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The previously developed method of element-wide blunt smeared crack bands, which allows an 
effective finite element analysis of cracks that are not fixed but propagate and do so in any direction, 
has so far been numerically studied and demonstrated only for the constant-strain triangular elements. 
Here this is accomplished for linear strain triangles and for all three methods developed in [l], 
including the methods of energy variation, of equivalent strength, and of fitting asymptotic series to 
nodal displacements. Meshes of greatly different sizes are shown to give again the same results except 
for a negligible error; this indicates satisfactory convergence. Accuracy of the stress intensity factor, 
compared to the exact solutions for sharp cracks, is found to be sufficient but not better than that 
achieved previously with constant strain triangles. However, the accuracy may well be better in case of 
concrete structures in which the element-wide crack band serves not merely as a convenient ap- 
proximate representation of a sharp crack but as a better representation of the actual fracture process. 

Introduction 

Sharp interelement cracks represent a very cumbersome and prohibitively difficult approach 
to model the crack propagation, especially when the crack path is not known in advance. 
When the crack extends through a certain node, this node doubles as two nodes, the topology 
(or connectivity) of the finite element mesh changes and the nodes must be renumbered. The 
renumbering may be avoided by treating the nodes that are to fracture later as two coincident 
nodes constrained together until the crack extends through the node; but this is useless when 
we do not know beforehand through which nodes the crack is going to pass. When the crack 
direction is unknown, the node location cannot be considered fixed and the calculations must 
be run for various node locations. 

Concrete engineers have long used a much more effective approach. In keeping with the 
physical reality in concrete structures, they model fracture as bands of parallel cracks 
continuously distributed or smeared through the whole finite element. All that one has to do 
to represent cracking is to change the element stiffness matrix assuming that the material 
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becomes orthotropic, with the modulus for extension normal to the cracks being reduced to 
zero. In this manner one can easily extend the crack band into any element and one can easily 

model cracks of any direction, without considering nodes of different locations. 
This traditional approach suffers, however, from a fundamental fault: it is not objective 

because the results depend on our choice of finite element size and do not converge as the 
element is shrunk to zero in size. This is because one extends the crack into the next element 
on the basis of a strength criterion. If we note that the crack front has always the width of a 
single element (which can be shown by analyzing unstable localization of strain due to cracks) 
we see that the crack front becomes sharper and sharper as the mesh is refined, causing stress 
concentration. Thus, the stress in the element just ahead of the crack front tends to infinity no 
matter how small is the applied load. So we conclude that using the strength criterion we can 
obtain extension of the existing crack band for as small a load as we please, The only reason 
that many practical calculations of reinforced concrete beams, slabs and panels have been 
satisfactory is that the element size has been about the smallest admissible one in relation to 
material inhomogeneities, i.e., the aggregate size. This is not so, however, when large 
structures, for example dams or reactor vessels, are to be analyzed. 

The only way to eliminate such spurious dependence of fracture predictions on the chosen 
element size is to adopt the fracture mechanics approach in which the crack propagation is 
based on the fact that the work consumed as the crack or the crack band is extended by a unit 
length is a constant. The concept of element-wide blunt smeared crack bands was founded on 
this fracture mechanics criterion in a previous paper [l], in which a survey of pertinent 
literature can also be found. One direct and two indirect methods of implementing the energy 
criterion of crack propagation, each with its own special computational advantages and 
disadvantages, were proposed and numerically demonstrated. It was shown that fracture 
predictions of sufficient practical accuracy can be obtained for relatively crude regular meshes 
without mesh refinement near the crack front. 

One rather interesting result was that for constant strain triangular elements the element- 
wide blunt crack band yields the stress intensity factor with about the same accuracy as the 
sharp interelement crack used so far in fracture mechanics. It is certainly rather useful to know 
that there is very little difference between a sharp crack and an element-wide crack band. We 
must keep in mind, though, that the modeling of sharp cracks with the element-wide crack 
bands is not the only objective. In certain structures, such as concrete structures or rock 
masses, we do actually have bands of cracks rather than sharp isolated cracks. 

All results in the previous paper [l] were obtained with the simplest elements, the constant 
strain triangular elements. We will therefore examine here what is the effect of choosing 
higher-order finite elements, such as linear strain triangles, and whether the accuracy 
equivalence of element-wide blunt crack bands and sharp interelement cracks still holds for 
the higher-order elements. We will study this question for all three methods developed in [l]. 

The finite element calculations in [l] were performed with four-node quadrilateral elements 
composed of two constant strain triangles (CST). This type of element is widely used in 
practical nonlinear analysis of reinforced concrete structures and the calculation of its stiffness 
is very simple. 

In this work, we choose the six-node linear strain triangles (LST). To be able to use the 
same meshes as before [l], we arrange four triangles to form a quadrilateral element, same as 
used before [l]. In this quadrilateral element, the efficacy of which is well known [2], the five 
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nodes inside the quadrilateral are eliminated by static condensation. For convenience, the 
exterior midside nodes are also eliminated by constraining the displacement variation along 
the sides of quadrilateral to a linear one, so that the element may be treated as a four-node 
quadrilateral. 

1. Method A. Energy variation due to crack band advance 

As shown in [l], the energy release that takes place as a crack band advances by one 
element may be calculated as 

AU=;/ ATi(Ui - Up) dS + A WcAv), 
AS 

with 

(1) 

(2) 

in which the subscripts i, i (=l, 2) refer to Cartesian coordinates x1 and x2 with x1 aligned with 
the crack band (fig. l), AV is the volume (or area) of the finite element into which the crack 
band advanced, AS is the surface (or length) of the boundary of this element, ATi are the 
nodal forces which must be externally applied on AS to the remaining part of the body in 
order to preserve the initial stress state while the crack propagates into AV, ui and up are the 
nodal displacements after and before the crack band advances, respectively, U; and E: are the 
stresses and (small) strains that exist in volume A V before the crack band advances, A WtAv, is 
the energy loss due to release of stresses in AV, and the remaining term in eq. (1) is the energy 
loss of the surrounding grid released into AV. 

For the case of plane stress we have E’ = E, where E = Young’s modulus, while for the case 
of plane strain we have E’ = E/(1 - v2), where v is Poisson’s ratio. The energy release rate $9 
may be approximated as -AU/Au, and the (mode I) stress intensity factor may be calculated as 

(3) 

where Aa is the length of crack band advance (fig. Id). 
The results for the element-wide blunt crack band obtained with the meshes shown in fig. le 

are exhibited in fig. 2. Case (a) pertains to a straight crack of length 2a within an infinite solid 
subjected at infinity to a homogeneous uniaxial tensile stress 6 normal to the crack (fig. la). 
Only a domain of finite size within the Mnite solid is solved by finite elements (fig. le) and 
the forces applied at the boundary nodes of this domain are the resultants of the exact stresses 
acting at this boundary, calculated according to Westergaard’s exact solution [l]. Case (b) 
pertains to a straight crack of length 2a symmetrically located within a finite strip of length 2L 
and width 2b, subjected at the ends to homogeneous uniaxial tension G along the strip (fig. 
lb). The computations are carried out for E’ = 225 600 MN/m2, v’ = 0.2 and the critical value 
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Fig. 2. Comparison of numerical results from energy variation with exact solution for blunt-crack band: (a) Infinite 
solid; (b) Finite strip (a = load multiplier) (1 m = 3.28 ft). 

K,, = 0.6937 MN me3’* of the stress intensity factor K,. The applied uniaxial stress is assumed 
as G = 0.981 MN/m2. The ordinates in fig. 2 as well as in several subsequent figures are the 
critical values of the applied stress multiplier cr such that cvCr is the stress that causes crack 
propagation. 

Similar results for a sharp interelement crack (fig. lc) are given in figs. 3a, 3b. 
In figs. 2 and 3 we first of all note that the results for various mesh sizes tend to fall near 

the same curve. This indicates to us satisfactory convergence. By contrast, this is not the case 
when the crack band is propagated on the basis of the strength criterion, as has been 
demonstrated in [l] where a 90% difference was found between the a-values for meshes A 
and C. 

From the comparison in figs. 2 and 3 between the results for the constant strain triangles 
(CST) and for the linear strain triangles (LST) we see that the latter ones always give smaller 
a-values, i.e. smaller values of the load that is necessary for propagation. This is true both for 
the element-wide blunt crack band and the sharp interelement crack. The reason obviously 
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Fig. 3. Comparison of numerical results from energy variation with exact solution for sharp interelement crack: (a) 
Infinite solid; (b) Finite strip (1 m = 3.28 ft). 

consists in the fact that, as is well known, the CSTs are generally stiffer than the LSTs, which 
causes that the calculated crack openings, as well as both work terms in eq. (1) are smaller for 
CSTs. Because the CST results for the blunt crack band have generally a negative error which 
puts them on the low side, a switch from CST to LST tends to impair accuracy, compared to 
the exact solution (figs. 2a, 2b). On the other hand, for sharp interelement cracks we see an 
improvement of accuracy because the CST results have generally a positive error which puts 
them on the high side. 

We may now observe that the element-wide blunt crack band generally gives somewhat 
smaller a-values (i.e. softer response) than the sharp interelement crack, as compared to the 
exact solution for a sharp crack. This error type tends to compensate for the error caused by 
the high stiffness of CST, and this is why the CST resufts for element-wide blunt crack band, 
appear to be so good, and in fact slightly better than the LST results, as compared to the exact 
solution for a sharp crack. In case of the LSTs, these two types of error do not quite cancel 
each other because the positive error due to the element type is smaller, and this is why the 
LST results for the element-wide crack bands appear to be slightly worse than those for the 
sharp interelement cracks. 
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This is of course true only when we compare with the exact solution for a sharp crack. For 
inhomogeneous structures, such as reinforced concrete structures, propagation of crack bands 
actually precedes the formation of isolated final cracks. Comparison with the exact solution for 
a sharp crack is then not quite relevant. Rather, the results should be compared to the correct 
solution for a blunt crack band of the correct band width, but such solutions are not yet 
known. Nevertheless the blunt crack band solution with LST is likely to be more correct than 
that with CST. 

2. Method B. Equivalent strength criterion 

In this method we approximate the energy variation due to the crack front advance in terms 
of the stress in the element that undergoes cracking. Since the stress within the quadrilateral 
element is not constant and the whole element consisting of four triangles cracks simul- 
taneously, we must base the energy loss calculation on some average value of stress within the 
quadrilateral element. The average stress (T ‘& at the central point C of the quadrilateral 
element V (PQRS in fig. 4c) may be adopted for this purpose. 

According to eqs. (15) and (16) of [l] the energy loss may be approximated as 

where h is the element length (length of advance of the crack band), and w is the element 
width (width of the crack band). The work of nodal forces acting on the element PQRS (fig. 
4c) from the surrounding grid may be approximated, according to eq. (17) of [l], as 

where up and uQ are the vertical displacements of nodes P and Q in fig. 4c. Recalling the 
asymptotic expansion of displacements near the tip of a sharp crack, we may further set 

8 K1 vii up-&-J=-- 
E’6 * 

If we substitute this into eq. (5), then substitute eqs. (5) and (4) and set AU = -Kf(h/E’), we obtain 
the equation 

(7) 

which is a quadratic equation in u!~. 
the approximation 

This equation has only one positive solution, which yields 

with c = 0.826, (8) 
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where K,, is the critical value of Kr at which the crack propagates. Eq. (8) is the same as eq. 

(21) in [l] applicable for CST except for a different value of constant c. In fact, the form of eq. 
(8) is general, and the constant c is characteristic of the particular type of elements at the crack 
front. 

Eq. (8) shows that there exists a critical value ae4 of the stress at the element centroid for 
which the crack propagates. This value is called the equivalent strength [l]. In the usual 
practice of finite element analysis of crack propagation in concrete structures [l] a constant 
strength value has been used in the propagation criterion, but from eq. (8) we see that the 
strength value cannot be considered as constant but must be decreased if the width of the 
finite element at crack front is diminished. 

If this is not done, convergence does not take place as the grid is refined, and as the element 
width tends to zero the load needed to propagate the crack tends to zero, rather than a finite 
value. This property is obviously incorrect. In fig. 5a of [l] one finds an example where the 
error in the load needed for propagation is about 100% if the element width is decreased four 
times. A similar example of an error incurred when the same strength is considered for 
different meshes is plotted for LST in fig. 4a. Since the ratio of the sizes of meshes A and C is 
4 : 1, a,, for mesh A should be fi times higher, and so the error is 100% if the same ae4 is 
considered. 

The values of the load multiplier cy, which is obtained with the equivalent strength criterion 
(8), are plotted in figs. 4a, 4b for the infinite medium and the finite strip. The comparison with 
the results of the energy criterion, made in the same figure, shows that somewhat higher values 
of LY are obtained. Inspecting the numerical results, we find that this overestimation appears to 
originate from the fact that eq. (5) tends to underestimate the work of the surface tractions. 
This is because the nodal forces at P and Q are calculated on the basis of the average stress at 
the centroid, &, while the actual stress distribution inside the element will be increasing in 
the direction toward the crack front (side PQ in fig. 4~). 

Eqs. (4)_(6), f rom which the equivalent strength criterion is derived, are of course only 
approximate. More accurately, one may assume only the general form of eq. (8), which is a 
basic property, and calibrate the value of c by some trial case for which we know the exact 
solution. 

Comparing the results in figs. 4a, 4b with those obtained with CSTs (figs 5a, 5b of [l]), we 
note that the deviation in sign is opposite to the one found for method A. This is due to the 
fact that, although the calculated displacement up - uQ is greater owing to the higher flexibility of 
LSTs, the aforementioned underestimation of the nodal forces at P and Q nodes is more 
significant and prevails in determining the sign of the error in the work of the surface tractions. 
This work, as mentioned for method A, gives the largest contribution to the energy release as 
the crack advances. 

3. Method C. Fitting asymptotic series to nodal displacements 

In this method the nodal displacements U, V obtained for a blunt smeared crack band are 
fitted by the asymptotic series expansion for a sharp crack tip, which gives the displacements 
as functions [l] of the first four series coefficients dl, dZ, &, d4, the crack tip displacements UT, 
VT, the crack tip coordinates X,, YT, and the crack direction (Y. The coefficient of the leading 
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Fig. 4. Blunt crack comparison between energy variation and equivalent strength criteria: (a) Finite strip; (b) 
Infinite solid; (c) Mesh detail at front of blunt-crack band (1 m = 3.28 ft). 

term, dl, is linearly related to the stress intensity factor K1 [l]. The dependence of displace- 
ments on parameters X,, YT and (Y is nonlinear. The optimum fit of nodal displacements may 
be determined by using an optimization method (such as the Marquardt-Levenberg algorithm) 
to minimize the sum of square deviations from the nodal displacements. In the present 
numerical work, parameters YT and (Y (fig. 5b) have not been considered as unknowns, being 
set equal to zero, because the attention centered on the effect of using higher-order finite 
elements. 

The proper choice of the characteristic nodes whose displacements are to be fitted was 
discussed in [l] (one possible selection is shown in fig. 5a). Here we are interested in assessing 
the effect of the use of LSTs on the accuracy of determining the stress intensity factor and 
crack tip location. The crack opening profiles calculated with the help of CSTs and LSTs are 
shown in fig. 5c. Since LST is more flexible than CST, a wider crack opening may be expected, 
and this is confirmed by the numerical results in fig. 5c. Because the crack opening in the 
vicinity of the crack tip is proportional to the stress intensity factor, we thus may expect a 
larger value of the stress intensity factor when we switch from CST to LST. 

The crack tip locations XT and the values of coefficient cl = -(K,/2G)/A& characterizing 
Ki are tabulated in table 1 for five different selections of characteristic points shown in fig. 6. 
We see that indeed the values of cl as well as Xr are generally on the high side and are larger 
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Fig. 5. (a) Example studied by asymptotic expansion fitting; (b) Change in direction of propagation; (c) Crack 
opening profile obtained (1 m = 3.28 ft). 

than the exact values for a sharp crack. Thus, curiously, the use of LST does not improve the 
accuracy of calculation of the stress intensity factor. Apparently, the numerical error of CST is 
opposite to the error in crack representation and tends to cancel it, whereas the error of LST is 
too small to cancel the latter error. 

4. Interpretation of results and conclusions 

The previously developed method for modeling cracks as element-wide blunt smeared crack 
bands has so far been numerically demonstrated only for the constant strain triangular 

Table 1. Typical numerical results for method C 

Node 
selection XT (cm) CI X lo’ (cm”‘) 

CST LST CST LST 
Exact 8.000 8.000 -1.043 -1.043 
A 7.885 7.978 -1.190 -1.246 

: 7.937 7.950 8.101 8.194 -1.164 -1.156 -1.204 -1.176 
D 7.967 8.235 -1.144 -1.154 
E 8.090 8.343 -1.065 -1.104 
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Selection of characteristic nodal points 

“E” 1 1 ; 1.. ; j i 1 1 _ i c__ c 

Fig. 6. Various selections of characteristic points. 

elements. The present work validates the method for higher-order finite elements, particularly 
the linear strain triangles. 

One objective has been to demonstrate convergence, i.e., show that meshes of greatly 
different sizes give the same results except for a negligible error. The practically found 
convergence for linear strain triangles is found to be indeed satisfactory for all three methods. 

The second and main objective has been to assess the accuracy of crack propagation 
calculations with higher-order finite elements. Exact solutions for checking the accuracy are 
available only for sharp cracks in a homogeneous continuous medium. If that is the yardstick, 
it appears that the linear strain triangles do not allow a better accuracy than the constant strain 
triangles, the use of which is much simpler. This is true of the basic approach through the 
release rate of energy of the crack band extension, as well as of the alternate approaches 
through the equivalent strength or the asymptotic series expansion of the displacement field 
near the crack front. For the latter two approaches the computational results are actually 
worse than those obtained previously with the constant strain triangles. This is because there 
are two sources of error giving errors of opposite sign. The use of a crack band of a finite 
width makes the response softer while the use of conforming elements makes the response 
stiffer than the exact one. If constant strain triangles are used, the element error just about 
offsets the error due to the crack band, but if linear strain triangles are used, the element error 
becomes too small to offset the error due to the crack band. Obviously, the improvement in 
element accuracy does not suffice to improve the overall accuracy of fracture calculation; it 
would be necessary to also improve the representation of crack band propagation. Compared 
to a sharp crack, we introduce error by assuming a fixed finite width of the crack band, and 
also by assuming that the entire quadrilateral element consisting of four triangles at the crack 
front cracks simultaneously. Actually, the cracks must spread through this quadrilateral 
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element gradually, and only if such a model were available one might expect better overall 
accuracy of fracture calculations with higher-order elements. 

If the exact solutions for a sharp crack are not the ultimate yardstick, as is the case for 
inhomogeneous structures such as reinforced concrete structures, the linear strain triangles are 
most likely superior to constant strain triangles in these fracture calculations because the 
stiffness of the structure is more accurately represented and the band of cracks in concrete is 
modeled as an actual crack band in the grid. It is in such situations where the use of 
higher-order finite elements is appropriate. 

On the other hand, if the element-wide blunt crack band is used to model the growth of 
sharp isolated cracks, it is preferable to refrain from introducing the higher-order finite 
elements, except possibly in the regions remote from the crack tip. 

From the viewpoint of various convergence concepts, our numerical solutions demonstrate 
convergence to the exact solution if the mesh is refined, which is called the h-convergence. It 
seems, however, that we do not have the so-called p-convergence as the order of interpolating 
polynomial (basis functions, shape functions) of the finite element is increased, and in this 
spirit the present method seems to lack objectivity. This may be considered disturbing. From 
the modeling viewpoint this may be nevertheless, expected because the crack band does not 
tend to coincide with a sharp crack no matter how high is the degree of the interpolating 
polynomial in the finite element. The p-convergence may well exist, as our numerical results 
suggest, but it is a convergence to a certain solution other than the sharp crack solution. In 
view of the fact that there actually is a crack band at the front of a crack in a heterogeneous 
material such as concrete, the aforementioned nature of p-convergence in our problem does 
not seem unreasonable. On the other hand, if we seek to model sharp cracks rather than blunt 
crack bands in concrete, the p-convergence is apparently not achieved without formulation 
and some procedure to shrink the band width as the polynominal order is increased would 
have to be devised. 
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