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ABSTRACT
The significance of cracking and microcracking caused by nonuniform
drying shrinkage of test specimens is analyzed. To assure that no
cracks are produced by drying in load-free specimens, one must lower
the envirommental humidity gradually and sufficiently slowly, and
use very thin specimens (about 1 mm thick). Graphs for the maximum
admissible rate of change of environmental humidity, calculated from
both linear and nonlinear diffusion theories, are provided. The
spacing and width of parallel cracks due to drying are estimated
from fracture mechanics considerations. In normal size specimens
the drying cracks are usually too narrow to be visible. Drying
leads to discontinuous microc¥acking rather than continuous macro-~
cracks and is represented betfer.as strain softening than as an
abrupt stress drop. Shrinkage cracking can increase drying diffu-
sivity by several orders of magnitude.

RESUME
On étudie 1'importance de la fissuration et de la microfissuration
d'éprouvettes soumises au retrait de séchage non-uniforme. Pour
éviter les fissures dues au séchage dans les éprouvettes non-
chargées, il faut reduire 1'humidité environnante graduellement et
suffisamment lentement, et il faut uliliser des éprouvettes tr2s
minces (environ 1 mm d'épaisseur). On donne des graphiques pour le
taux maximum de réduction de l'humidité environnante, calculé d'aprés
les théories linéaire ainsi que non-linéaire, de diffusion. A
1'aide de la mécanique de rupture, on estime 1'espacement et la
largeur des fissures paralleles dues au séchage. Dans les
dprouvettes de dimensions normales, les fissures de séchage sont
généralement trop minces pour étre visibles. Le séchage provoque
une microfissuration discontinue, plutdt que des macrofissures con-
tinues, et on le décrit mieux par une relation contrainte-déforma-
tion A pente négative (radoucissement) que par une perte soudaine de
la contrainte. Les fissures de retrait peuvent augmenter la
diffusivité de séchage de plusieurs ordres de grandeur.
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Introduction

Shrinkage caused by drying is known to be capable of producing cracks in
concrete specimens as well as structures. The cracks alleviate the stresses
due to differential strains and thus they alter the observed deformations.
Furthermore, the presence of cracks may increase the rate of drying. Although
the existence of these effects is well known, their significance for the con-
duct of drying and shrinkage tests is not fully appreciated. Interpretation
of many of the experimental results in the literature is dubious due to lack
of separation of the effects of cracking and microcracking.

The formation of tensile microcracks in shrinkage and creep specimens was
taken into account by means of tensile nonlinearity in the finite element
model in Ref. [1] which was used to analyze numerous creep and shrinkage test
data. Becker and Bresler [2] included tensile cracking in their finite element
analysis of creep, shrinkage and thermal stresses in concrete columns sub-
jected to fire. A profound investigation of the effect of tensile cracking in
separating measured deformations into creep and shrinkage was presented by
Wittmann and Roelfstra [3]. Their investigation showed that much of the drying
creep effect, i.e., the increase of creep of test specimens caused by simul-
taneous drying, may be attributable to the effect of cracking rather than some
mechanism on the molecular level.

For direct determination of the properties of the drying material as such,
tests must be arranged so as to avoid cracking. The conditions under which
this is achieved will be analyzed in this study.

Estimate of Maximum Pore Humidity Difference

The free (i.e. unrestrained) shrinkage eg of a small element of concrete,
caused by a decrease of pore humidity from 1 to h is a function of h. Approx-
imately we may write [4]

= ¢0 % e0(1 -~ 3
€ = € fs(b): es(l h¥) L
o
where eg = shrinkage upon complete drying (at no cracking!). The slope of the
curve 1°- h3 is the greatest in the vicinity of saturation (h = 1), for which
maximum effect of. differential shrinkage is to be expected. For the vicinity
of h = 1 Eq. (1) may be replaced by a tangent at h = 1, for which

Es = 38%(1 - h). (2)
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FIG. 1

Variation of Free Shrinkage with Relative Humidity h in Pores (a),
and Typical Distribution of Shrinkage Stresses throughout a Wall (b).
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In an infinitely long wall or cylinder, the actual longitudinal strain
must be constant across the thickness (due to translation symmetry) and,
approximately, this condition may be assumed even for a wall or cylinder of a
finite length. The longitudinal normal stresses o, which are produced by
shrinkage (shrinkage stresses), may be determined from the conditions that the
strain must be uniform and the axial resultant of the stresses over the cross
section must be zero. The typical distributions of shrinkage stress obtained
by such a calculation {4,2,3] are shown in Fig. 1(b). As long as the humidi-
ty within the cross section is close to 1.0, the difference between the
maximum stress and minimum stress is approximately (in absence of cracking)

- = 10 -
AG 3es(l h)Eeff , (3)

where E ¢ = effective modulus = Young's modulus E reduced to take into account
the creep. For sudden exposure to the environment, the largest shrinkage
stresses are produced near the surface right at the beginning, in which case
the drying period is so short that the reduction of E due to drying is negli-
gible (compared to the conventional value of E) and we may use E,¢¢ = E.

The maximum tensile stress o,  is always less than 4c but often is rather
close to oOp,y (see Fig. 1b); we therefore assume that Opyy = 0.9 A0. To avoid
cracking, Opax Must not exceed the uniaxial temsile strength fy'. The strength
depends on the stress duration t- tg, but again, for very thin specimens the
use of the short-time strength is appropriate. To avoid tensile nonlinear
behavior (microcracking), Op,y should be less than about 0.7 £.' for concrete
and 0.9 £,' for cement paste.

The maximum admissible pore humidity difference between the center and the
surface of the specimen may now be estimated as Ohpay = Max(h, - hg) =
Ac/(3eg Eeff), Where AG = 0p /0.9, Opay = 0.7 £.', i.e.,

L
3 0.26 ft

Ah (4)

ﬂ'

for the most unfavorable situation # the start of drying, and the surface
layer of concrete. For hardened cement paste specimens we may use &g = 0.9 £y
which yields coefficient 0.33 instead of 0.26.

To make a numerical estimate, we should note that the final free shrink~
age (in absence of cracking) might be at most about 33% larger than the
shrinkage measured by conventional tests, in which the specimen shrinkage is
reduced by microcracking. For most structural concretes, the final shrinkage
ranges from 0.0004 to 0.0011, and so a safe limit for all cases is el =
1.33x0.0011 = 0.0015. Taking further E = 4x10° psi (27,600 N/mm?) and f,' =
425 psi (2.93 N/mm?), we get »

Ahmax = 0.018 (5)

as the maximum pore humidity difference within the cross section which we may
consider safe (although often, perhaps, not necessary) to avoid cracking and
microcracking in the surface layer of concrete.

This estimate is surprisingly restrictive. It was certainly based on ex-
treme properties. E.g., if sg = (0.0004, we have Ahy,, = 0.066 for the surface
layer of concrete; and for concrete several inches below the surface this
limit may be about doubled, ohp .. = 0.11, due to a longer drying period (creep)

and the fact that the critical humidity range is not close to 1.0.

For pure hardened cement paste the limit on Ah is even stricter. The
shrinkage is about 5 times larger than for concrete, E is about 337 less, and
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Difference in Humidity Parameters H between Center and Surface of Wall of
Thickness a after Sudden Exposure to Constant Humidity Environment (Bg =

surface emissivity of moisture; AHmax = maximum ofAH in time).

Omax = 0.9 £¢'. This yields Ahyay = 0.006 as the oVverall sufficient limit for
the pore humidity differences to avoid cracking.

Sudden Exposure to Environmental Humidity at Finite Surface Emissivity

The one-dimensional diffusion equation'which governs drying of a concrete
wall or cylinder at constant temperature may be written as follows:
=
33
N ax

3h 3h 13 Bhy
( —) r E-;§(Cr¥. (6)

ax:

Here x is the coordinate across the thickness of the wall, v is the radial co-
ordinate (see Fig. 3), t = time, h = relative pressure of water vapor in the
capillary pores, and C = diffusivity of concrete, which is known to be strongly
dependent on h and to approximately follow the relation [5]
l-a

. -1 %)

c

C = Cyf(h") = Cyfay + By

1-n"’

in which C; = constant = diffusivity at saturation (h = 1), and n, ag, hy =
material constants, n = 4, ag = 0.05, h, = 0,75 [5]. For crude approximate
calculations it is possible to replace variable C with a constant value C equal
to about 1/4 of C;. This makes the diffusion problem linear.

As the initial conditions we consider:

for t =tjand -3 <x<5 or O<r<a: h=1 (8)
where a = thickness of wall or radius of cylinder. The boundary condition on
a free surface in contact with an environment of relative vapor pressure h'-he
may be written as

. 8h _ - 3h -
orr=a and t > t,: Bs(he h) or Bs(he h) (%)

for x = ¢ 0 Ix T

(811
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Maximum Lag of Humidity Parameter AH within the Specimen Behind Its Surface
Value Hc for Linear Variation of He and Constant Diffusivity C.

where 8g = given surface emissivity of moisture.

Certain properties of the solution can be made obvious by introducing new
variables as follows:

C
x r 1 l-h
E 3 " o ° .';z(t— to), H = 1= he. (10)
Eq. (6) then ylelds the differential equationm:
PN
BH 2 (o o 3H_ L3 oo, 3
S~ SpEMDGE) o o= gp(EmNDE S, ()
h . 1-he - 7
wit h l-hc . (12)
The initial condition (Eq. 8) becomes
for t=0 and -1 <g<} or 0<g<l: H=0 (13)
and the boundary conditions (Eqs. 9) become:
for =t} or §£=1and1>0: i;l;--aes(l-u). (14)

We see that the boundary conditions for the function H({,t) involve only omne
parameter, aBg. The solution H({,T) depends only on the following variables:

1 -hg
E, T, aBS; and 1% g - (15)
(o4

The last two parameters, which are needed only for calculation of f(h') in

Eqs. (11) and (7), disappear when the diffusivity is considered to be constant.
According to Eq. (7), the solution depends also on the parameter (1-h.)/(1-h.),
since this parameter is needed to determine function f(h') in Eq. (11).

For the case f(h') = const. = 1, for which the diffusion problem is
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linear, the solution of the foregoing problem is available in the form of a
series [6]. For our purpose, it is of interest to determine the difference

0H between the maximum and the minimum value of H throughout the thickness.
Here we have AH = Hg -H,, where H, and Hg = values of H at the center (§ = 0)
and at the surface (£ = 1 or £ =+%). From Figs. 17 and 18 of Ref. [6] one can
construct for the case of constant diffusivity the diagram of AH = Hg - He
versus t at vArious values of aBg. This diagram is shown in Fig. 2(a). We see
that the maximum of AH, represented by the peaks of the curves in Fig. 1(a),

is independent of diffusivity C and depends strongly on the parameter agg; we
plot this dependence in Fig. 2(b). ‘

Consider now drying at environmental humidity hg, = 50%. Then H = 2(1-h)
and since the maximum difference in h throughout the cross section is 0.018
(Eq. 5) if cracking should be avoided, the maximum difference in H is 0.036.
From Fig. 2(b) we see that to assure AH < 0.036 we need that

a < 0.1/8. (16)

Now we have to choose a realistic value for the surface emissivity of moisture,
Bg. Its value is known to vary by an order of magnitude depending omn air cir-
culation, particularly the velocity of air flow past the surface. The value
1/Bg is called the equivalent surface thickness [5] since it represents the
thickness of a layer of material on which the humidity drop in a steady state
permeation is equal to the surface drop. Aleksandrovskii (7] indicates

1/8g = 20 to 100 mm, but this value has apparently been inferred from tests

on thick specimens which can easily lead to considerable error. Indirect
evidence in Ref. [5] suggests a much smaller value of 1/8g for typical labora-
tory specimens, 1/Bg = 1 mm, and maybe even less. If the latter value is cor-
rect, then the maximum half-thickness of wall for which a sudden response to
the environment of h, = 50% would not produce cracking or microcracking is

a .= 0.1m. (17)
This is a practically unsatisfiable limitation. -

It has been sometimes assumed that the free shrinkage may be determined
by testing specimens of different wall thickness and extrapolating the results
to zero thickness. There are, however, limitations on the wall thicknesses
that can be used for this purpose. To admit extrapolation, all data points
must correspond to the steadily rising part of the curve in Fig. 2(b), which
corresponds to 0.2 < aBg < 50. Taking 1/Bg = 1 mm, we thus have the limita-
tion

0.2 mm < a < 50 mm. (18).

These sizes are too small for concrete compared to the size of aggregate, and
so its free shrinkage cannot be determined in this manner.

For hardened cement paste, the range indicated by Eq. (18) is acceptable.
This lends support to extrapolatioms to zero thickness carried out by Klug
[8]. However, one must be cautious with regard to the value of Bg. It may be
as small as 0.1 mm and then the range would be 0.02 mm < a < 5 mm, which would
be unacceptably small even for cement paste.

The foregoing crude analysis was based on linear diffusion theory (con-
stant C). The nonlinear diffusion theory, for which the solution would have
to be obtained numerically, would no doubt yield results that do not differ
in their order of magnitude, which is all that we aim for here.

For specimen sizes above the tramsition zone in Fig. 2(b) (Eq. 18), i.e.,
for values of a in excess of 20 mm and perhaps even 2 mm, Ahpay is almost
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equal to 1 ~h,. We may then assume perfect moisture transmission at the sur-
face, i.e., 1/8g = 0, in which case the boundary condition is that of pre-
scribed humidity:

for x = + % or r=a and ¢t > ty: h = he' (19)

In our further analysis we will assume this boundary condition.

Gradual Decrease of Environmental Humidity

Pore humidity differences which avoid cracking can be obtained for comn-
crete if the environmental humidity is decreased gradually. We consider a
ramp history in which h is decreased from h = 1 linearly until a constant
value h; is reached, and we consider a planar wall of thickness 2a, or solid
cylinder of radius rj, or hollow cylinder of external radius r; and internal
radius ry. Then, assuming a perfect moisture transfer at the surface, we have

x = *a/2 tpct<tr h=1-k(t-t)
orr =r, (20)
or r = ry and r=r, £ >ty h = h, - const.

The initial condition and the governing differential equation are again given
by Eqs. (8) and (6). Introducing new nondimensional variables as in Eq. (10),

C c
£ 3 or e T ;z'(t to), H ;2{(1 h) (21)
the differential equation for H(£,T) is given by Eq. (11) with
2k
h' = —2=%__q, 22
.gl(l-hc) 22)

e

The initial condition is given b& Eq..<(13), and the boundary conditions are:

for £ = £k and 0 < T 5;11: H=r
or £ = 1 ¢y (23)
or £ = 1 and § = ry/r; T2ZT:¢ H = ZZE(I- hl)

where 1] = Cj(t) -tg)/a2. We see that the solution H(£,t) depends only on the
variables: ) :

Cy(1-hy) c,(1-h)

€, Ty T3y 3 and ——or——, q,. (24)

The last two parameters disappear when the diffusivity is considered to be
constant. This is the case of linear diffusion theory (which is equivalent to
a, > 1).

0

For the linear diffusion theory, the solution may be bbtained by super-
position, integrating the series solution for a step change of surface
humidity [6]. This yields the series solution given in the Appendix (Eq. 46).
For hollow cylinders the series is involved, and it was more convenient to use
the finite difference Crank-Nicholson algorithm. From these solutions, we can
calculate the maximum humidity difference Ah in the cross section at any given
time; Ah = hp - hg, where hy = humidity at the center and hg = humidity at the
surface. The plot of parameter AH = (Cl/azk)Ah versus nondimensional time T
is given in Fig. 3, in which a represents the effective thickness, defined as
the cross sectional area divided by the exposed perimeter (or volume-to-surface
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ratio); for a slab, a = thickness; for a solid cylinder, a = r; = radius; and
for a hollow cylinder, a = ry -rg = wall thickness.

For the nonlinear diffusion theory (variable C), the solutions have been
obtained numerically, using finite differences (Lees' method). The numerical
results are plotted in Fig. 4(a-d) for various values of parameter x =
(azk)/Cl(l-hc). (The case h, + —= or k + 0 represents the linear diffusion
theory, Fig. 3.)

Subsequent to the end of the ramp, t;, i.e., after h reaches hj, the
humidity difference Ah always decreases. From t = tg to t = t;, Ah monotoni-
cally increases. These facts can be easily verified from the series expres-
sion given in the Appendix for the case C = const. So, the maximum Ah occurs
at the end of the ramp, t = t;. If time t; is increased, Ah tends asymptoti-~
cally to a constant. From Figs. 3 and 4 we find that the asymptotic value is
closely approached if

c
;2(t - ty) > 0.7 (constant C) (25a)
€19y
—;z—{t - tg) > 2 (all cases of variable C). (25b)
6 8
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What is the maximum rate of humidity change for which cracking and micro-
cracking are avoided? We can now answer this question with the help of the
graphs in Figs. 3 and 4. Consider a planar wall and linear diffusion theory
(constant C) and assume that the humidity change is sufficiently slow so that
the end of the ramp (time t)) satisfies Eq. (25a,b). Then, from Fig. 3
AhC/ka? = 0.125. Substituting Ah = Ahp,. = 0.018 (Eq. 5), we have

Max k = 0.14 C/aZ®. (26)

We may now check whether this humidity rate is sufficient to reach the end of
the ramp, t = t;. We consider drying from 100% to 50% humidity, for which

k = 0.5/(t-ty). Eq. (26) then yields (C/a2)(t-tg) = 0.5/0.14 > 0.7. So,
this humidity rate is sufficient to reach the asymptotic Ah before constant h
is reached.

For a typical structural concrete we may now consider C = 10 mmz/day.
For a 6 inch (15 cm) wall we get the maximum as k = GXIO‘slday, which means
that the humidity decrease from 100%Z to 50% would have to be made gradually
over the period of 23 years in order to be sure of avoiding cracking and
microcracking. For a 0.75 mm wall thickness and same C [9], Eq. (26) indi-
cates that the decrease from 100% to 50% would have to be made over the period
of 5 hours, which is roughly what was used in the tests reported in Ref. [9].
For the nonlinear diffusion theory, the results are of the same order of mag-
nitude.

From the foregoing analysis it is clear that in conventional tests the
cracking and microcracking can be avoided only for ultra-thin cement paste
specimens (about 1 mm). It was for this reason that these ultra-thin speci-
mens were developed for the study in Ref. [9]. For concrete and mortar, dry-
ing tests cannot be carried out without causing the specimen to crack or
microcrack.

The foregoing conclusion putg in question the interpretation of many dry-
ing and shrinkage tests carried dut in the past. There has been a tendency to
jump from observations of moistuxe losses and dimensional changes to explana-
tions in terms of molecular mechanisms, while microcracking and possibly even
continuous cracking must have often significantly affected the results. If a
sufficiently slow variation of enviromnmental humidity is unacceptable, the
cracking can be avoided only by applying loads which produce sufficient com-—
pressive stresses. A large enough axial compression on a cylinder prevents
cracking in the planes normal to the axis, but does not prevent cracking in
the radial or tangential planes. The normal stresses caused by drying in the
radial planes are about the same as those in the axial planes [1l]. Further-
more, the measurements on a companion load-free specimen are normally used to
determine the magnitude of load-produced creep, and these measurements are
affected by cracking.

Spacing and Width of Macroscopic Cracks

Drying typically produces systems of parallel cracks (Fig. 5). For esti-
mating various consequences of cracking, the crack spacing and the crack width
need to be known. Both problems are related; if the crack spacing s is known,
then the crack width w can be easily estimated.

The first problem of crack spacing is that of initial spacing when the
first parallel cracks are formed. A second problem is then the formation of
secondary cracks or the closing of the previously formed cracks. The problem
of crack spacing has been solved [11,12] for a homogeneous elastic halfspace
cooled from its surface, the boundary condition consisting of given constant
surface temperature. This problem is equivalent to that of shrinkage of the
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halfspace due to drying from the surface (provided that linear elasticity and
linear diffusion theory are assumed). A lower bound on the initial spacing

of normal cracks in an elastic halfspace may be obtained by the use of frac-
ture mechanics, expressing the fact that the fracture energy needed to produce
the cracks cannot exceed the strain energy in the halfspace before cracking.
This condition yields the formula [¥1,12]

. 10(1- v)aIGfr o7
2 Z
(l-+v)AeshD E
in which Aegy = free shrinkage strain in the halfspace, Ggr = specific frac-
ture energy = energy needed to produce a crack of unit length (or unit area),
_E = Young's elastic modulus, v = Poisson's ratio, a; = length of the cracks,
D = penetration depth of the drying front. According to the solution in Refs.
(11-13], we may substitute ay/D = 1.5. Then, using for concrete typical
values Ggr = 50 N/m [15-18], E = 3x10% MN/m?, Aeg, = 6x10™* and v = 0.18, we
get ¢

s > 48 mm (for a; > 100 mm). (28)

This calculation makes sense only if the cracks are several times longer than
the aggregate size, and for this reason we impose the limit a; > 10C mm. For
cement paste we may use Gg. = 15 N/m, Aegy = 12x107%, and thus we get

s >3m (for a; > 10 mm)

where we indicate a lower limit on crack length a; (10 mm) because the inhomo-
geneities in cement paste are of much smaller size than in concrete.

Since the first cracking relieves most of the strain energy initially
contained in the halfspace, these formulas may be regarded not only as lower
bounds but also as approximate estimates. For walls of finite thickness, the
solution has not yet been carried out but the foregoing formulas probably als
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give reasonable estimates for cracks through part of the wall thickness. The
foregoing values apply only to unreinforced specimens. Some solutions for re~-
inforced concrete were given in Ref. [13].

Since the normal.stress parallel to the halfspace surface is almost com-
pletely relaxed by cracking, the width of the cracks at their mouth is

w = sle sh* (29)
For the previously used material characteristics, we then get
for concrete: w = 6x107" x48 mm = 0.03 mm

(30)
for cement paste: w = 12x10™% x3 mm = 0.004 mm

Cracks as fine as this are obviously not visually detectable by the unaided
eye.,

The evolution of the crack system subsequent to the first cracking has
also been solved on the basis of fracture mechanics and stability analysis
(11-13]. Surprisingly, further penetration of the drying front into the half
space does not increase the number of cracks. Rather, every other crack
closes, with the effect that the spacing and the width of the open cracks
doubles. More precisely, at a certain critical length al , the parallel
cracks reach a state of instability in which every other crack suddenly jumps
ahead at constant loading (constant D), and the intermediate cracks begin to
close (i.e., their stress intensity factor drops below its critical value).
Later, as the drying penetrates deeper and the open cracks advance farther,
the intermediate cracks close completely, the spacing of the open cracks thus
being doubled. As these open cracks extend further, a similar instability
occurs again, the spacing of open cracks being doubled the second time, etc.
The length of the open cracks is found [11-12] to fluctuate between

0.67D < a < 0.77D (31)

where the first limit corresponds, to the start of closing of every other crack,
and the second limit to the campletion of their closing. The corresponding
fluctuation of the spacing of open cracks is within the limits

0.39D < s < 0.61D. (32)

According to inequalities (31) and (32), the average crack length and crack
spacing may be expressed as

= 0.72D, s = 0.69a = 0.5D. (33)

From these relations we see that the open shrinkage cracks get more widely
spaced and more widely opened as the drying front penetrates into a wall. For
the cracks to become visible to an unaided eye, their width must be at least
0.2 mm, which occurs for :

s >30cm, D> 60cm, a> 43 cm (34)

if Aegp = 6x107 4%, The required value D = 60 cm is so large that a system of
parallel drying cracks cannot normally be visible in normal size concrete (as
well as cement paste) specimens.

Cracks of other types may, however, occur and be easily visible in rather
small specimens. For example, an ultra-thin tubular cement paste specimen [9],
if suddenly exposed to a room environment of relative humidity around 60Z,
fails suddenly by a single crack through the entire thickness of the wall,
parallel to the axis. The energy to produce this crack must come from the
bending energy of the thin-wall tube due to warping from nonuniform shrinkage.
We assume the more critical case when a tube dries only from the outside (at
constant h,) rather than from both surfaces, and consider the distribution of
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FI1G. 6
Longitudinal Cracking of Thin-Walled Tubular Drying Specimen

normal stress due to shrinkage to be parabolic (Fig. 6c), with the drying
front just reaching the inside face. The bending moment of this stress dis-
tribution about the midthickness of wall is M = Ac a%/12 where A0 =
E'(l-kv)Aesh, E' = E/(1-v2). The formation of the longitudinal crack re-
lieves the entire energy of circumferential bending of the tube, and so U =
2neM2/(2E'I), I = a3/12 (per unit length of the tube) where r = radius of the

mid-surface of the wall. This must equal the fracture energy, i.e. U = Ggpa,
which yields

- 12G._ %
Ae = -y ————QE)

sh 1+ v 1rE (35)

as the critical shrinkage strain which is capable of causing the crack. Con-
sidering G¢. = 10 N/m (cement paste), E = 2x10* MN/m2, r = 7.5 mm, and a =
0.75 mm, we then get. Aegy = 0.00042. Assuming-eg = 0.0015, this critical
value would be attained by an'abrupt exposure to envirommental humidity h, =
0.90. Indeed, a sudden exposure of thin-wall tubes to this humidity has been
observed to cause a crack [9,19].

Cracks of this type do not, however, endanger the correctness of inter-
pretation of tests since the experimentalist is aware of them.
At
Discontinuous Microcracks

The previous analysis of crack spacing is contingent upon the applicabil-
ity of fracture energy values Gg¢, known from fracture testing. Physically,
Ggr represents the surface energy of a wide band of microcracks that must form
ahead of the crack front if the fracture should advance. The energy of forma-
tion of individual microcracks, to which we now turn our attention, is ob-
viously much smaller. No direct experimental evidence exists for the value of

this energy, and so we will approach the microcrack formation in a different
manner.

Under tensile stresses, all of the inelastic strain is due to the forma-
tion of microcracks. Assuming that there is complete biaxial restraint, and
that the biaxial temsile strength equals the uniaxial tensile strength ft' ,
the elastic strain parallel to the surface of concrete is at most fé(l-v)/Ec.

The total strain caused by the stress is at most (for total restraint) Aesh»
and so the total strain due to microcracking is Aegy = begp - ft'(l - v)/Ec.

Hence the volume of microcracks per unit volume of the material may be approx-
imated as

fé(l— v)

&Vep = 2(Aesh - -_-E;——_ﬂ * (36)
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Then, if we would know the mean spacing of microcracks, s, and if the micro-
cracks were of two directions, the crack width would be

w=1 VSt 37
As typical values we may consider Aggp = 6x10'“, fe' = 3.45 N/mm2 (500 psi),

E. = 27800 N/mm? (4x108 psi), v = 0.18, and assume that s < 1 cm. This then
yields Av,,. = 0.001 and

w < 0.005 mm (38)

as the maximum width of the microcracks. Such microcracks are obviously not
visible to the naked eye. However, such microcracks were observed by scanning
electronic microscopy by Mindess and Diamond [20]; their width was indeed of
the order of a few microns.

Based on the preceding analysis, microcracks (rather than macrocracks)
must be expected to form when the penetration of the drying front is less than
about 60 cm from the surface, which is typically the case in all test speci-
mens. Microcracking is not very well modeled by assuming a sudden drop of the
stress to zero. Rather, microcracks develop gradually and cause gradual
strain softening (negative slope) in the stress-strain relation (Fig. 7). For
the analysis of measurements on standard
test specimens it is therefore more real-

istic to assume tensile strain softening o (tension)
rather than a sudden complete cracking. sl ;
It was for this reason that a temsile ff

nonlinearity rather than cracking was
assumed in analyzing the shrinkage and
creep test data in Ref. [1]. From the . e
viewpoint of convenience, however, it ==

may be simpler to consider cracking be-
cause the three-dimensional tengorial

. L FIG. 7
properties of the strain-softening ten-
sile stress-strain relations are fot' too Models of Tensile Stress—Strain
well understood at present. Perhaps the Diagram — Cracking and Gradual
error caused by the consideration of Strain Softening

sudden cracking instead of gradual strain
softening is not too large.

Another question of interest is whether the microcracking produced by
drying can significantly affect the measured internal surface area. Its mag-
nitude for hardened cement paste is of ‘the order of 500 m?2 per cm3 of material.
For the microcracking to have an appreciable effect on the internmal surface
area, it would have to increase it by about 5 m2 per cm3 of material. Since
the volume of the microcracks does not normally exceed 0.001 (Eq. 38), the
width of the microcracks would thus have to be 0.001/50000 = 2x10~8 cm and
their spacing would have to be at most 2x10~8 cm/0.0006 = 3x10™5 cm for the
contribution of microcracking to internal surface area to be significant. At
such a small spacing we could hardly speak of microcracks but of breakage of
the bonds in the microstructure. So, microcracking due to drying cannot ap~
preciably influence the internal surface areas.

Effect of Cracking on Moisture Diffusivity

As one consequence of cracking, we may suspect an increase in the perme-
ability of concrete to water and an increase in the drying rate. To allow
estimating this effect, let us assume the cracks to be continuous, planar,
parallel, and of constant opening width w, and consider a uniform velocity
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field of seepage flow parallel to the cracks. The flow velocity may be as-
sumed to be so low that no turbulence arises (low Reynolds number). Water
may be transferred along the cracks as vapor or as liquid (capillary) water
or as adsorbed water. However, only the transfer of vapor can be of signifi-
cance for typical crack widths, as we shall show later.

The mass flux of vapor along one crack is, according to Poiseuille law,
J; = =(py/12 py)wd grad Py» where py = partial pressure of water vapor in the
air within the crack, p, = mass density of water vapor, and u, = viscosity of
vapor. The flux per unit area of concrete (kg per m? per second) then is v =
J,/s, where s = crack spacing. According to the definition of permeability a,
of vapor through concrete, we have further J, = -(ay/g)grad py, where g =
gravity acceleration (9.806 m/s2). Comparison then yields

P8 3
vo w
a, = 12uv i (39)

From the condition of conservation of mass of water, 3W/at = —-div Jv»
where W = water content (m® per kg of concrete). Substitution for Jy then
ylelds the diffusion equation 3W/3t = (a,/g)div grad py, which may be also
wvritten as 3h/3t = C,, div grad h, where h = p,/pg and C, = diffusivity =
(a,/8)3p,,/3W. Consequently, the diffusivity of water due to vapor flow in the
cracks may be expressed as:

3 [~ P
W v s oh
C,=¢c, 5 withec = o, W, w (40)

in which W = W/W1 = relative water content, W; = water content W at saturation.

To make numerical estimates, the derivative 3h/3W, which represents the
slope of the desorption isotherm ofhgoncrete, gay be estimated as 1.5. Let us
consider h = 0.75 and temperature.20-C @ = 293°K). The mass density of satura-
ted vapor at 20°c is 21.6 g/cm3, frem which we get o = 13.0 g/m3 for air-
vapor mixture at h = 0.75. Also u_'= 180x10 6 g/cm gec, p_ = 2338 N/m2.
Assume that 77 of the weight of concrete is evaporable water, i.e., Wy = 0.07x
2400 kg/m3, and that the width of the cracks is w = 0.3 mm and their spacing
is s = 30 cm. Eq. (40) then yields

c, = 98 cm?/day. (41)

For comparison, the typical diffusivity of intact structural concrete at
age 28 days is roughly 0.1 cm?/day. So, according to Eq. (40), the cracks
that we considered increase the drying diffusivity about 1000 times. For
shrinkage cracks of width 0.0l mm, the increase of the diffusivity is only
about twice and for thimmer cracks the effect on drying is negligible.

~

Since w ¥ slegy (Eq. 29), the diffusivity Cy is approximately proportional
to w? or to s®. And because approximately s = 0.5 D, we have
Sy
o — 3 2
v A Aesh D 42)
where D = depth of penetration of drying. This shows that at the beginning of
drying the effect of cracking on the rate of drying should be negligible. Bu

later, as the cracks get deeper and more widely spaced, the effect may become
tremendous.

C

The foregoing estimates must be understood as upper bounds. Due to crack
roughness, thickness variation and tortuosity of flow passages, the increase
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of diffusivity will be somewhat less than the foregoing formulas indicate, al-
though of the same order of magnitude. Furthermore, if the cracks are discon-
tinuous, the increase of diffusivity can be offset by several orders of magni-
tude and can become negligible. From observations we presently kmow next to
nothing about crack continuity. However, it is clear that the thinner the
crack the more likely is its discontinuity. Perhaps cracks over 0.3 mm can

be safely assumed as continuous and those under 0.0l . mm as discontinuous, but
further studies are needed.

Cracks in unsaturated concrete can be filled by capillary water only if
the diameter 2R, of capillary meniscus is not less than the crack width w.
Noting that the capillary meniscus in a planmar crack must be cylindrical, and
using the Kelvin equation, we have 2y, > -p.w, where y, = surface tension of
water in air (yw = 72.8 dyne/cm at 20°C). According to the ideal gas approxi-
mation for vapor, the condition for thermodynamic equilibrium is known to
yield the pressure of capillary water p_ = &nhp RT/M where R = gas constant,
M = molecular weight of water, T = absolute temperature. For 20°¢ (293°K)
prT/M = 135 N/mm?. So, for the crack to be filled by capillary water

Zyw M
Y<gmnp T (43)

For h = 0.99 we get w < 1.08x10™% mm, and for h = 0.9 we get w < 1.02x1075 mm.
The width of continuous cracks always exceeds these values by far. So, the
transfer of liquid (capillary) water along the cracks is irrelevant for drying.
It is of course relevant for seepage of water through concrete under higher
than atmospheric pressure, and in analogy to Eq. (39) the corresponding per-
meability is

vy (44)
w

¢ e

where p, = 1 g/cmd, Hy = 0.0106§ é)cm sec (at 20°C). This equation indicates
that a, is about 830 times larger than a, at the same w and s.

Principal Conclusions

1. To be certain that drying of test specimens causes no cracking or
microcracking, the differences in pore humidity (relative vapor pressure) with-
in the specimen should not exceed about 2% (Eq. 5).

2. In case of sudden exposurevto a drying environment, the wall thick-
ness would have to be unreasonably small (below 0.1 mm) in order to assure that
no cracks or microcracks are produced (Eq. 17).

3. Cracking can be avoided if the environmental humidity is decreased
gradually and sufficiently slowly. However, the specimens have to be unrea-
sonably thin (about 1 mm) to make this approach possible. Cracking can of
course be also eliminated by loading which produces sufficient triaxial com-
pression.

4. Drying normally produces systems of parallel cracks whose spacing and
width are approximately proportional to the depth of penetration of drying, In
the usual test specimens, the cracks are usually too thin to be visible by un-
aided eye (Eq. 27).

5. In normal size test specimens, drying is more likely to produce dis-
continuous microcracking than continuous macrocracks. The microcracking is
appropriately modeled as tensile nonlinearity with strain softening (Fig. 7)
rather than a sudden drop of stress.
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6. Shrinkage cracking can increase the drying diffusivity by several
orders of magnitude. During the process of drying, the effect of cracks on
the drying rate is at first negligible but can strongly increase as the
cracks become deeper. The increase, if any, is roughly proportional to the

square of crack spacing or to the square of the depth of penetration of drying.
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APRENDIX

Series solution for one-dimensional’ linear diffusion through a wall (solid
bounded by parallel planes) for domain' -a/2 < x < a/2 (wall), tg = 0 (drying
starts at t = 0), ho = initial pore humidity, surface humidity h = hy + kt:

: ~ a2
h(x,t) = hy + kt + (xz aa)

, 4ka? Rt D [—C(2n+ 1) 2n2¢ f(2n +1)mx]

- + 3% z (2n-+153ex . a‘ cosL a J° (45)
n= g

If drying stops at t = tl,'i.e., the surface humidity is constant for t > tj,

then, by superposition,

4ka2 %7 (-»)" 2n+1)
h(x,t) = hy + kt + §g nZo (22*_1)3 cos[( n 2 )"#](exp(ant)

- exp[an(t-tl)]) (46)

o = n+1)2n2
n a )

Series solution for linear diffusion (axisymmetric) in a solid cylinder,
0 <r < a; h(x,0) = ho, h(a,t) = h0 + kt:
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. a2 -2 2k ¢ Jo (r8y)
h(,e) = o + k(e - 5z + 5p [ exe (-8R0 gargy - S

If drying stops at t = t;, then,by superposition:

o Jp(x8y)
h(r,t) = by + ke + 2K I a7 (aB g [exp(CB20) - exp(-CB2(c-£)))]  (48)

n=1

where Jp = Bessel function of the first kind, order 0;
J; = Bessel function of the first kind, order 1;
aBn = roots of J,.

Implicit finite difference equation for linear diffusion in a cylinder,
Crank-Nicolson Method, Ar = nodal spacing, i = 1,2,3,...=node numbers:

1 + =2r 2r r 1 +
(T - by + G - gn] + (G + 5idhie
r 1 -2r 2 r 1
=gz - i t GE ooyt (Gt o b (49)

but the finite difference equation for the node at the center of cylinder
(r = 0) must be based on rectangular coordinates:

-2(1 +—)h + 20 = -{-2(1 - &%

ot )h + 2n } (50)

cat
h; are the nodal unknowns to be solved; hi are known values from previous
time step.

Finite difference equation for nonlinear diffusion using Lees' Method
(3 time levels):

+ -
rhi-hi.. Ci+1'ci-1+c(1 A 2C1-h
20t 40r2/t i2ar T ar?! |Mi+ T ar?
(C,, -cC, Dr
1 r _ i+ i-1
*+ [Ci(ZAr + Arz] 4or< Jhi-l (1)
Lt - '
B sthy,) +hy +hy)
1t - .
Replace { h,  with 3(hi +h, 4 hi) H (52)
1t -
by Ty +hy ) +hy )

group terms so as to obtain [A]{h+} = {b} with {b} vector consisting of known
h and h™ terms as well as boundary h* terms. A modificdation similar to Eq.
(50) is required at the center for solid cylinders.



