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ABSTRACT 
An improvement of the double-power law for creep at constant 
temperature and moisture content is proposed. Comparisons with 
available test data indicate that the final slopes of long-term 
creep curves, as indicated by the double-power law, are pre- 
dominantly on the high side. This is remedied by introducing 
a transition to a straight line in the logarithmic scale of load 
duration. The strain at the transition as well as the slope of 
the straight line are the same for all ages at loading. The 
strain and the slope at the transition point are continuous, 
while the curvature is discontinuous. ~e new law is also found 
to significantly limit the occurrence of divergence of the creep 
curves and of negative values at the ends of the relaxation 
curves calculated by the superposition principle. Extensive 
statistical comparisons with test data from the literature justify 
the proposed law. 

Introduction 

Although the double-power law [2,3] provides a relatively good descrip- 
tion of the existing test data and the creep of concrete at constant tempera- 
ture and water content, called the basic creep, one can detect some deviations 
which seem to be systematic rather than random. In particular, the final 
slope of the curves of strain versus the logarithm of load duration appears to 
be somewhat too steep when long-term tests are considered. This study exam- 
ines whether this can be remedied by introducing a transition to a logarithmic 
law for long times. 

Review of Double-Power Law 

The basic creep of concrete may be relatively well described by the 
double-power law [1,2,3,7]: 

1 ¢i (t'-m + a)(t - t')n (i) 
J(t,t') = ~-0 + EO 
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in which J(t,t') is the compliance function (also called the creep function), 
which represents the strain at age t caused by a unit uniaxial constant 
stress acting since age t'; E 0 is the asymptotic modulus, which may be visu- 
alized as the left-hand side asymptotic value of the curve of J(t,t') versus 
log(t -t'), and n, m, ~, and ~i are material parameters. Their typical values 
are n = 1/8, m = 1/3, and if t and t' are in days then ~ = 0.05 and ~i = 3 
to 6. Also, E 0 = 1.5E28 where E28 is the conventional elastic modulus at age 
28 days. Since (t -t') n = exp[n in(t- t')], the plots of J(t,t') versus 
log(t -t') at constant t' have the shape of exponentials. 

Eq. 1 has a remarkably broad range of applicability. It yields accep- 
table values for ages at loading from about 1 day to many years, and for load 
durations from 1 second to several decades. It also yields acceptable compli- 
ance values for rapidly (dynamically) applied loads, and the dynamic modulus 
is approximately obtained from Eq. 1 as the value of i/J(t'+ A,t') for ~ =10 -7 
day, whereas the conventional (static) elastic modulus is obtained as the 
value of i/J(t' +&,t') for A = 0.i day [24]. Since four parameters, namely 
E0, ~i, m and ~ are required to describe the age dependence of the elastic 
modulus we see that only one additional parameter, n, is needed to describe all 

creep. 

Extensive statistical regression analyses of practically all test data 
available in the literature revealed that the double-power law exhibits, on 
the whole, smaller errors than other formulas for concrete creep proposed 
before [4,5,6,1,2,3,7]. The power function of load duration t-t', involved 
in Eq. i, was first introduced by Straub [8] and Shank [25]. Wittmann et al. 
[12] gave supporting arguments for the power function based on the activation 
energy theory, and Cinlar, Ba~ant and Osman [26] gave other supporting argu- 
ments based on a certain reasonable hypothesis for the stochastic nature of 
the physical mechanism of creep. Others, e.g. Branson [9,10], introduced a 

power function of age t' 

It has often been commented that a power function of t- t' predicts too 
much creep for longer durations, exceeding 1 month. These critical comments 
were, however, incorrect since they resulted from using the power function to 
describe only that part of the creep strain that is in addition to the con- 
ventional short-time strain, approximately the strain for load duration 0.i 
day [2]. With this approach, the horizontal asymptotic value in Fig. 1 is 
obtained too high, and in order to fit the test data for medium load dura- 
tions (i day to 30 days) one needs to introduce a relatively high curvature 
by using a high value for exponent n, about n = 1/3. This then inevitably 
causes the power curve to shoot above the data points for longer load dura- 
tions. Recently it has been discovered [2], however, that the applicability 
range becomes much broader if the power function is used to describe the 
entire creep strain including that which occurs for very short load durations 
(from 10 -6 second to 0.i day). This represents a fundamental difference from 
the earlier use of the power function, and invalidates the aforementioned 
critical comments. Since the left-hand asymptote (given by I/E 0) is much 
lower than considered in the classical studies (Fig. i), exponent n required 
to fit the creep data between 1 and 30 day durations is much smaller, roughly 
1/8. This then causes that the power curve has a much smaller positive cur- 
vature in the log- time plot, and thus does not overshoot the test data for 
long creep durations. (There remains, however, an overshoot for very long 
creep durations, and that is what we try to improve here.) 

Note also that another advantage of including the entire creep strain in 
the power law is that I/E 0 can be considered age-independent, while the ear- 
lier approach in which only the creep strain after approximately 0.i day was 
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FIG. i. Creep Curves in Actual and Log FIG. 2. (a) Theoretical Recovery 
Time Scales (a = true elastic deforma- Curve Obtained by Principle of Super- 
tion, b =true creep, a '= conventional position, Showing No Divergence; 
elastic deformation, b' = conventional (b) Typical Curves of Doub±e-Power 
creep). Logarithmic Law. 

described by the power function, required considering an age-dependent elastic 
modulus E(t'). 

Although the double-power law is intended to describe only the basic creep 
it may be used as an approximation for creep in drying environment provided 
the cross section is relatively massive, with a thickness over about 30 cm. 
For such cross sections, the average creep deformation in the cross section is 
closer to that of a sealed cylinder than to that of a standard six-inch 
cylinder exposed to a drying environment. 

Proposed Formulation 

When the compliance values J(t,t') are plotted against log(t -t') for 
various constant values of h at constant t', it is found that for longer 
durations (over several years) the double-power law yields in most cases pre- 
dictions that are somewhat on the high side. Especially, the final slope ap- 
pears to be in most cases higher than the measured one (Fig. i). A remedy can 
be achieved by introducing a transition to straight lines in the log-time 
scale at a certain creep duration 0 L. This may be accomplished by the follow- 
ing formulas 

l ~ (t '-m + ~)(t- t') n for t-t' ~ ~L (double-power law) J(t,t') = ~0 + E0 

n~L in t-t' 1 + @L 
= E 0 -~-~ + E----~--- for t- t' ~ 0 L (log-law) (2) 
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" ~L ~I/n 
in which 8 L = / ~ - • (3) 

~(t '-m + ~)y 

According to these formulas, which may be called the Double-Power Loga- 
rithmic Law, the slope at the transition times 8 L (in log-time scale) is the 
same for all ages t' at loading, and the value of J(t,t') at which the transi- 
tion occurs is also the same. So, the ranges of validity of the double-power 
law and of the logarithmic law are separated by a horizontal line (see Fig. 
2b); for longer t' the transition occurs at longer creep duration. For very 
high ages at loading, the double-power law is valid throughout the entire 
lifetime. 

Diversence of Creep Curves 

If the principle of superposition is used, as a crude approximation, to 
calculate the creep recovery curves from the creep curves for various ages at 
loading, the recovery curves can be either monotonic, with a monotonic decay 
to an asymptotic value, or nonmonotonic, with a minimum followed by a mono- 
tonic rise up to a certain asymptotic value. Nonmonotonic recovery curves are 
thermodynamically impossible for a non-aging material, however, they are 
thermodynamically admissible in case of aging [11,30]. With some exceptions, 
which might be due to statistical scatter or the effect of drying, most test 
data show a monotonic decay [11,12,31]. Thus, although recovery cannot in 
fact be accurately predicted using the linear principle of superposition [12], 
it seems preferable to use compliance functions that cannot yield nonmonotonic 
recovery curves upon superposition. This condition is verified when, for the 
same age t, the creep curve for a higher age at loading t' has a higher slope, 
i.e. ~[~J(t,t')/~t]/~t' ~ 0 or [ii] 

$2j(t~t') ~ 0. (4) 
8t~t' 

It may be readily verified that the logarithmic law in Eq. 2 never vio- 
lates the inequality in Eq. 4 (Fig. 2a). On the other hand, the double-power 
law (Eq. 2) violates this inequality beginning with a certain creep duration. 
It is possible to always satisfy with Eq. 2 the inequality in Eq. 4 if the 
following condition is verified 

~ [i - n]n 
~L ~l~mf ~ (5) 

max 

in which [ m-n _n+l] 
f = Max t' n (i + at 'm ) --fi-- . (6) 
max 

Comparison With Test Data 

Same as the double-power law, Eq. 2 should be applied only to creep at 
constant water content, called the basic creep. Only under such conditions 
the creep represents a constitutive property of the material. The creep 
observed on drying specimens is not a constitutive property but an average 
property of the specimen as a whole, since the drying causes in the specimen 
a highly nonuniform distribution of water content and of stress, produces 
microcracking, and leads to great differences in creep at various points. ~ 
empirical description of the mean creep of drying specimens requires, there- 

fore, much more complicated formulas. 

Eq. 2 has six material parameters, E0, n, m, a, 90, @L, which have to be 
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determined from test data. Similarly to previous works [2,3], this may be 
accomplished by minimizing the sum of squared deviations A of Eq. 2 from the 
given data. When all six material parameters are considered as unknown, the 
optimization problem is a nonlinear one. The optimum fits have been obtained 
by Marquardt-Levenberg algorithm, for which an efficient library subroutine 
exists. The test data used in optimization have been extracted from a com- 
puterized data bank set up at Northwestern University. Since most experimen- 
talists did not take their readings at times uniformly spaced in the loga- 
rithmic time scale, the raw data as reported are biased in that some readings 
are crowded at certain times and others are too sparse. For this reason, the 
test data from the literature have been smoothed visually by hand. At the 
same time, the hand smoothing approximately achieves elimination of the meas- 
urement error, which needs to be done since structures do not feel this error. 
The hand-smoothed curves were characterized by data points placed at regular 
intervals in the log(t- t') scale, using two points per decade. 

The deviations of Eq. 2 from test data have been characterized by the 
coefficient of variation defined [3,7, 31] as: 

N n n 
- 1 ±(  i 1 

I =- (7) 
' -ij ~ ' j n lj 

i=l i 3 

in which Jij (i= l,...,n) are the characteristic points of the data set number 
j ~laced at regular spacing in log-time scale) on the creep curves reported in 
the data set; n = number of all data points on all curves within the data set, 
Aij=vertical deviations of Eq. 2 from these data points, ]j= mean ordinate of 
all data points fro~ the data set number j, ~j = coefficien~ of variation for 
data set number j, ~ = the overall coefficient of variation for all data sets 
combined (j = i .... ,N). 

Fig. 3 shows the optimum fits of the data sets reported in Refs. 15, 16, 
17, 18, 19, 20, 21 and 23. For comparison, Fig. 3 shows the optimal fits 
previously achieved with the double-power law [2,3]. The coefficients of 

variation are summarized in Table la. The overall coefficient of variation 
- -  

for the fits by the double-power law is m = 5.45% [2], and for the present 
- -  

Eq. 2 we achieve ~ = 3.9%. We see that some improvement is achieved by Eq. 2. 

More importantly, we may note that the final slopes achieved with Eq. 2 
are better. This is important for extrapolation to longer times. Therefore, 
we determine for all creep curves the final slope, which we draw graphically 
as illustrated in Fig. 3 by the dashed lines, and we compare these experi- 
mental slopes with the value of ~J(t,t')/Slog(t- t') according to Eq. 2 for 
t~e last sampling time of each curve. The combined coefficient of variation 

- -  

for the deviations from the measured final slopes for all data tests, ~f, is 
found to be 34% for the optimum fits by the double-power law, and 29% for 
Eq. 2; see Fig. 3 and Table lb. Thus, we see that the present formulation 
achieves an appreciable improvement in the representation of the final slopes 
of the creep curves, and therefore also in the extrapolation to longer times. 

The foregoing fits of test data (Fig. 3) have been obtained without the 
nondivergence restriction (Eqs. 4- 6). If this restriction is imposed in 
data fitting, the optimum fits must obviously get worse. Such fits are shown 
in Fig. 4, and the corresponding coefficient of variation for all data sets 

- -  - -  

is found to be ~ = 5.54%, while for the double-power law it is ~ = 5.45%. 
Although here there is no improvement, one finds now a significant improve- 
ment for the final slopes of creep curves, as is shown in Fig. 4, in which 

- -  _ 

case ~f = 22%, as compared to mf = 34% for the double-power law. 
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Due to the nonlinearity of the optimization problem, it is hard to carry 
out a more refined statistical analysis which would indicate the increase of 
error as a function of the distance from the centroid of measured data. To 
obtain information on this aspect, it is necessary to linearize Eq. 2 so that 
linear regression statistics can be applied. For this purpose we may intro- 
duce the notations 

y = EoJ(t,t') -i, x = ~l(t '-m + ~)(t-t') n for (t-t') ~ e L 

t- t' (8) 
- -  

x = (n+l)~ L in eL for (t-t') ~ e L 

This allows writing Eq. 2 as y = co + ClX, in which c O and c I are coefficients 
to be found by linear regression analysis. Variable y may be regarded as 
the creep coefficient relative to instantaneous value I/E 0. If Eq. 2 repre- 
sented the test data perfectly, then Cl would be 1 and c 0 would be O. The 
deviations of c I from 1 and of c O from 0 characterize the errors. Statisti- 
cal regression analysis yields not only the mean values of c I and co, but 
also their coefficients of variation, as well as the confidence intervals for 
the values of y and for the mean of y. 

Using the material parameters found before, the test data from the lit- 
erature, used in Fig. 3, can be all plotted in one regression diagram; see 
Fig. 5. The regression line is shown as a solid line. Furthermore, the 
hyperbolas representing the 95% confidence intervals, are shown as the dashed 
lines. We may note the widening of the confidence interval with the dis- 
tance from the centroid of the test data. The values of Cl and c O found from 
the linear regression analysis may be interpreted as corrections to the 

values of #i and of I/E O. Comparing the statistical regressions in Figs. 5a 
and 5b for the present formulation and the double-power law, we again see 
very little difference. As we already showed, an appreciable improvement is 
achieved only in the final slopes to which the linear regression does not 

apply. 

~.o~ ~ ~oo ~ 

D o ~ b ~ - p ~ J ~  L ~  ~ w w  

~ D o ~ b l ~  P o ~ r  L a ~  ¢ ~  

, . ~  , 6 ~ e - - ~ - -  ~ 4 ~  9 ~ . - - .  ; ' m { ~ ~  ''e 

.-"._ . . . . . . . _ .  
" ~ R ~  L t ~  . _ _ .  

~ . . . . . .  ~ e ~  L ~  ~ " Y:O.OO&+O.~Z 
~ . . . .  z oc 5 

S ~ . ~ ?  ~ 

L ~  _ ~ 

~ ~ ~> I 

~.~ , . ~ "  

/ ' / /  i ~ 

/ / , "  _ _  z = ~ =  ~ . ~  z = ~ = , . a ~ z  i / 
- , ~  / /  ~ , ~ = 

* i  ~ . . . . . . .  ~ . . . .  , , , 
-i~ o . ~  ; . ~  = . ~  ~ . ~  ~ . ~  s ~  o ~  i ~ 2 ~ ~ 0 0  4 . ~  6 . ~  e . ~  

X X 

FIG. 5 
Regression Plots for Double-Power Logarithmic Law and Double-Power Law. 
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~redlction of Creep 

The capability of close fitting the available test data is an indication 
of the correctness of the mathematical formula for creep. It is, however, an- 
other matter to predict creep of a given concrete if no measurements were 
taken. The prediction is notoriously far more uncertain. Due to the very 
large uncertainty in predicting the parameters E0, m, n,~, ~i and ~L from con- 
crete strength and composition, hardly any improvement can be achieved with 
the present formulation (Eq. 2) compared to the double-power law, and there- 
fore the prediction formulas in Eqs. 16,17,18, 15 and 19 from Ref. 3 (or 
Eqs. 9a-9e from Ref. 7) are recommended to be also used with the present 
formulation. An additional formula is needed for parameter ~L' for which 
the following expression may be recommended 

~ (9) 
~L = 1.53-0.06 f' 

c 

with f' in ksi (I ksi = 6 895 MPa); see Fig. 6. This equation does not guar- c " 
antee nondivergence, in general. Nevertheless, the increase in the separation 
of any two adjacent creep curves for adjacent ages at loading is quite small, 
much smaller than that obtained with the double-power law. 

Table 1 shows the coefficient of variation for all data sets and Fig. 7 
gives the predictions of creep curves. When all parameters are predicted (for 
the concretes considered) on the basis of the aforementioned formulas, ~ is 
21.3%, as compared to 24.1% for the double-power law. We see that the predic- 
tion of final slope is greatly improved by double-po~er logarithmic law. For 
final slopes of creep curves, as shown in Table ib, ~ = 34% as compared with 
61% for double-power law! 

As has been shown before, the predictions of creep are drastically im- 
proved if the initial elastic value of deformation is measured. From such an 
initial value, one can determine one material parameter, E 0 . The uncertainty 
of predicting creep when the initial elastic deformation is known may be il- 
lustrated by comparing the formula predictions obtained for these data under 
the condition that the value of E 0 is optimized. Such statistical compari- 
sons are shown in Table i. 

Stress Relaxation Predictions 

Unlike creep recovery, the stress relaxation at constant strain may be 
rather closely predicted on the basis of the principle of superposition. This 
is confirmed by relaxation measurements, although measurements of very long 

1.50~ 
~'/~" I ~ ~'/~'= 1.53-0.06./'~ 

• I 

~ a ,~ ~ . f ~ , ( ~ ) ~  ~ 

FIG. 6 
~I/~L Versus the 28 Day Cylinder Strength f' (i. Dwor~k Dam, 2. Canyon c" 
Ferry Dam, 3. Shasta Dam, 4. Gamble and Tho~ss, 5. Ross Dam, 6. L'Hermite 
et al., 7. Rostasy et al., 8. Wylfa Vessel). 



0 

' 
~

m
l 

";
 .

.
.

.
.

.
 ~

 
] 

.
.

.
.

 
~z

 
1/

~ 
..

..
..

..
. 

~/
~.

~ 
~'

~ 

~ ~
 -~

 
~_

jk
: 

R
3J

~f
~ 

Ye
se

s[
 e

o~
cT

et
e,

ee
~[

e~
 

/ 
C

~
y

o
n

 
F

er
ry

 D
am

,1
95

8 
/;

 
R

os
s 

D
~

 
19

53
,1

95
8 

~
+

+
~

--
- 

~
'~

. 
~

.~
 .

...
...

.. ~
.. 

~.
 

1,
~ 

,~
 ..

..
..

..
. 

-~
,.

 
..

 
"~

" 
~ 

~ 
..

..
..

. 
/ 

~ 
,~

 ..
..

..
..

. 
-~

..
 

. 
,~

/ 
~

;'
~

 
,' 

..
o

 .
.

.
.

.
 

. 
"

"
~

 
, .

.
.

.
.

.
.

.
 

"
~

t
 

o
..

 
~

 
~

.~
 

~
 

~
 

o
.~

o
 

~
 

~
.~

 

~=
 o

.~
o

 
I 

~
- 

o
.o

~
o

 
. 

~
- 

~ 
~=

 
o.

~#
 

~ 
;o

 
~ ~ 

...
...

...
.. 

/ 
.,

. 
,~

 ~
., 

,, .
..

..
..

 
"

~
 

.,
, 

~ 
~

'~
*"

 
..

 o
., 

, 
- 

, 
~-

~.
~l

 
" 

~
t'

/ 
I'

*-
~

 
i 

~ 
~

'"
~

°.
-~

'"
, 

~
i-

. 
~
'
~
 

"'
~

'"
" 

~ 
l/

 
. 

~"
 ~

'~
 

! 
~ 

~ 

~,
- 

~.
Ii

~ 
m

. 
~+

~ 
/ ~ / 

~.
 0

.~
4

 
~ 

" 
.a

 
~-

 o
.~

 
~ 

~ 
~ 

.~
 

.
.

.
.

.
 

+
.'

" 
• 

/
 

.~
 

i
.

.
~

 
~ 

~ 
. 

/ 
~ 

.'/
 

;I 
~ 

~ 
, 

.~
'~

 
_ 

"/
/'

/~
 

F 
--

--
~

'E
-=

~
.x

- 
"-

 

~ 
.. 

~
.~

/-
 

I 
_~

-+
' 

~ 
"

~
 

~
~

,
~

 
I 

:~
--

+ 
z.

.-
 

+ 
"~

 
~ 

_~
'~

 
~ 

+t+
+-+

-+-
 

-';
" ~

+:
" _

.+
+~

: 
'"

 
' 

" 
" 

" .
..

. 
~

~
;

i
 

+ 
~ 

+
'

-
~

"
 

I 
~

_
~

~
 

-+
- 

" 
~

"
 

' 
" 

" 
~ 

~ 
+ 

~ 
~o

 
~ 

vl
 

~+
~ 

- 
+ 

.
.

.
.

.
.

 
~

~
.

+
 

.
~

+
+

~
 

., 
~

 
~ 

, 
~ 

~ 
• 

~ 
~ 

~
~

 
" 

~
+

+
 

• 
.+

- 
++

 
~

.
 

- 
~ 

• 
.-

 
+ .

..
..

 
~

~
 

~
:

q
 

~ 
~

31
s~

v 
I 

~ 
~ 

~
~

 
. 

+ 
~+

+ 
.~

 
~ 

~-
 o

+z
~ 

~ 
~ 

-
-

~
 

l 
I 

I 
l 

l 
~ ~

 
t 

I 
I 

o,
o 

I 
I 

o+
o 

I 
I 

I 
~ 

o.
o 1
~

 +
 

1
~

 a
 

t~
 +

 
l~

 I 
I~

 
I~

 
1
~
 

1
~
 I

~
 

1~
 

I~
 

I~
 i
~

 
I~

 
1
~
 

1
~
 1

~
 

I~
 

I~
 

1~
 

1~
 

~.
s 

l 
~ 

~ 

~ 
~

o.
t~

,T
e+

~
e~

e,
 

19
7+

 
S

ha
st

a 
~m

m
.1

95
3,

19
58

 
L'

H
er

~
te

et
 

C
..

19
65

,1
97

t 
(~

=
10

0~
/ 

~ 

so
 

+ 
/ 

l 
,/

/~
 

I 
1/

~
- 

O
.e

++
 x+

o+
/p

~ 
~ 

t~
. 

O
.~

+4
x~

o+
/p

~ 
,~

 
, 

~ 
~.

o.
,o

x~
o~

/~
 

/ 
] 

m
. 

0+
31

+ 
/ 

/ 
, 

..
..

..
. 

/ 
m

=
 

o
.,

,.
 

,
~

 
,

~
~

 
n

=
 

O
. 

~S
~ 

/'
 

~ 
~.

 
o.

,~
 

, 
~ 

~
'/

 
..

..
..

 
' 

' 
' 

o~
 

o
.o

~
 

u 
,/

 
~-

 
o

.o
6

~
 

+
 

/ 
=.

 o
.o

a~
 

/ 
/ 

~ 
~.

 
3+

~4
7 

e 
m

 
~ 

~ 
~ 

~ 
~ 

~
,-

3
.~

f3
 

.-
 

.
.

.
.

.
.

.
 

' 
..

..
 

~ 
~-

 
~.

?~
 

• 
m 

~=
 z

++
++

 
~ 

/ ~
' 

+ 
+ 

+ 
+-

 o
.z

 f+
 ..

..
..

 
~ 

. -
- 

~ 
,o

 
._

~
.~

 
~

, 
~-

 o
.,

, 
--

~
 

~ 

~ 
._

 ,
,+

"+
/ 

/ 
~ 

~
,~

,:
,.

 
~ 

~s
 

~ 
" 

s 
+ 

~
~

~
~

=
 

, 
- 

- 
.:

 
._

~
 

-~
 

...
...

. 
",

 
Q

~
~

.
~

 
~

.
~

-
 

:
~

 
~

.
 

~ 
• 

• 

ze
 

~ 
] 

1 
+ 

ao
+ 

¢ 
~ 

~ 
- 

+
--

 
+ 

~ 
..

..
..

 
~ 

1 
o 

~
- 

+ 
~ 

~ 
~ 

-f
- 

~ 
~ 

1~
 + 

1~
 

+~
 

I~
 

1~
 

I~
 

1~
 

I~
 

I~
 

1~
 

I~
 +

 
10

 -2
 

I
0
 -
I
 

1~
 

1~
 

+~
 

1~
 

I~
 

~ 

t-
t'

 (
~

) 
~ 

F
£

G
. 

7
. 

F
£

C
s 

o
~

 
T

e
~

L
 

D
a

E
a

 
b

y
 

P
~

e
d

£
c

C
£

o
n

 
F

o
r~

a
s

. 
+ 



Vol. 14, No. 6 803 
CREEP, DOUBLE-POWER LAW, TRANSITION 

TABLE i. Coefficient of Variation for Test Data 

TABLE la. For sampling points (in percent) 

Optimum Fits Prediction Formula 

~ a w  j a a ~ a  s e c  ~ DPL [3]  DPL [2 ]  DPLL DPLL* DPL [3 ]  DPLL DPLL** 

1 C a n y o n  F e r r y  Dam [ 1 5 , 1 6 ]  4 . 6 0  5 . 5 8  5 . 7 0  4 . 2 0  3 9 . 6  2 9 . 8  6 . 2 0  
2 Ross Dam [15,16] 3.50 7.00 6.10 3.09 27.7 28.6 16.5 
3 Dworshak Dam [17] 5.46 5.63 4.80 2.90 21.2 17.8 ii.i 
4 Rostasy et al. [22] 1.00 1.20 1.70 1.12 5.10 4.50 3.50 
5 L'Hermite eta!. [18] 4.90 6.28 6,11 6.10 25.2 21.5 7.30 
6 Shasta Dam [15,16] 4.10 5.37 5.90 4.90 13.6 13.2 8.80 
7 Wylfa Vessel [19,20,21] 4.14 4.15 8.30 4.00 21.0 22.4 9.50 
8 Gamble-Thomass [23] 2.82 6.20 3.10 2.90 - - - 

~ 4.03 5.45 5.54 3.91 24.12 21.30 9.72 

TABLE lb. Final Slopes 

Prediction Prediction 
Optimum Fits Formulas Optimum Fits Formulas 

Data DPL[2] DPLL DPLL* DPL[3] DPLL Data DPL[2] DPLL DPLL* DPL[3] DPLL 
Sets t ' AD AL AL AD AL Sets t ' A D A L A L A D h L 

2 0.38 0.0 0.0 1.20 0.08 7 0.04 0.41 0.35 0.54 0.20 
28 0.17 0.32 0.17 0.50 0.05 7 0.17 0.30 0.20 0.85 0.0 5 

1 28 0.0 0.30 0.30 0.0 0.0 90 0.17 0.0 0.0 0.25 0.20 
90 0.40 0.45 0.40 0.i0 0.i0 730 0.60 0.53 0.50 0.60 0.60 

365 0.32 0.50 0.i0 0.20 0.20 28 0.39 0.0 0.0 0,35 0.05 

2 0.70 0.0 0.0 1.00 0.0 6 91 0.0 0.0 0.12 0.08 0.I0 
7 0.0 0.0 0.0 0.50 0.24 365 0.0 0.24 0.0 0.i0 0.i0 

2 28 0.26 0.65 0.30 0.0 0.0 2645 0.50 0.15 0.25 0.i0 0.i0 

90 0.50 0.30 0.05 0.50 0.50 7 0.39 0.30 0.35 0.20 0.56 
365 0.60 0.40 0.0 0.40 0.40 60 0.17 0.25 0.17 0.40 0.43 

1 0.60 0.0 0.0 1.64 0.62 7 400 0.05 0.41 0.05 0.30 0.20 
3 0.05 0.31 0.0 1.00 0.30 4560 0.29 0.15 0.35 0.15 0.15 

3 7 0.20 0.0 0.0 0.80 0.60 2 0.20 0.14 0.05 I'.0 0.70 
28 0.0 0.22 0.0 0.0 0.0 

7 0.0 0.0 0.0 0.80 0.80 
90 0.50 0.i0 0.50 0.30 0.30 8 

17 0.0 0.i0 0.05 0.60 0.60 
4 28 O. 25 0.0 0.0 O. ii 0.08 40 0.28 0.24 0.20 0.15 0.15 

~f+ 0.34 0.29 0.22 0.61 0.34 

Note: AD, A L are normalized errors of final slopes for curves of double-power 
law (k D) and Double-Power Logarithmic Law (k L) in comparisons with the 
final slopes of test data (k) and defined as IkD/k - II, IkL/k - II, 
respectively. 

* Double-Power Logarithmic Law without the nondivergence restriction. 
**Double-Power Logarithmic Law with optimum E 0. 

= a D,j or in-- i ~i=l Li~ 
1 
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durations (over i0 years) are lacking. It has been noted before t~t, for 
s~ll ages at the instant of initial straining, the stress rela~tion curves 
cross into negative stress values at very long times (over i0 years) when they 
are calculated by the principle of superposition from the double-power law. 
The same thing happens when the calculation is done by the principle of super- 
position directly from certain measured creep curves. From the thermodynamic 
vie~oint [30], there exists no fundamental prohibition against such negative 
values when one deals with an aging ~terial. Nevertheless, it is not clear 
whether the negative values at the end of early-age rela~tion curves are not 
caused merely by the choice of the creep for~la or by an exper~ental error 
in creep measurements. 

To examine this aspect, the creep data for Dwors~k Dam [17] and for 
Canyon Ferry Dam [15,16] were opti~lly fitted by the double-power law and by 
the present for~lation (Eq. 2), and for both cases the stress relaxation 
cu~es were calculated on the basis of the superposition principle using a 
highly accurate step-by-step algorit~ [13,14]. The results of the calcula- 

tion are sho~ in Fig. 8 by the solid curves for the present formulation and 
by the dash~ curves for the double-power law. We see that the present formu- 
lation limits the occurrence of negat~e stress values at the end of early- 
age relaxation curves, which seems to be a desirable feature. 

Conclusions 

i. The double-power law yields for the creep cu~es plotted in log-time 
final slopes that are predominantly on the high side when compared with long- 
time measurements. ~is My be remedied by a creep law which exhibits a 
transition from the double-power law to a straight line in the logarithmic 
scale of creep duration at a certain transition t~e. The straight line has 
the same slope for all ages at loading a~ the transition occurs later for 
an older concrete. 

2. The aforementioned improvement in the representation of the final 
slope of the creep curves should allow a better extrapolation of creep data 
into very long times. 

( a )  ( b  
Dworshak Dam, 1968 ~ C~yon  Ferry Dam,1958 ] 

~ ~ / 

~ ~ - -  ~ u b | ~ P o ~  ~ ~w . ~ ~ u b l e - P ~  ~ ~w 
" ' ~  . . . .  ~ubl~ P ~  ~w - ~ ' .  . . . .  ~ u ~  P ~  ~w '"----.. " ~ "... ~. ~ 

~ '  ~ "-.,. 
~ - - - - - . ~ o ~  \ -.. ~ 

• - x 

~ ~ ~ ~ . . ~ . ~ . .  ~ , ~ : . ~ ]  
~ ,  -- ~ .  ~ ~ % - . . .  ..~ ~. .., 

~ ~ ~ ~ l~ lO °~o-~ ~ ~ ~ ~ ~ 
t-t" (da~) t-~ (da~) 

FIG. 8 
Comparisons of Stress Relaxation Predictions for Dworshak Dam I17] and 

Canyon Ferry Dam [15,16]. 
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3. The new fornmlation reduces the occurrence of divergence of creep 
curves. Although the divergence could be eliminated, for certain values of 
material parameters, completely, the representation of existing test data 
would be impaired. 

4. The new law also greatly reduces the possibility that the relaxation 
curves calculated on the basis of the superposition principle would cross at 
very long times into negative values. 

Acknowledgment - Support by the U.S. National Science Foundation under Grant 
No. CEE-8303148 to Northwestern University is gratefully acknowledged. 
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