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Abstract-A change in finite element size causes spurious reflection of elastic waves passing through a finite 
element grid when the wavelength is less than about IO-times the largest element in the grid. Extending the 
previously published study in which the phenomenon was analyzed for the case of constant strain finite elements, 
the higher-order elements with linear strain distribution are studied herein. Similarly to the previous study, it is 
found that the consistent mass matrix gives less spurious wave reflection than the lumped mass matrix; however 
the advantage is smaller for the higherorder elements. For the lumped mass matrix, there is little difference in 
spurious wave reflection between the constant strain and linear strain elements. The phenomenon of spurious wave 
reflection is less pronounced when the higher-order elements are used in conjunction with the consistent mass 
matrix. These results are obtained from exact analytical solutions in complex variables for a planar wave with a 
planar wave front propagating along grid lines through an infinite grid which is uniform in each half plane. 

INTRODUCTION 

A finite element grid is only an approximate represen- 
tation of the continuum. One consequence of this fact is 
that elastic waves in a continuum cannot be faithfully 
represented by a finite element model. One of the limita- 
tions, to which attention has been recently called[ 11, is 
the inability of the finite element grid to transmit sho- 
rt wavelengths through an interface separating two 
half-planes in which the element sizes are uniform but 
different from each other. This problem has been 
analyzed in detail only for constant strain finite 
elements[l], for which the conditions of spurious 
reflection of elastic waves at the interface were 
rigorously formulated. From this analysis it is not clear, 
however, whether the spurious reflection phenomenon is 
the same for higher-order finite elements. Therefore, this 
study deals with the spurious reflection when hiiher- 
order finite elements are used. In particular, constant 
strain linear elements will be considered. 

REVIEW AND 8&FOILMULATION OF SOLUTION FOR 
CONSTANT .3TRMN ELEMEN’F?J 

Before approaching the problem of linear strain ele- 
bents, as yet unsolved, it is appropriate to review the 
previous solution[l] for constant strain elements and at 
the same time reformulate it in a way which would be 
directly analogous to our subsequent solution for the 
linear strain element. We consider an infinite homo- 
geneous elastic medium in which a longitudinal wave 
with a planar wave front propagates from left to right. 
Assuming the finite element grid to be uniform and 
rectangular, and the wave to propagate along the grid 
lines, the threedimensional problem is equivalent to a 
one-dimensional problem for a series of line elements, 
each of which has two nodes (Fig. 1). We number the 
nodes consecutively as k = . . . , -3, -2, -1, 0, 1,2,3, . . . 
and we assume that the element size at the left of point 0 
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is constant, denoted as /I, and to the right of point 0 is 
also constant, denoted as H. Denoting the mass density 
of the continuum as pi we consider that the mass of the 
element is mph and that the nodes have an additional 
point mass (l- m)ph. The case m = 1 corresponds to 
fully distributed mass, whereas the case m = 0 cor- 
responds to lumping all the mass of the continuum into 
the nodes. The case m = 1.5 means that all mass is 
lumped into the centroid of the element, and values 
m > 1.5 are impossible. Referring to Fii. l(c), the nodal 
forces acting on the kth element may be expressed as: 

in which uk represents the displacement of the kth node 
to the right, and E = Young’s elastic modulus of the 
continuous medium. Exnressina the dynamic equilibrium 
of nodal forces acting ai node k (Fig.-le), we have 

~ph(iik_lt4QtB+1)t(l_m)phiik 

= $‘k-,--2ukt uk+,). 

In numerical computations we replace the 
derivatives by the finite difference expression 

1 
ik ‘7 h‘,r+l - 2uk,, + uk,,-,) 

(2) 

time 

(2a) 

in which T = time step, and r = number of the time step. 
We seek the solution of eqns (2) and (2a) in form: 

&(x9 t) = e &4x-o*, + A eim’-“-“” (3) 

= eiu(kh-vm) + A eiw(-kh--Ym) 

in which i = imaginary unit, o = circular frequency, u = 
wave velocity. The first term in eqn (3) represents the 
incident wave, while the second term represents the 
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a) Two-Node Elements I 

k= -3 -2 -I 
? 

I 2 3 
--x 

I ‘k+~%+, 

(I-m) PH 
b) Three -Node Elements 

k= -3 -2 -I 0 I 2 3 

Fii. 1. Element numbering and notation. 

reflected wave (if any). Substituting eqn (3) into eqn (2), we 
obtain: 

- - 
1 -m ty(2tcosoh) = 1 

in which vO’ = up One can check that v2 + vO’ for h -B 0 
and T+O. 

In case of a change in element size at k = 0, the 
equations with the foregoing notations are understood to 
apply to the left side of the grid (k < 0). For the right side 
(k>O) we have the same solution but with a different 
complex amplitude D: 

u,=De IrIWf- WY) (kr0) (9 

and similarly to eqn (4) we have for wave velocity: 

.&g a*w 
$[l-n+~(Z+cosfIH =&- I_ 4 

4 
sin2 s1v7’ 

2 
(6) 

The quantities V, a, and H are analogous to v, o, h and 
apply to the right side of the grid. 

As the 6rst interface condition, eqns (3) and (5) must 
yield the same displacement at k = 0; this gives: 

e -iuW7+Ae-iW= De-,“““. 
(7) 

Since this must hold for any time step r, we have 

ltA=D, ov=wV (8) 

Using eqns (4). (6), and the second eqn (8), we obtain for 
the transmitted wave 

cos l-lH = 

One can check easily that IIH*oh for H/h-* 1. As the 
second interface condition, we must assure the balance 
of forces acting at node k = 0: 

h+H 
~~[h(ii_~+2ib)+H(21iotu,)]t(l-m)p--i-~ 

=~(u,-KfJ)-~(uo-u,). (10) 

By the same procedure as before we obtain 

A 

+2 Q-l+;(P-l)]~~ 
[ 

sin - 
2 

W2V2T2 

= 2 %--[l-Q-l+;(l-P)] 
sm - 

2 

mo2h2v2 
3v02 [ 

Q-‘+2+f(P+2) 1 
(11) 

in which Q = e I,,,’ and P = e iuH. Introducing the real and 
imaginary parts as follows: 

A = a, + ia,, D = d, t id, 

the relation 1 + A = D yields 

I+ a, = d,; ai = dt. 

For the real and imaginary parts of A we obtain 

TR i- SZ sin’ oh (RZ- TS) sin oh 
ar= R*+~sin*wh’ ai= R*+~sin*wh 

(12) 

(13) 
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in which 

R= mw;j2v2 
E 
2+ cos wh +; (2+ cos JZH) 

+(’ - m)w2h2u2 
2 

1 +g 

00 ( ) h 

w2u’72 

Bosch-l+~(~os~~-1) 
1 

4 
- 
*in2 !E 

2 

mw2h2v2 
s= 3v2 

, +H sin0H 

0 7;sin 

w2v272 

(14) 

T=-R 

mw2h2v2 
z= 3v2 

, HsinfiH 
0 -7;sin ) 

w2v272 

Similarly to the previous work[l], the energy flux to 
the right may be expressed as: 

9” = Re (R) Re (~a) (15) 

which reduces to the expression 

gP= 
[ 
:Re (uk - uk_,) t TRe (2iik C I&_,) 1 Re ( uk). 

(16) 
Denoting 5% !PA and 9% the energy guxes of the in- 
cident wave, the reflected wave, and the ~ansmitted 
wave, we obtain for the time-average energy fluxes: 

(!P,)=-~(l+~$)sinwh (incident+) 

x (a?+ a:)sin oh (reflected +) (17) 

~~&=-~(lt~~) (refracted + f. 

x (d: t df) sin MI 

One can check that these time-average fluxes always 
satisfy the relation 

CP,) = PAA) + (6%) (18) 

required for conservation of energy. 

SOLUTION FOR THREENODE LINE ELEMBNTS OF 
LINEAR STRAIN DISTREIIJI'ION 

We now consider three-node line elements keeping 
node numbers k reserved for the ~~dary nodes of 
elements; see Fig. l(d). At the same time we use k to 
number the finite elements, in which case k also refers to 
the interior node (Fig. Id). The mass of the element is 
again mph. Since there are three nodal points at element, 
the mass at each nodal point now is (1 - m)ph/2. The 
nodal forces acting on the kth finite element (Fig. le) are 
ch~a~terized by 

in which R denotes the force acting from the interior 
node, uk denotes the displacements of the boundary 
nodes, and sk denotes the dipplacement of the interior 
node of the kth element. The equation of motion at 
element Sunday node k is 

f?!!” (1-m) 2 k+ 3. !!?&!(_ .. uk-,+2&._, t8ii,t&-i&+,) 

E( =- 
3h 

- ,&_, t 8&-_, - 14t,, + 8& - &+,) (20) 

and the equation of motion at the interior nodal point of 
the kth element is 

(l_m)~~k+~(iik+84+~~+,) 

=$#&t&+,). (21) 

The solutions of eqns (20), (21) with expressions in eqn 
(2a) may be sought in the form: 

us =eb(kh-um)+ A eiw(-kk-urr) 

(221 

vk=Be 
b((k+I/Z)k-or,)] + ~e”[-(k+i”h-m4~ 

Substituting these expressions into eqns (20) and (21) 
gives 

a& = b(u,-, + ok), cak = bfut + uk+,) (23) 

in which 
sjn2 !!E 

2 
a =;(cos wh+7)-m 

WV7 

4 

xw2!r2-$ 
[ 
;(4-cos whltp] 

2 WV? 
sin - 

b=;t w2v222 u2h2$; 
0 

4 
2 wvt 

16 
sin - 

2 v2 8m 
c=--mw2h2z 

3 WU7 ( 

l-m 
+--y-- . 

) 
(24) 

4 
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Using the last two equations, we may obtain the follow- Substimting eqn (23) into eqn (221, we further obtain 
ing relation two relations between the complex amplitudes A, B and 

C: 
UC = 2b2(l t cos oh) (25) 

from which the wave velocity u can be solved. B=2$os+, 

If the element size H for the right side of the grid 
differs from the size h for the left side, we must rewrite In terms of the real and 
the equation of motion (eqn 20) replacing h with H and equivalent to: 
substituting the solution for the transmitted wave in the 
form b,=Z;cos$ 

ur=De WkH- Vrr) 
, Vk=Ee 

iIWk+l/2)W-Vml (k 3 0) 

C=ZA$os$. (34) 

imaginary parts, these are 

b, =O; 

(35) 

(26) 

we get the relations 

da,‘ = &(ok-, + uk), Euk = i((u, + &+,) (27) 

in which r7, 6 and E are expressed in the same way as 
eqn (24) except that o, h and u must now be replaced 
with Q, H and V. Similarly to eqn (6) we may also verify 
the relation 

dE = 2p (I+ cos RN) (28) 

from which the velocity of the transmitted wave V may 
be solved. 

The interface condition of equal displacement at k = 0 

requires 

e -ioon+Ae-io”n=De-i”Yrr. 
(2% 

This may be reduced to 

1 t A= D or 1 t a, = d,, ai = di (30) 

ov=nv. (31) 

Now, using eqns (4), (6) and (8) we obtain for the 
transmitted wave 

in which 

h ’ J6_Sin 2 
3 w2u2r2 

o 2 h 2 

zi7 
u2 H’(th+I+m) 

4 

(32) 

h = 14_ sin’? 

2 T WzV27ru2h2$$ (%+p) 

4 

(33) 
2 WV7 

sin - 
h,=;+02h2-$$; 02y222 

4 

sin2 !!!!Z 
h.,=;t 0202f2 &2+$?! 

uo h 15’ 
4 

c,=2ll,b 
oh b 

ccos7 c*=2ai;cos~ 
2 

in which C = C, + ici, B = b, t ib,. 

Using eqns (29) and (30), we may obtain similar equa- 
tions for the right side of the grid (k 2 0): 

E=2DBcosw 
F 2 (36) 

or 

e.=Zd,icos?$ ei=2di~cos~. (37) 

As the second interface condition, the force balance at 
node k = 0 requires that 

(I-m)f(htH)ii, 

t~[h(-i_,t2iL,t4i&)tH(4i&t2C-ii,)l (38) 

After some manipulations this yields 

A (m~~~v2[4-~t~(~-p~t~~~~~~cos~ 

t4H~p~12COs~ +(l-m)02h202 
hc 2 1 4u02 

+16 $p'2cos y-(7fQ) 

a12V2T2 

-$(7 tP,]+--_ 
sm - 

2 

14 =-- 
3 . 2OVT sm - 

7tQ-'t~(7tP)-16;Q-"'cos~ 

2 

26 QH 1 mo2h202 
-16+‘1’2cos~ - 3ovo2 [ 4-Q-l 

(39) 

H 
ta(4-P)t4iQ-"'cos? HB i-lH t4~-P”2cos--i- 1 
_(I - m)02h2v2 1 tI+ 

vo 
2 

( ) 

. 
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Splitting A in the real and imaginary parts, 
a, + i ai, we get 

IYR t SZ sin* oh (Rz- Ts> sin oh 
ar= RZt9sinZ& ’ @= R2+fsin& 

in which 

R= 

02Y2? 

A= 

(41) 

The energy flux to the right may now be expressed as 

f3’= [fRe(sr*_,-8vk_l+7u,) 

t~Re(-~~-,t2~~-,+4~~) Re(&). 
7 (42) 

Taking the time-average fluxes, we obtain 
Incident wave: 

7rE 
(9,)=-s 8&sin 2 Oh-sin wh 

mo2h2 v2 
tF’;-2 0 2b,sin g-sin 2 oh II . (43) 

Reflected wave: 

+ 8( 0,~~ - arc,) cos * -(a,” + a:) sin oh 2 

ClX- :h - (a,” i at’> sin oh]}. 

Difracted wave: 

- 2(&i - fire,) COS F - fd? + d:) sin fiH II , 
With this we obtained all information of interest for the 
wave d&action in the grid, 

Figure 2(a) shows the v~atio~ of the reIative wave 
velocity in the grid, u/vO, with the relative wavelength i/h 
for the constant strain finite elements (elements having 
two nodes), the wavelengths being obtained as I= 2njw. 
Figure 2(b) shows the same for the finite elements with 
linear strain variation (elements having three nodes). 
These plots were obtained from eqn (4) for various 
values of m and for an ~fi~tety short time-step (7 = 0). 
Notethat z/%=Ofor Uh=l,andthat v/v,>1 for l/h= 
m. Comparison of Figs. 2 (a, b) indicates that for the 
higher-order elements (linear strain distribution) the 
effect of the mass dist~bution parameter m is much less 
than it is for the lower-order elements (constant strain 
distribution). Figure 2 (c, b) illustrates the same relations 
in greater detail in the vicinity of v/u* = 1. 

The characteristic quantity fiH can be solved from 
eqn (32). The solution exists if, and only if, -15 
COSOHS 1. The solution gives a relation between H/h 
and the quantity oh = 2~(~h), which is shown in Figs. 3 
(a, b). The combinations of l/h and Hfh values below the 
curves satisfy the foregoing inequality and yield a soiu- 
tion for the ~ansmitted wave, whereas the values above 
these curves do not satisfy the foregoing inequality. Note 
that for the case of two-node elements (constant strain) 
the value m = 1.5 gives always a solution except when 
l/h = 2. 

The graphs of the transmitted wave velocity V relative 
to the wave velocity v. of the con~nuous medium are 
shown in Fiis. 4 (a, b). The end points of the curves 
correspond to the case (cos MZJ = 1. Fire 4(a, b) per- 
tain to I/h = 4. The same curves for I/h = 6 are shown in 
Figs. 4 (c, d). 

The amplitude and the energy flux of the spurious 
reflected wave are plotted in Figs. 5 (a, b) for the case of 
two-node elements. Note that for m = 1.5 there is no 
reflected wave. The larger is H/h, the greater is the 
energy of the reflected wave. For a certain value of H/h, 
the entire energy flux is reflected and there is no trans- 
mitted wave, i.e. cos QH = 1. In that case, as expected, 
the amplitude of the reflected wave equals the amplitude 
of the incoming wave. Figure S(a) corresponds to two- 
node elements and Fii. 5(b) to three-node elements. Note 
that the curves for three-node elements are similar for 
m = 0, 0.25 and 0.50. But for m = 0.75 there exists a 
certain value of H/h for which there is no reflected 
wave. Furthermore, for m = 1.0 art3 m = 1.5 the sign of 
A is opposite (this is also true for m = 0.75). Figures S 
(a,b) refers to f/h =4. The same results for l!k =6 are 
plotted in Figs. 5 (c, df. 
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2-Node elements 
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l/h 

0.8 

3-Node elements 

0.6 

0.25 
/ 

m=O 

4 

l/h 

Fig. 2. Variation of relative wave vebcity with relative wavelength. 

The results for two-node elements confirm the con- 
clusions of Ref. [l]. The spurious reflection is sign&ant 

As far as the spurious wave reflection is concerned, the 

when L is less than about IOW for lumped mass and L is 
consistent mass matrix performs better than the lumped 

less than about 6N for consistent mass. The only way to 
mass matrix. This advantage of the consistent mass 

avoid the spurious reflection is either to use a uniform 
matrix. contrasts with the fact that the lumped mass 

grid or to filter out in the input or at the uutput the 
matrix is superior in terms of numerical statihty as well 

shortest wave2engths (the highest frequencies). Within 
as spurious ~~req~ncy osc~a~ns of the grid, and 

the range of normal time steps that would be used in 
that for the wave dispersion a combination of the lumped 

explicit in~tion coitus, the magnitude of the time 
and consistent mass matrices is preferabIe to either one 

step has a negligible effect on spurious wave reflection. 
of them. The choice between these matrices thus 

For this reason we show here only the results for T = 0, 
depends on which aspect is more important in a given 
problem. 
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Fii. 3. Maximum element-size ratio for which transmitted wave exists at various wavelength. 
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Fig. 4. Relative velocity of transmitted wave as a function of element size ratio. 
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Fig. 5. Energy flux and amplitude of spurious reflected wave as a function of element size ratio. 
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CONCLUSIONS 

The purpose of this study has been to extend the 
analysis from Ref. [l) by comparing the spurious 
reflection for grids consisting of constant strain elements 
and linear strain elements. In this respect the following 
conclusions may be drawn: 

(1) The advantage of the consistent mass matrix over 
the lumped mass matrix in terms of the spurious wave 
reflection becomes smaller for the higher-order elements 
(linear strain distribution). 

(2) The spurious wave reflection for the lumped mass 
matrix is about equally pronounced for the lower- and 
higher-order finite elements (constant strain and linear 
strain). 

(3) The problems of the spurious wave reflection are 
less severe for the higher-order elements, i.e. a higher 

difference between element sizes is needed to achieve 
the same percentage of reflection of energy flux. This 
difference is more marked for the consistent mass 
matrix. 
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