see that dp becomes negative when doi) is directed inside the loading 
surface (unloading). Nevertheless, the work A W = du;i de;/2 remains, according to eqns (I I) 
and (23), positive, because not only doij but also de; is directed inside the loading surface. This 
last property is impossible because it would imply full reversibility (Fig. 7d). Thus, eqns (I I) 
and (23) must be discarded in case of unloading and a purely elastic unloading has to be 
assumed. This is at the same time expedient for being able to define the inelastic strain in terms 
of a load-unload cycle. 

II. Endochronic inelasticity 
Assume again that functions @, and @I are linear, but the rates, rather than being the time 

rates, are rates with respect to the length of the path of the material states traced in the strain 
space. This length may be in general defined as[3] 

(24) 

where pij&m are some coefficients defining the proper strain space metric (which is assumed to 
exist, as an approximation, although it is unlikely to have a general validity). Thus, our 
assumption is that 

(25) 

NOW, setting @r(X) = X/h and @z(Y) = 9Y, as before, substituting (20) into (2l), and multiply- 
ing by dQ we obtain 

(26) 

Fig. 7. Illustrations of various behavior at loading and unloading. 
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Expression (27) for dp along with eqns (24) and (11) have the form of the incremental 
stress-strain relations for what is known as the endochronic theory[2,3,7], and path length f is 
the intrinsic time[3]. Adding expression (27) for dK along with eqn (17), one has what has 
recently been proposed as the fracturing endochronic theory [I 11. 

Since F and Cp are scalar functions of vii and eij (and possibly 6) and SO are h and 4 
coefficients ;, and f2 are also such functions. The endochronic theory, however, makes one 
important deviation from our logical framework; rather than determining f, and f2 from F and 
@ according to eqn (28), coefficients f, and f2 are dincfly introduced as empirical functions of 
a+ eij and 5. Because qn (28) is not a total derivative dFld&, F being also dependent on e~j and 
5, functions f, and f2 do not in general allow us to solve F and @ from eqns (28). If they did, one 
would be able to pass from eqns (28) backward to eqns (26) for dp and dk, for which the 
stress-strain relations are linear in terms of daii and deib This, however, cannot be achieved 
(because tangential moduli would depend on du;,/dl and deJd(, which is not allowed). For this 
reason, and because df is a nonlinear function of de, the stress-strain relations of endochronic 
theory are incrementally nonlinear, which marks the most fundamental difference from classical 
incremental plasticity[7]. 

The expressions for dh and dK are, however, unimportant for the fulfillment of the work 
inequalities (Drucker’s and R’yushin’s postulates). So we may conclude that the time-in- 
dependent endochronic theory can be regarded as a consequence of Drucker’s postulate if the 
stress and strain rates are taken with regard to the path length rather than time. This is a 
perfectly rational assumption when a time-independent behavior is of interest. 

Due to the fact that f, (and f2) are in the ordinary endochronic theory chosen to be always 
positive, while (M&J (du,Jd[) is negative for unloading (in violation of eqn 28), the theory 
gives A W < 0 for unloading, whereas the plasticity expressions, if extended to unloading, would 
give A W > 0, as already remarked. Thus, the role of the loading surface in the ordinary 
endochronic theory is that it separates the stress increments which satisfy the Drucker’s 
postulate from those which do not (Fig. 7a,b). 

Indeed, if the same equations of endochronic theory are assumed to hold for both loading 
and unloading (as used in the original endochronic formulations[3,4]) and if a stress increment 
directed inside the loading surface is applied and removed (Fig. 7c), then for such a cycle the 
theory yields A W = duij de$‘/2 ~0. Consequently, the reloading slope for uniaxial stress- 
strain diagrams is obtained always smaller than the unloading slope (Fig. k), which is usually at 
variance with observations and requires further correction[fl. 

The cases A W < 0 can be simply eliminated by stipulating that dr$ = 0 fdr unloading (eqn 
2). just like one does it in classical plasticity. Then, however, we could not model inelastic 
behavior during unloading and reloading, typical especially of geomaterials [ 1,7, 11, 12,39,40]. 
Nevertheless, a refinement of endochronic theory which gives inelastic strain at unloading yet 
ensures furtillment of Drucker’s postulate for small unload-reload cycles is possible; see 
Ref.[7]. This requires introduction of inquahties that distinguish loading, unloading and 
reloading and the use of jump-kinematic hardening[7l. The same refinement is necessary for 
plasticity to represent the inelastic behavior at unloading and reloading(l). 

In classical plasticity the role of the loading surface is different but hardly more appealing; it 
separates the stress increment directions for which the plastic strain increment vector points 
outside the loading surface from those for which it would point inward. The latter case, leading 
to a complete reve&&ty in small load-unload cycles (Fig. 7d), would be unacceptable and, for 
this reason, a condition requiring that d# = 0 at unloading has to be imposed in plasticity, In 
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endochronic theory, by contrast, the inelastic strain increment direction is always outward and 
it is by virtue of this fact that the endochronic theory, unlike plasticity, can model irreversibility 
at unloadi~ if the same equations as for loading are used. This may be illustrated in the 
uniaxial load-unload diagram of Fig. 7(c)f43 where dc’(: is first imposed, then removed. Because 
da:{ = D d&i is for unloading of the same direction as for loading, a steeper slope is obtained 
for unloading. 

Let us now examine whether incremental nonlinearity is a necessity when we leave aside 
the endochronic theory (understood as a theory where we choose f, and f2 rather than F and @, 
and not as a theory which makes use of the path length). As an example, consider that 

& = tp’(.y) = (f)la = (~~ &J3 (29) 

and ri = ‘I+( Y) = 0. If the rate is considered as a time rate, we find that multiplication of the 
expression for C$’ by dr does not render it time-independent. Consequently, this case is not of 
interest when our attention is restricted to plasticity. 

Consider now, however, that the rates are with respect to the path length, 4, such that 
dt = fdefj deii)‘“. Then we obtain 

(30) 

This is a time-inde~ndent expression, which does not involve dgij and de, linearly, yet satisfies 
Drucker’s postulate as well as normality rule. So, we see that incremental linearity is not a 
necessary consequence of the assumptions normally spelled out in an exposition of classical 
plasticity. The assumption of incremental linearity is tacitly implied. 

Hypotheses of classical plasticity 
As we saw, the incrementa linearity does not follow from Drucker’s postulatef B-25], not 

even from the normality rule. It is usually derived by starting with the loading function of the 
form ([22), p. 148): 

F( ai,, . e$,Hp)=O. (31) 

One differentiates this equation, i.e. 

(32) 

and substitutes eqn (Ha) for i&. This yields an equation, called the consistency condition (due 
to Prager) [37,38,22], from which $ may be solved: 

1 dF . 
ci = h ask, %I? with h = (33) 

This expression for L; is linear in terms of &,,, and, therefore, the resulting incremental 
stress-strain relations are linear in terms of dcrii (as well as deij). 

The foregoing line of reasoning rests, however, on one tacit premise, namely that (at ieast 
near the current state, i.e. for plastic strains &+A& where [Ae$I is sufBciently small) there 
exists a one-to-one (or functional) dependence of the loading function on the total plastic 
strains &’ f In other words, one implies the assumption that the dependence of F upon E$’ is 
~~~h-i~~~~e~e~~, at least locally (in the small). There is no good reason for this to hold and in 
fact the recent formulation of the plastic-fracturing theory for concretefl] does not satisfy this 
premise. 
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From the preceding considerations it appears that classical incremental plasticity is a 
consequence of as many as seven hypotheses: 

(1) The stress-strain relation is time-independent. 
(2) Loading function F exists, 
(3) The elastic moduli are constant (no degradation). 
(4) Drucker’s postuIate hoIds (eqn 7). 
(5) For neutral loading A W = 0 feqn 8a). 
(6) There is no inefastic strain inurement normal to dgzf fdrt = 0, eqn 12). 
(7) The resulting stress-strain relation is i~rement~Iy linear (i.e. linear in terms of dgg and 

de& 

Normally only hypotheses 1,2 and 4 are listed, and the necessity to spell out the hypotheses 3 
and 5-7 is often overl~ked. 

Hypothesis 5 is equivalent to a requirement of continuity of A W or de# between elastic and 
plastic regions of the stress space (Prager’s continuity condition[37,38]). Hypotheses 4-6 and 
the hypothesis that F has the form of eqn (31), equivalent to hypothesis 7, may at&natively be 
replaced by Drucker’s postulate of stability in the Iargefl6-241 (see eqn 34 in the sequel). 

~veIo~ment of complete incremental stress-strain rtfations requires further arguments 
which have nothing to do with work in~li~ (e.g_ h~dening rules or the diction of 
elastic mod& due to fracturing strains). An exposition of this task for a certain ptastic- 
fracturing material may be found in Ref. fll. 

6. FINITE LOADING CYCLES AND STABILITY IN THE LARGE 

Consider a unit material element in which given loads PO produce homogen~us stress at 
such that the corresponding point A in the stress space lies anywhere within the current loading 
surface F = 0 (Fig. 7e). We subject the element to a finite loading cycle by applying additional 
loads Afis) producing additional stresses Aaij(S) that gradually move the state point along a 
cyclic path s from point A to a point B on the current Ioading surface (Fig, 7e), then to a point 
f: outside this surface and &aIIy back to point A(s = path length). We assume that B and a 
are finite, and i3C = daii is in~nitesim~. 

If the work SW that must be done by Af(s) during this cycle is positive, the cycle cannot occur 
if the work is not suppfied, and so the materiat elements is stable. If 6 W is not positive, the cycle may 
occur spontaneously (without our added loads) and so the element may be (but not necessarily is) 
unstabte. For the entire cycle, 6 W = #Au&) d%(s) where AC&) = a&) - a$. For 
elastic-frac~ng materials we have dg = de: + de$’ and au = af - r~$’ where ~1 and ut are the 
elastic strains and stresses (see Appendix I), and we get SW = SW" t 8WP't SWf' in which 
SWp' =I Aa&) de# (s), SW"= -0 a$(~) de@) and SW4 =$ ha@) d$(s) with Au! = 
of - a$ Because dcg (unlike da@ can be non-zero only on the path segment BC (BC = deij), we 
have SW@= (gfj - croy)d~~ where ~8 denotes the stress at point 3 at the loading surface F = 0, 
Therefore, the sufficient condition of stability in the large may be written as 

When there is no fracturing, we have SWf' = 0; furthermore SWd = 0 because elastic 
behavior does not dissipate energy if the elastic moduli are con&at& Then (q - u$dc$ > 0, 
which is the well-~0~ Drucker’s postulate of stability in the large[ 16-241 (blent to Hill’s 
principle of maximum plastic wark[rlll) and implies convexity of the loading surface F = 0 as a 
su&ient (but not necessary) condition for stability. However, if there is fractur&, SW” and 
SWd are gencraliy nonzero and can have either sign, and so (~4 - o%)dt# can be positive or 
negative. So, if ftactur@ #qradatioa, damage) takes place, nothing Mcates that the plastic 
Ioadii surface f;=O shouId be convex. However, even in absence of fract&g the loading 
surface need not be convex if there is friction, and one can constntct a finite cycIe similar to 
that illustrated by Fig. 6 (Se&on 8) such that (0~ - &> d% < 0. 

Considering in the strain space a similar finite loading cycle (Fii. 7f) which begins and ends 
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at point A inside the loading surface and includes an ~~n~tes~rna~ increment de, beyond the 
loading surface Q, = 0, we can derive an inequality analogous to (34). There is one diiference, 
however. Whereas SW” vanishes if the behavior is purely plastic, it does not vanish if the 
material is purely fracturing because the elastic moduli are not constant (degradation, damage). 
Thus, convexity of loading surface Cp = 0 is not required for plastic-fracturing materials even if 
the work inequaljty for stability in the large is postulated. (For purely fractu~ng materials this 
was already pointed out by J. W. Dougill.) 

Expressions (1 I), (12) for plastic strain increments and expressions f17), 1%) for fra~tu~n~ 
stress decrements give A W = 0 and AIT = 0 for jn~rements doi/ and de@ that are ta~ent~a~ to the 
Ioading surface. fn generai we can have, however, A W 2 Q and AfI 2 0 for such loading 
inc~me~ts (eqns 8a,b and Ma,b), and we will now expiore such formulations. 

Let us first consider plastic strains and the loading surface in the stress space. The 
second-order work of plastic strain increment according to eqns (11) and (23) is A W = (l/2) daij 
de!. A genera~~tiun which ensures that A W z 0 is 

(35) 

because the second term is always non-negative and h, is assumed to be positive. It is no 
~s~i~~on on generality if the vector represen~g dr$ is assumed to he in the tangent plane of 
the current loading surface R We may then call d& the t~ge~tia~ plastic strain in~~rnent* and 
we may call h, the ~~ent~~ plastic modulus. By int~d~~ing d&, the formerly defined 
transversal plastic strain increment dr$ can now obviously he nonzero; but it would add 
nothing new to consider that drJ; occurs simuhaneously with da: and dr;. So, de!; is dropped 
from now on. 

The tangent plane of F is e~ht~imensional and de$ would in general be given by five 
independent components. However, as far as the work of daii is concerned, ordy the com- 
ponent along the normal projection of duij onto the tangent plane matters. So, we will assume, 
for the purpose of simp~~~ation, that deb has such a direction. 

The unit normal of F is expressed as nil = ~~~~~~)~~~~~~I where ~~~~~~~ = f~~~~u~) 
~~~~~~)]l~ = etude of ~~~~~~ The length of the projection of dq onto the n~rna~ to F 
is, therefore, d~~~i~~ and the vector of this projection is ~;~~d~~~~). So, the vector of the 
projection of d@ij onto the tangent plane is doe - nij (dab@ n&, and dr$ may be taken as ~~~~~) 
times this expression. Substi~ti~ for Rij and Q,, we thus obtain: 

defj =i(dq- 
t 

(36) 

We may check that indeed dr$ @l;f&r,) = 0 or deb de; = 0, and we aiso easily verify that 
afways 

Moreover, we should note that A W > 0 when dc& is parallel to the loading surface teqn 8b). 
For the purpose of il~ust~ti~n~ consider a van Mises type l~~jng swface, F = ? - HI = 0 

where 5 = (112 Q s#, sii = we - &r = stress deviator, CY = a&/3, 8, = Kronecker delta. Sub- 
stituting into eqn (36), we find that the deviator part of the tangential phmtic strain increment is 
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We now observe that this is an expression that was implied in Budianski’s workt42-441 
proposed by Rudnicki and Rice[45, 461 as a simple form of vertex-hardening. They used this 
expression in a study of material instabilities of strain-localization type, and they found that the 
presence of such inelastic strains has a profound destablizing effect[45]. We should note that 
this is in spite of the fact that the presence of dE$ does not cause violation of Drucker’s 
postulate, because A W is never less than it would be without drb, 

Since the use of de:j makes AW positive for increments daij parallel to the loading surface, 
and since we want to achieve continuity of A W as a function of doij direction, we must assume 
that the expressions for d& and drz (eqns 11 and 23) for all unloading directions for which 
vector da<! points inside the loading surface are valid as long as A W 2; 0. For this purpose it is, 
however, necessary to assume that de: is never directed inside the loading surface, and because 
d,u according to eqn (23) becomes negative for unloading, one must redefine dp. This may be 
done for example as follows 

For DF ;2: 0: dp = Dflh,, ; 
For DF s 0: dp = - Dl;lhA; 

DF 
=$dph 

km 
(3% 

where h, is the normal plastic hardening modulus for forward normal loading and hi is the same for 
backward normal loading (unloading); both h,, and h; are positive. 

Note that if the expression dp = D~h~ were used also for dF 50 (unloading), then A W 
would never become zero; rather, it would remain positive for all unloading, thus leading to dcfj! 
that is of opposite direction than daib which is impossible. This would contrast with the 
endochronic theory, where the direction of dc$’ for unloading is the same as that of d+ It is 
because of this that negative A W for unloading (Fig. 8b) appears to be the lesser evil, tolerated 
in the simplest endochronic theory. 

The fact that the plastic hardening modulus for normal loading must change its sign (eqn 39) 
when the direction parallel to the loading surface is crossed (i.e. when an outward direction 
changes to an inward one) takes away some of the appeal of the incrementally linear 
expressions (36) and (38) for tangential inelastic strain increments. 

For geometric interpretation it is helpful to characterize the magnitude of the deviation of 
the darj direction from the direction of the outward normal of the loading surface by an angle, 
B(Fii 8e). This angle may, for example, be defined by 

where l/dull = (doij doii)lR = magnitude of do,; 018 5 r. Substituting now eqn (39) into eqn 
(11) for de!, and using nij daij = cos @lIdall, we obtain 

c0s2 e forO~e~7rl2 

e for nt2sezl 
(41) 

(01 Plasticity (c) Due to de:, alone 
Aw I Awt . 

AW 

(9) 

Fig. 8. Dependenec of second-order work in load-u&ad cycks upon dii angk B of appkd stress 
incremenl for various theories. 
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Using eqn (36) we may calculate for the tangential inelastic 

A W, = k lldoll’ sin* 8 

strains: 

(42) 

The dependence of A W, and A W, on f3 at constant l/dull is sketched in Fig. 8(c) and (b). We may 
now determine that A W = A W,, + A W, = 0 occurs for angle 8 = &, L n/2 (Fig. 8d) such that 

tan e. = - ($j”*~l~ = -($j”*gg (43) 

Note that et, = n/2 for h, +m and &, = 7r for h, + 0. Also, note that A W would never vanish if 
dp were given by eqn (11) for ail 8. To avoid negative A W (eqn 4), one may then impose the 
condition A W = 0 and dc$ = 0 for 0 2 0,. The limiting directions 8 = 6, are represented by two 
straight lines (Fig. 8) which form an outward pointing vertex. In this light, the tangential plastic 
strain increments, dejj, may be regarded as a manifestation of vertex-hardening. This ter- 
minology has been used already by Rudnicki and Rice[45] for eqn (38), and our observation 
lends an explanation. 

For comparison, the variation of AW with angle B at constant llde/, rather than constant 
lldall, is sketched in Fig. 8(b) for the ordinary endochronic theory (AW -cos 0). Obviously, 
this theory would have to be enhanced by tangential inelastic strain increments in order to shift 
the point A W = 0 to an angle t9 > ?r/2 and create a vertex effect. 

To avoid a discontinuous jump in h, (eqn 39), a continuous dependence of h upon angle e 
would have to be introduced into Rudnicki-Rice’s vertex model [45], i.e. 

DF 1 
de$‘=mr,B)+x(doij-niink, do,). w 

However, this would deprive the incremental stress-strain relations of their linearity because 6 
depends on daii. (Note that II, could also depend on 0.) 

For isotropic materials, it may be also useful to introduce, instead of f3, two independent 
angles 8 and 8’, one for the deviatoric stress space, Sij, and one for the (Q, ?) space, and for 
each of them separately develop equations analogous to eqns (41)-(44). 

An analogous expression can be derived for tangential fracturing stress decrements: 

We can again show that AlI then becomes augmented by the term do; do:j/2& which is always 
positive, and draw analogy to eqns (39>-(44). 

The normal and tangential plastic strain increments do not exhaust all possibilities. As far as 
the work inequalities are concerned, any further plastic strain increment de: which does no 
work on doij is a possibility. This includes increments drji in lateral directions that are normal to da, 
and to de{ (as well as deb) (Fig. Sb), i.e. which satisfy the conditions 

doij deij = 0, g defj = 0. 
1J 

w 

Since there are six components of deij, and we have two conditions, four independent tensors 
deij are possible (but in plane strain only one). We will not pursue the question of deli further 
because there are no test data on this phenomenon. 

As observed, the stress increments that are parallel to the loading surface and give A W > 0, 
as well as the inelastic strains normal to the stress increments, represent responses which are 
stable in the small according to Drucker’s postulate (A W ~0). However, such responses, real as 
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thy undoubt~ly are, do not necessarily satisfy inequality (34), Le. (@ii - a$) dezf can be 
negative for some crz~ even though d~~de$ is non-negative, So, these responses are not 
neeessariiy stable in the large in Drrzcker’s sense, and they violate NitI’s princi$e of maximum 
plastic work [41,36]. 

It is, of course, also possible to write no&near incremental stress-strain relations for which 
dc# is not normat to the loading solace yet ~~~er’s postulate (eqn 4) is satisfied for ah dgij 
that do not point inward. An exampie is an expression discussed by Mrbr{JSfj 

for which A W - cm 8 at constant addi. So the curve of A W vs angle B 8ooks the same as 
shown in Fig, !3@) for the endochronic theory. 

To understand the differences between various possible ~x~ress~~ for deft some @her 
characteristics may be also useful; for instance the variations of the diion angle 8 of dc$, 
degned by cos 9 = nii d~~~nd~~l~~ and of the ~~itude j/de@ as a function of angle 8, These 
de~nden~es are ex~p~~ in Pii, 8Q) for classical plasticity with mortality (p), end~~o~c 
theory fe) and v~~ex-~deni~ (v) according to qn (3tQ 

In this work we ~on~n~~ on angle imp~i~~ons of work India for the exprcsa 
sions for i~~a~~ stresses and strains, The more serious {and more dam) q~s~n is3 
however, that of the actual expressj~ to be used for a given materiaf. This question can be 
answered only on the basis of experiments or ~~~~e~h~~s models, which we do not 
consider here. We should at least point out that both of these su~st the existence of vertex 
effects and of inetastic strain or stress increments that do not obey normality. ‘Ibis is true of 
many materiais, including plastic ~l~~st~line metals[42, 48-52, 43) as well as frktionzlf 
~~~~t~~~s(l, 13, 121. 

pie we have &ready used @Zig+ 6) was given by Man~l~~~ (for further dilation see 
~~err3~~). The ~h~sti~ Greg which allows the mater& to be stabk even when it 
releases energy (A W CO) is #at the released energy is an elastic energy which has been 
bioeked by friction and is released due to a decrease in the cwnpmdw force that produces the 
friction, We will iU~~te it first by an exampie wbicb is more general than that of M~e~~~~ 
as it involves shear ditatancy, 

Consider thaf the stres~s~i~ relation is yodeled by a blmk which siides on a rough 
scan and is Iouded by a ~~~~ spring of spring constant C #ig 6a). The slip bus 
to plastic shear angle yp’, the horizontal applied force to shear stress +r and the wrtkal sppkd 
f#nx ~~S~~~ for tension) to nortnaI stress #TX The ~~~~ of the surface would boy 
cause the stip d? to be a~o~~~~ by a certain vertical ~sp~a~~e~t or ~a~~y d& = 
&ir”“t where @ represents the dii~a~y factor and drP’ 1 O- 

First we recah the wel~-k~~ fact that &ding of the block vi&tes the Nordic ruie, In 
the (T, c) space the stip con~tio~ is F = r t p’rr - Ht = 0, where 8’ =J friction co&eient and 
)“fk = hardening parameter = current cohesion limit. The stip condition is graphicany represented 
by the line in l%i. 9. The normai ta &is slip surface has the i~~~i~~~~ I&‘* ‘i’k vector &of Srip 
md veti& ~s~~c~~t, plotted in the same dii, g&es a hue of ~cl~t~n I/g, 
Obviously, normality exists only far jI = #Y, but the value of /3 is independent of 8 and in 
~~1~ j3 may be zero. 
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Fig. 9. Yield condition for frictional block of Fig. 6. 

Now we apply load increments dr and du such that dr is opposite to the spring force and 
Id71 c k(duj (Fig. 6a), and we realize that this causes the block to slide to the right by dyp’, with 
corresponding normal displacement j3dyp’. This is so because do reduces the friction capacity 
more than d7 increases it by relieving the spring. Equilibrium after sliding requires that 
F+dF=(r+dr)+jY(a+du)-7, - C(yp’ + dyp’) = 0. Subtracting eqn (48) we get the con- 
dition of continuing equilibrium 

dF = dr + p’du - CdyP’ = 0. (49) 

Thus, we have 

dyp’ = +(dr + fi’dcr), d@’ = pdyp’ GO) 

and the second-order work done by dr and do on the block will be 

A W = ;(drdy” + dcrdrp’) = &dr + fldq)(dr + P’da). (51) 

If fi = /?‘, which is the case of normality (Fig. 9), the expression for A W is symmetric and 
we always have A W > 0. However, if p = 0 (flat surface, no dilatancy) and if we choose dr < 0 
and da > - dr//3’ we get A W < 0, i.e. energy is released by the block. Nevertheless, the block is 
stable because infinitely small loads dr and du cause an infinitely small deformation dyp’, More 
generally, if 0’ > /3 > 0 and if we choose do > 0 and - fYdu C dr < - /3da ( < 0), we always get 
A W < 0, and the block is still stable. Note, however, that if the spring force were replaced with 
a constant force (e.g. weight), no new equilibrium would exist, i.e. the system would be 
unstable. Thus, the stability is obviously due to the fact that the driving force decreases with 
increasing displacements, as is true for the release of elastic energy. 

From the finding that A W < 0 is not an unstable situation in these cases we may conclude 
that a release of frictionally blocked elastic energy is harmless for stability. We have seen that 
this can occur only if /3# /3’ (lack of normality) and thus it is expedient to rewrite eqn (51) in the 
form 

AW=AW,+AW, 

1 
AW, =+d~+pdu)~, AW,= 2C B’ do(dr t /3du). (53) 

Here A W. is always positive, and it is solely A W, which may cause A W to become negative. 

Frictional continuum 
To establish continuum analogy to the preceding example, we must: (a) express AW and F 

by means of differentials of the‘same variables (b) express A W in terms of invariants because F 
must be given in terms of invariants; (c) express A W by means of only two stress variables and 
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two strain variables, and in such a manner that (d) cross products be absent, just as dtr d@ or 
dT d& is absent from eqn (51). This last condition is the salient property which defines friction, 
namely, the f~ction~u~i~g force {such as Q in Fig. 6) is a force that does no work on some 
displacement (on drP’ in Fig. 6) yet a#ects this displacement. These conditions can be met by 
writing 

in which 

and d? = sii ds$2?, Q = e&3. Coefficients ~8 and Q ~hara~t&e the direction of vectors drii 
and de$ in the stress space and coefficient p is a function of the angle between these two 
vectors and of the angle between dstl and sii. We chose to normali~ these vectors in different 
ways. Instead of the plastic path length y8 (Odquist’s hardening p~meter~ one might think of 
using +@ = (ef ef12)‘” and write 4~ = decode (where df@ = eaf, de~~2~~~ but this would 

be in~nve~ent since it is p@ rather than p, which is suit&e as a ~~~ meter in the 
loading function. tie might alternatively think of ‘using pir = dsddi = (dr, dsJ21rn = stress 
path length; but this would again be in~onve~e~t because the Ioadi~ function depends on 5 
rather than i. 

Comparison of eqn (54) with eqn (551) indicates that the variables da, dr, d&, dyP’ for the 
b&k corresponds to ~on~~urn variables da, di, 3d8 and p d$@, respectively. A gene& 
loading f~n~~on for isotropic materials may be considered in the form 

F(w, ?, 33, e”!, p, HfJ = 0 (56) 

~where 3s = ~~~~~*~3 = third invariant of So; & are possible further h~deni~ ureters in 

The last impassion is chosen to define the direly factor, in which 2d$@ is used 
because for pure shear it equals 2de’ - r2 - plastic shear a&e increment. Note that if F depends 
on Jft DHZ.)F depends on the direction of vector d+ and if @if 0 or ~~~~*# 0, then L@Dj@ 
depends on the direction of vector de $ Dividing eqn (57) by DE;fl)r and heaping in mind the 
proper correspondence of variables with the frictional bIoek, comparison of eqn (57) with eqn 
(49) furnishes us 

The dilatancy factor for the tsloek, d&dy*‘, comsponds according to de~niti~~ (So), to the 
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ratio 3d~p~/~d~’ which equals 2@p where p is given by (59). Thus, according to (53), the 
frictionally blocked second-order elastic energy is 

da(d?+P*dcT), fl*=$. (61) 

This expression is general, applicable to any loading function. Note that the equivalent spring 
constant C for the frictionally blocked elastic energy as well as diiatancy factor jJ* depends on 
the directions of dsij and de$‘. So does friction coefficient /?’ if JFlJJ, # 0. 

Obviously we must have C L 0 and /3’ z 0. Ail subsequent considerations are invalid if this is 
not so. Not only the derivatives of F, but also p must be checked for this purpose. Normally 
(~~~p’)~~~~~} < 0, and then p must be positive; this is so if dq de$ > 0. 

Work inequality 
Let us now introduce the work expression 

In case that A W becomes negative due to release of the frictionally blocked elastic energy, A W 
will still remain positive, and the situation is as we learnt stable. On the other hand if A W 
becomes negative for other reasons (A W, = 0), so will A@? Thus the following proposition, 
which gives a less restrictive (more general) su~cient condition for materiaf stab~ity than 
Bucker’s postulate, appears to be true for isotropic materials under controlled stress or strain: 

If either A W > 0 or A W > 0, the material is stable. (63) 

Note that we cannot discard the condition A W >O because A Wf can be negative when 
pda<-d? even if AW>O. 

In stress space (u, +), the domain of dqij vectors that give A W >O occupies the 
halfplane a in Fig. IO(b) and the domain of those that give A@>0 occupies a certain other 
halfplane b. The combined domain of vectors of applied stress increments drij for which the 
response is inelastic and is assured to be stable occupies the union of these two halfplanes, i.e. 
the reentrant wedge (Fig. lob), one side of which is tangent to the loading surface. 

Condition (62) may equivalently be stated as follows: 

If A W - XA W, > 0 for any x C (0, l), the material is stable. w) 

Since A W - XA W, is a linear function of x, the extremes can occur only at x = 0 and x = 1, and 
so condition (62) follows from (64) and vice versa. 

ClOssical Plasticity Frictional Plasticity 

bl ’ 

Fig. 10. Stable stress-increments and associated plastic strain increments for #ic~ionkess) plastic material 
and frictional plastic material. 



Work inequalities for plastic fracturing materials 891 

Plastic strain increment 
In view of the fact that the flow rule can be derived from A W > 0, it is interesting to see 

what follows by the same line of reasoning from the more general condition A W - XA W, > 0. 
We have 

AW_xAWf=2 ii ! ds de$’ +: dad6 - x y dc(d? + p* da) > 0. (65) 

The foading criterion (4) may be written as 

$dSii+$dr>O w 
ii 

The ratio of expressions (65) and (66) must obviously be positive and denoting it as d&2 
(dp >O), we get 

y(di+#*do)]do=O (67) 

This equation must hold for any dsii and du. Pursuing the same line of argument as in classical 
pIasticity, we note that this is possible only if the bracketed expressions vanish, i.e. if 

>( dr+-Ldr”du 
PP dr.r 

w 

where we used /.!I* = (21p)3drP’/2dj@ and substituted dfp’ = led, where P = 
[(aRasiiHanaSi,)/2]‘“, which follows from the above expression for de#. 

Equation (6s) governs the ratio of the de$ components, i.e. the direction of the vector dr$. 
Using the same logic as in classical plasticity, we could further consider the ma~itude of dr$’ 
to be proportional to A W - XA W,. 

Except for x = 0, eqn (68) is nonlinear with regard to de$‘ldp. Moreover, C, /3’ and p 
depend on the direction of vectors doi, and dcjj’, which complicates its practical use. The 
equation is, however, instructive. 

What we should observe is that, by pursuing basically the same line of reasoning as used in 
classical plasticity to derive the Bow rule, we now obtain no unique direction of vector dr$ but 
a continuous set of infinitely many possible directions characterized by an arbitrary parameter 
x E (0,l). In the volumetric section of stress space all the possible directions of de$’ fill a 
continuous fan of finite angle (i-2-3 in Pii. NM). One boundary direction of the fan is the 
normal to the loading surface o( = 0). The other boundary direction (3 in Pii. 1 Id, x = 1) can be 
thought to be normal to some other surface (b in Pii. 1Od). 

This situation resembles that encountered in classical plasticity at the comer of the loading 
surface. It is also similar to what is assumed in nonassociated plasticity; however, the direction 
of fan boundary (x = 1) is not unique and is not known in advance as it is not uniquely 
determined by the current loading surface in the stress space. Moreover, material stability is 
assured for all loading directions duii within the fan, while in nonassociated plasticity the 
stability is not assured. 

Stability in the large 
Finally, let us mention that the spring-loaded frictional block also violates Drucker’s 

postulate of stability in the large. Let the block be initially in equilibrium under loads aa and TO 
within the yield surface. The shear stress is then increased to the value 7 at imminent sliding 
and, a~1~~ da and dr same as before the block slips to the right. The stress is then returned 
to 4 and TO. The work during this cycle is 6 W = (T - T“&@ which is negative yet the material 
is stable. This illustrates that the postulate is violated due to friction. 
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9. ELASTIC ENERGY BLOCKED BY FRICTIONAL FRACTURING RESISTANCE 

An analogous situation may arise in fracturing deformation. To illustrate it, consider first a 
model of the stress-strain relation in the form of a unit deformable elastic-fracturing block (Fig. 
I I). The horizontal and vertical displacements of the top face of the block, representing the 
shear strain y and the normal strain c, are controlled by pistons. The bottom face slides on 
rollers and is held by a horizontal spring of spring constant C. The spring force alters the shear 
stress in the block and thereby it modifies the limit y = y. at which fracturing occurs. Thus, the 
spring models the fracturing hardening of the material. We assume the limit condition of 
fracturing of the block to be 

@=y+a’e-H;,with H;=y,+$ (69) 

where 7” = fracturing relaxation of shear stress 7, and a’= fracturing friction coefficient 
(see[ I]), which represents the effect of normal strain on the fracturing limit in shear. 

Assume the block is initially at the limit of further fracturing. Now consider that we retract 
the vertical piston (Fig. 11) by de and at the same time expand the horizontal piston by dy. The 
initial limit state is given by eqn (69) and the new limit state is given by cP+d@ = 
(y + dy) t a’(~ t de) - yo- (7” + d#)/C = 0. Subtracting eqn (69) we have 

d@ = dy + a’de - d#/C. (70) 

Therefore 

&f’ = C(dy t a’de), do” = ad+ (71) 

where we also included the hydrostatic stress relaxation d# associated with d#‘; a= 

fracturing dilatancy factor. The complementary work is 

AlI = li(dydT” t dedd’) = 5 C(dy t ade) (dy t a’dc). (72) 

If a = a’, which is the case of normality, the expression for AII is symmetric and we always 
have ATI > 0. However, if a = 0 and if we choose dy < 0 and de > - dy/a’, we get AII < 0, i.e. 
energy is released by the system. Yet, the system is stable since infinitely small disturbances dy 
and de cause infinitely small changes dr and do. The same result is obtained in the more general 
case when, for a’ > a > 0, we choose de > 0 and - a’dc < dy C - ade( C 0). 

What is here happening is that expansion de tends to diminish the fracturing resistance in 
shear, and so further fracturing is caused by the spring. The amount of fracturing is limited 
because the spring force decreases during dy The complementary work AI’I is negative because 
d@ is in the positive 7 direction if the negative dy is chosen such that the ratio Idyjldr is 
sufficiently small; i.e. the effect of de > 0 (stimulation of fracturing) prevails over the effect of 
dy < 0 (further hardening). Note that if a constant load (e.g. a weight) were applied instead of a 

Fig. 1 I. Example of a fracturing block whose fracturing resistance is sensitive to volume change 
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spring, no new equilibrium would exist and thus the system would be unstable. So, the fact that 
the released energy is of an elastic nature makes an essential difference. 

An energy release that does not have a destablizing effect is generally possible when (I’ f (2. 
Thus, it is convenient to rewrite eqn (72) in the form 

AD = Al-l, + AI-I, (73) 

where AD, = i C(dy + ade)*, AD,+ Cde(dy + crdr). (74) 

For continuum generalization, we may write the second-order complementary work expres- 
sion in the form 

AlI=;dcr”(3dr)+;qd+“d~ (75) 

, _ds$ de- 
q=p:jq:j9 pij-dp9 4ij=$* 

dff’ = (‘2 d$ d$)“‘, f = ($ eij eij)” 

and d7 = eij deij2?, E = eJ3. Coefficients pij and 411 characterize the directions of vectors ds$ 
and d# in the stress space. We do not use @ instead of % because the latter is more 
appropriate for the loading function as the damage parameter, and we do not use path length 9 
instead of 7 because the fracturing loading function depends on 7 rather than f. Comparison of 
eqn (75) with eqn (72) indicates that the variables dy, de, d7” and do” for the block correspond 
to the continuum variables df, 3de, qd@’ and dt$‘, respectively. A general loading function for 
isotropic materials may be considered in the form 

where J3’ = eL eb e,i/3 = third invariant of eij; If; are possible 
Differentiating Q, we get 

(77) 

further hardening parameters. 

where 

(78) 

(79) 

a = d&d@. (80) 

The last expression is chosen to define the fracturing dilatancy factor. Dividing (79) by ao/ay 
and comparing it with (70), we get 

c’=_q.D$l .;, -43 QI= 1 away 
3 aWaj 

(if C, a’r0) 

and according to (74) the elastic energy blocked by fracturing resistance is 

(81) 

(82) 

Note that C, a’ and a depend on the directions of the vectors of de,, and dd[ in the strain 
space. 



where 

where ji’ may be caifed fhe inverse friction ~~~cjent. The e~pr~~~ion for A Wf has again the 
form of eqn (61) in which, though, j?* = ~dy~‘l~d~pi = ~~2~ where J? = 3drP’/2d$@fS 

Note that this expression for AWf cannot be reduced to the previous one (eqns 60-H), By 
~~n~t~ in urns of the ~a~ng surface alone these two types of friction wotrld be ~u~va~e~t~ 
they are ~~~~t~ by DNC: loader SB&Ke. 

The ~~~~~ent ~~b~~~y ~~nd~t~n &qn 63) my now be father dened. We may ~~~~~ 
A W = A W * A Wf where A!@ = A Wf as given by eqns (87) and f61> with @* = ~~2~, while A W 
remains to be given by eqns (60)-(62). Then: 

Tnstead of ~e~~~nf wedge, the domain of do;i vectors that prodBce inefasti~ .&K&I and-~~b~~ 
response now becomes a reentrant pyramid, one side of which is tangent to the loading surface. 

Equivaientty, we can state that: 
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To make distinction, A W, may be called the frictionally blocked volumetric elastic energy, 
while the previously introduced A W, is the frictionally blocked deviatoric elastic energy. 

The line of reasoning that is used in classical plasticity to deduce the normality ruk (eqns 
65-68) would now generalize eqn (68) to a form that contains two arbitrary parameters x and $ 
and indicates that all stable plastic strain increment vectors fill a pyramid (rather than just a 
fan). The normal to F lies on one side of this pyramid. 

Obviously, it is similarly possible to introduce inverse fracturing friction, distinguish 
volumetric and deviatoric elastic energies blocked by fracturing resistance, and generalize eqn 
(86) similarly to eqn (88) or (89). 

Are other types of frictional relations possible in isotropic continua? They are not. 
According to the aforementioned conditions (a)-(d) for friction, we would need to express A W 
as a sum of two terms, other than those in eqn (54), such that only invariants of dau and deij are 
involved and each of these appears only in one term. To do this, we would need to express uij 
as a sum of two stress states such that the nonzero invariants of one of them are zero for the 
other, and this can be done in only one way, namely by separating ati into volumetric and 
deviatoric stress states. We would need for example, to separate au into two stress states such 
that Z, and J2 (but not Ja) always vanish for one and J, (but not Z, and J3 always vanishes for 
the other, but this cannot be done because I2 and Ja are nonlinear and Zi is linear. 

It is of course, possible that instead of eqn (54) we alternatively write 

where p = PiHib pii = d+/d?r, qij = de$‘/d$P’, ?J = J, ‘I’, dr$‘= (Jf’)“‘; J3 and Jr are the third 
invariants of Sij and de$‘. However, since this expression is based on separating air into sil and 
cr, just as eqn (54) is, the resulting form of A W, must be equivalent. 

It may be instructive to illustrate the meaning of coefficient p from eqn (54). Consider the 
special case when the medium principal axes of dsii and e$’ coincide and let them lie in axis x2. 
Also assume that the medium principal values of dsij and dc$’ are zero, i.e. dSn = de$ = 0. For a 
suitable choice of axes xl and x2, the stress state in plane (xl, x3 can be represented as 
,hydrostatic stress da superimposed on a pure shear stress of magnitude d+. Likewise, in some 
other axes xi and xi the’strain state in plane (x,, x3 can be represented as volumetric strain dcp’ 
superimposed on a pure shear strain of magnitude d?p’. Since dsn = - ds,,, we have dstl = f d+/V2. 
Furthermore, working in the principal axes of dsii, we have dri2 = 0, and because de4 we have 
de!1 = f dj@ cos 2&2 where o = angle between the maximum principal directions of da,, and 
db$‘. Thus, from A W = (3/2) da deP’ + (l/2) dr, de$’ we obtain 

AW=;dodr@+;di@dj%os2”) (91) 

So, coefficient p from eqn (54) is simply equal to 2 cos 20, and we see that it may vary between 
2 and - 2. When doii and dcf are coaxial (as in a cubic triaxial test) p = cos 20 = 2 and we have 
a one-to-one correspondence with the friction block example, without introduction of any 
further arbitrary factor. 

II.QUESTIONSOFUNIQUENESS ANDENDOCHRONlCTHEORY 

Instead of using second-order work inequalities intimately co~cctcd with stability in the 
small, the theory of inelastic behavior can be also based on other plausibk basic hypotheses 
such as the requirements of uniqueness (or continuity) of response; or convexity of the 
transformation from the strain space to the stress space as given by the tangential moduli 
matrix, or local path-independence of response, or strong ellipticity of the resulting eigenvahre 
problem[M-20, 27, 47, 541. Under certain additional assumptions (e.g. the afore-mentioned 
assumptions of consistency, continuity between elastic and plastic regions and incremental 
linearity), each of these hypotheses leads to a normality rule (and some lead also to convexity of 
loading surfaces). Similarly as Drucker’s postulate, all of these hypotheses are, however, 
unreasonably strong if applied to all possible situations. 
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The requirements of uniqueness and strong stability have been used by Sandler[SSl in a 
criticism of the endochronic theory. These requirements, however, lack physical justification in 
certain respects[‘lJ, and in other respects they can be easily met by refinements of the 
endochronic theory [7, 11, 121. 

One further interesting question of uniqueness has recently been raised by Rivlin[561. He 
considers two loading paths in the strain space: one is a straight line and the other is a regular 
staircase path that touches the straight line as shown in Fig. 12. When the number of stairs 
tends to infinity, the mean distance between these two paths (norm) tends to zero, and so one 
might wish that the responses to these two loading paths approach each other in the limit. 

If one believes in the normality rule and incremental linearity and if one assumes smooth 
loading surfaces (no corners), the directions and magnitudes of do$ and dr$’ are independent 
of deii and doii directions and are determined solely by the magnitudes of eij and oij and the 
projections of deij and duij onto the normal of the loading surface (e.g. DF in eqn 39). In the 
limit the magnitudes of eij in Fig. 12 and the normal projections of deij are the same for both 
paths and therefore the directions of da$ and de$’ for both paths are also the same under the 
foregoing assumptions. So, the responses in the limit are the same for both paths if classical 
plasticity without corners on the yield surface is assumed. 

For the ordinary endochronic theory, however, these two responses do not approach each 
other in the limit because the magnitude of inelastic strain increments is proportional to the 
increments of path length 6 and the length of the staircase path in Fig. 1 l(a) is independent of the 
size and number of stairs and is always greater, even in the limit, than the length of the straight 
path. Is this an incorrect aspect of the endochronic theory? Can it be rectified? 

The problem may be considered from various viewpoints: 
(1) First of all, when the number of its stairs tends to infinity, the path is not differentiable. 

Such a path cannot be practically realized. It would not be unduly restrictive to exclude 
non-differentiable paths from the range of applicability. 

(2) Is it, however, physically realistic to expect the same limiting response for the staircase 
path and the straight path? It is not. This must be concluded by considering the microscopic 
mechanism of inelastic behavior. 

The mechanism may typically consist of microcracking and plastic slip. If we assume the 
normality rule and absence of corners, then the direction of microcracks and of plastic slips can 
depend only on eij and oij and be independent of the direction of deij and da,. However, if we 
admit that the normality rule need not hold (i.e. vertex effects may exist), then da{,! and de{’ 
can be decomposed into normal components and components in the direction of deii or doif The 
latter components are caused by microcracking and plastic slips whose directions depend on deij 
and d~ij; this type of microcracks are predominantly normal to the principal direction of do+ 
and the predominant plastic slips occur at 45” angle. Thus, for the staircase path in Fig. 11(a), 
the directions of the latter type of microcracking alternate between the directions sketched in 
Fig. 12(b) and (c) and the directions of plastic slip alternate between those sketched in Fig. 12(c) 
and (f). By contrast, for the straight path the directions of prevalent microcracking and plastic 
slips are always those shown in Fig. 12(d) and (g). 

e) _ f) 9) _ 

I -I 
Cl1 

Fig. 12. Staircase loading path (a), Smoothed path length (i), and associated behavior (b-g, h). 
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We now see that, unless norm&y and absence of come is assumed, themicrocracking and 
plastic slips for the two paths occur in different directions even when the number of stairs tends 
to ~n~njty. Therefore, the responses must be different and it may well be a shortcoming of 
classical ptasticity that it cannot model this behavior. 

The exam&c demonstrates that insistance on uniqueness in all situations is tantamount to 
assuming normality and denying the possibility of vertex effects. RudnickiiRice’s vertex model 
(cqn 38) gives also a non-unique response for the case considered (and so does Mr6z’s 
expression, eqn 47). 

(3) Even in classical plasticity, if there is a corner on the loading surface (Tresca criterion) 
the direction of de! is not unique as far as the flow ruk is concerned, and depends on the 
imposed direction of de& Thus, when we have a staircase path infinitely close to a straight path, 
such that the stress point remains at the comer of the loading surface (Fig. 12), as the surface 
expands due to hardening the detJ’ vectors for the two paths will have different directions even 
when the number of stairs tends to infinity. Thus, even in the limit, the plastk slips are 
occurring on d&rent planes, and so different harder&s and different responses must be 
expected. For example, if Odquist’s path iength j@ (eqn 55) is used as a parameter in the 
loading surface, the values of p will be different for these paths even in the limit. 

(4) It is nevertheless possible to slightly adjust the definition of intrinsic time so that both 
paths give in the limit the same response. To this end we may replace eqn (24) by 

(for trh) where A is a certain small positive number and s is either the actual path length, 
s = tp* deG de&? or time or loading parameter if % arc given as its continuous functions. 
Note that for A-PO we have lim 6 = path length a rnt~~t~n of a fbite value for A has the 
effect of rounding all sharp corners of the strain path with a radius of the order of magnitude of 
A, and so lim 5 =I: straight path length when the number of stairs in Fig. 12 tends to infinity. 
WC may imagine 6 as the sum of all possible segments of length A between two points on the 
path (Fig. 12h), averaged over the length of the path. If we choose A = 10-’ (and prw is of the 
order of unity and s = path length), then the effect of A on practical fitting of all test data 
modekd so far in the hterature with the endochronic theorks is undetectabk, the intrinsic tune 
can be evaluated on the computer as usual, yet the theory gives the same limit for both paths in 
Fig. 12. 

For the case when a uniaxial cyclic strain D sin cut is superimposed on a constant strain 
(r = time, o, o = cons~nts~ we have s - at. We see that definition of f by eqn @2) increases the 
rate of convergence of 6 with ff -80 at fixed r (or fixed number of cycles) to the value 6 = 0 
which correspunds to u = 0. This means that, often in accordance with the actual behavior, the 
response to minute oscillations (a +O) would be much less inelastic or essentially elastic if eqn 
(92) is used. 

Rue to micro-inhomogeneity of the material, it is actually impossible to induce in the 
material a sequence of extremely (i~~te~y~ smah plastic stips or microcrack advances such 
that each two subsequent ones are of d&rent directions. In this light, A has a physical 
justification and corresponds to the limit of continuum modeling. Thus, 6 according to eqn (92) may 
be called the inrrirtsic rime with )hife m&ion. 

In closing, one should not feel too disappointed, since the inelastic theories are not the only 
ones where one has to tolerate some unappealing, paradoxical limiting behavior, Elasticity or 
plate bending theory* which are as perfect as any theory could be, are replete with instances of 
such behavior. For exampk, the de&&on of a simply supported regular polygonal plate does 
not tend to the defkction of a simply supported circular plate as the number of corners tends to 
infinity (Babuflra’s paradox). One has to take a positive view of the endochronic theory as long 
as it affords us for some materials and phenomena a much better description of the exp&- 
mentally observed behaviorf4,6, 1 f, 101 than the classical theories. 

1. In inelastic behavior one can distinguish the plastic strains, which are associated wjth no 



8% ZDENBK P. BA~ANT 

change in elastic moduli and the fracturing stress relaxations, which cause a decrease of elastic 
moduli. 

2. The positiveness of the second-order work A W of plastic strains or complementary work 
AH of fracturing stress decrements corresponding to load-unload cycles guarantees material 
stability under stress or strain controlled conditions and may be used in constructing the 
stress-strain relations. 

3. The condition that AW > 0 or AH >O during loading does not necessarily require 
normality of plastic strain increments and of fracturing stress decrements. It allows them to 
have also such direction that no work is done. Moreover, certain kinds of plastic strain 
increments and fracturing stress decrements that are tangential to the loading surface and 
always do non-negative work are also allowed by these conditions. 

4. The endochronic theory can be derived from Drucker’s postulate just as logically as classi- 
cal plasticity. The role of the loading surface in endochronic theory is that it separates the 
stress increment directions for which Drucker’s postulate is satisfied from those for which it is 
not, whereas, in classical plasticity its role is that it separates the stress increment directions for 
which the plastic strain increment vector points outside loading surface from those for which it 
would point inward. None of these roles can be regarded as more fundamental; but the former 
role is advantageous by making it possible for the endochronic theory to exhibit irreversibility 
at unloading if the same equations as for loading are used, whereas the latter role would cause 
classical plasticity to exhibit full reversibility in small load-unload cycles if the same equations 
were used. 

5. The incremental linearity of the stress-strain relations of classical plasticity is a tacitly 
implied hypothesis and does not necessarily follow from Drucker’s postulate and the existence 
of the loading surface. Various incrementally nonlinear stress-strain relations satisfying 
Drucker’s postulate, both such that do and do not obey normality, have been demonstrated. 

6. Dependence of A W upon the angle fI of the stress increment vector with the normal of 
loading surface is useful for comparing various theories. So is the dependence of plastic strain 
increment direction angle and the magnitude upon 8. 

7. Rudnicki-Rice’s vertex model, for which there is an additional plastic strain increment 
parallel to the loading surface, has the advantages of incremental linearity and never leads to 
violation of Drucker’s postulate. However, it has one undesirable feature, namely that the 
plastic hardening modulus h, for the normal component of inelastic strain must be considered 
to change its sign when the loading direction parallel to the loading surface is crossed (i.e. when 
an outward direction changes to an inward one). To avoid a discontinuous jump in h,, a 
continuous dependence of h, upon angle 8 would have to be introduced; this would, however, 
take away the advantage of incremental linearity. 

8. For frictional materials (as well as materials whose fracturing is sensitive to volume 
change), there exists, in addition to Drucker’s postulate (or Il’yushin’s postulate) another 
inequality that also suffices for stability. It differs by a term that represents the second-order 
elastic energy blocked by friction (or by resistance to fracturing due to volume compression). 
This term enlarges the domain (in the stress space) of all stable stress increment vectors from a 
halfspace to a reentrant wedge. The same argument as that used to derive the normality rule in 
classical plasticity shows that the corresponding plastic strain increment vector has no unique 
direction but can have many directions which occupy a fan, one boundary of which is the 
normal vector. There are similarities but also important differences with regard to non- 
associated plasticity and the situation at a comer of the loading surface. 

9. Apart from friction in deviator strains due to hydrostatic stress there exists friction in 
volumetric strain due to deviator stress intensity. The elastic energy blocked by this inverse 
friction leads to still another sufficient stability condition. The set of stress increment vectors 
that produce inelastic strain and stable responses gets enlarged from a reentrant wedge to a 
reentrant pyramid one side of which is tangent to the loading surface and the set of stable 
plastic strain increment vectors gets enlarged from a fan to a pyramid one side of which 
contains the normal. 

10. Theories of inelastic behavior can be alternatively based on various other hypotheses, 
e.g. the requirement of uniqueness (or continuity) of response. However, it would be un- 
reasonable to expect uniqueness in all situations, for example cyclic loading of vanishing 
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amplitude superimposed on a staticload [7f or a-regular sti&st path [56f (in- the stress space) 
approaching a straight-line path. Good physical reasons exist for the response to the staircase 
path not to approach the response to the straight-line path in the limit. This is actually so for the 
endochronic theory, Rudnicki-Rice’s vertex model as well as some types of plasticity with a comer 
on the loading surface and non-endochronic incrementally nonlinear models. Although 
such behavior is not unreasonable from the physical view point, it is nevertheless possible to 
define a “smoothed” intrinsic time (eqn 92), such that uniqueness (or response continuity) for 
the staircase path is assured yet none of the previously published fits of experimental data is 
affected. 
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APPENDIX-DISTINCTION BETWEEN PLASTIC AND FRACTURING PHENOMENA 

The difftnnce between plastic and fracturing phenomena consists in the fact that the latter cause degradation of elastic 
moduli while the former do not. The law of changes of elth moduli Cw as a function of stress and strain increments 
must be given to be able to define de$ and dirt in eqn (6). For the pure fracturing m&rid the condition of full 
reversibility (Fig. 3b) requires that 05’ = Ciheh. Differentiating we get dug = C&deb -du$’ where dot = - dC+eh. 
The uniaxial counterpart of this relation is u I EC which yields da,, = Edct, - drr(; where dufi - cl1 dE; this is graphtcally 

illustrated in Fig. 3(b). If we set do,, + dufi = du$ and doir + da,) fr = d&, we may write do5 = EdelI and dot = &,,,deb 
for the pure. fracturing matetil. 

To gentfafize this to a plastic-fra&irMg material, we may now retain the preceding relations but with elastic Strain 

instants instead of the total ems, i.e. 

dU$ = Cih de” km. dup; = Edr:, (93) 

whele de& - detm -deg., du! z dgii t &r$ in which again da{,! = d&,,,eh or d& = - cl1 dE. Thus, eqn (93) yields 

dui, - dCrti eh = C,,, (de, -de%) (94) 
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dcr,, - cl, dE = &de,, -de!:). (9% 

The last relation is graphically illustrated in Fig. 3(c) and indicates the following graphical construction IO determine do{; 
and dr(f if the unloading slopes E for various points of the stress-strain curve are known. 

Using unloading slope E, pass from point 1 to point 7 on the stress axis (Fig. k); then, decreasing the slope by dE, plot 
line 76 and locate point 6 on the vertical line throw pointl, Passing a &rizontat line through Point 6, and the line of the 
unlaid slope through point 2, find intersection 3. Then, 16 = -dog, 63 = dr${. 

The increments of dC&, or dE must further be related to the change of the loading surface 10 in the strain space; see 
Ref.[2]. If the unloading is inelastic, 17 = inifiol unloading slope. 

Although the foregoing method Of superimposing do@ and dt$ appears to be logical, it remains to be confirmed 
experimentally. One could make some other hypothesisllf, for exampk, such that the unl~di~ lines emanating from 
points 1 al 6 in Fig. 3(c) intersect at point 8 rather than 7, or at some point between 8 and 7. One such ~ssib~ity has been 
tried in fitting test data for concrete( I] but did not perform as well as the method outlined above (eqns 94.93, 


