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Fracture of concrete is analyzed by combining the resistance curve (R-curve) approach with linearly elastic solutions for the 
energy release rate resulting from the quasi-static crack model of Wnuk, analogous to the D-BCS model of a stationary crack 
used in describing quasi-brittle fracture in metals. The R-curve, representing the crack length dependence of the energy 
consumed per unit fracture extension, is calculated using the concept of the energy separation rate associated with a finite 
crack growth steps. To simplify calculations, the tensile stress transmitted across the nonlinear zone ahead of the fracture front 
is assumed to be uniformly distributed over the entire nonlinear zone, even though in reality it must be a gradually declining 
stress resulting in strain-softening; and an infinite elastic medium loaded at infinity is assumed. These assumptions permit an 
easy solution with the help of Green's function for an infinite elastic medium. Application to bodies of finite size then requires 
assuming the nonlinear zone (fracture process zone) to be negligible with regard to specimen dimensions, crack length and 
ligament length. Even though this assumption is not always realistic, the end results, which are of practical importance, appear 
reasonable. The analysis leads to a nonlinear first-order ordinary differential equation for the R-curve, which is integrated 
numerically. The R-curves calculated in this manner can be closely fitted to data from previous fracture tests. Only two 
parameters, characterizing the initial and the final lengths of the nonlinear zone, need to be adjusted to test data. 

Introduct ion  

Inelastic behavior of brittle aggregate materials, such as concretes, mortars and rocks, arises not only 
from plastic slip but also and mainly, from internal fracturing (cracking) which causes a gradual 
degradation of material stiffness. Heterogeneity of geomaterials and their softening, which results from an 
accumulation of micro-defects dispersed randomly within the volume of a highly stressed material, are the 
primary reasons that impede direct applications of linear elastic fracture mechanics (LEFM) or elastic 
plastic fracture mechanics (EPFM) to concrete. Recently, successful representation of fracture test data and 
strength data have been obtained with finite element models in which the fracture process zone at the 
fracture front is considered to be finite and a suitable law for gradual reduction of the principal tensile 
stress ahead of the fracture front is introduced; see Hillerborg, Mod6er and Petersson [1], Petersson [2] and 
Ba/mnt and Oh [28,29], and Ba~nt  [37]. Fracture predictions with these models require, however, the use of 
a finite element code which might be unnecessarily cumbersome for various simple situations. It is, 
therefore, of interest to develop approximate analytical solutions based on some simplifying assumptions. 
To make this possible, the problem must be simplified so that linear fracture mechanics could be applied 
for various simple specimen geometries in an approximate (equivalent) sense, in a similar manner as it has 
been done in ductile fracture mechanics. An approach of this kind is the objective of the present work. 

We will analyze the so-called resistance curve (R-curve), which describes dependence of the energy 
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consumed per unit fracture extension (or of fracture toughness) on the crack length, and, for the sake of 
simplicity, we will restrict this analysis to an infinitely extending linearly elastic continuum loaded at 
infinity, for which a simple Green's function exists. Application of our results to bodies of finite size and 
loads that are not infinitely remote is then possible by introducing the simplifying assumption that the 
R-curve remains the same. This assumption, which was proposed for metals by Krafft et al. [3,37], would be 
exact only if the fracture process zone at the fracture front was negligibly small as compared to body 
dimensions and the uncracked ligament length. However, experience with metals suggests that reasonable 
approximations are obtained even if the fracture process zone is finite. 

In the present work, the propagation of fracture is envisioned as a sequence of finite growth steps or 
'jumps', each of which is preceded by a build-up of microcracks and voids within a narrow damage band or 
crack band. The length and width of such a damage band is assumed to be small in comparison to the total 
crack or notch length and the specimen dimensions. Our model of quasi-static stable fracture employs the 
concept of 'energy separation rate', ff,a associated with a finite crack length increment, as opposed to the 
'energy release rate', fiR, used in the LEFM, which is applicable to a crack extending in a continuous 
manner. While the latter quantity measures the apparent fracture toughness represented by the so-called 
resistance curve, the former quantity appears to be a more realistic measure of the true material toughness. 
This quantity is invariant with regard to the amount of stable cracking which precedes unstable 
catastrophic fracture. 

Previous work 

Occurrence of slow stable crack growth in the early stage of fracture in mortar or concrete is a widely 
recognized phenomenon. Due to their aggregate structure and their ability to undergo progressive 
microcracking, these materials do not follow the finear fracture mechanics laws unless the size of the 
specimen and the length of the uncracked ligament is substantially larger than the size of the characteristic 
nonlinear zone (dictated by size of aggregate, fibers or inclusions). In consequence, fracture toughness is 
not a unique material property, as required by the LEFM, but it depends on the specimen size and on the 
length of crack extension. Since in mortars and concretes the typical size of aggregate, or the typical length 
of fibers in a fiber reinforced concrete, is on the order of one inch, usual size laboratory tests do not yield a 
unique, size-independent, fracture parameter. 

An approach which is capable of taking the nonlinear effects of such nature into account, and which has 
been already developed for metals [4] and geomaterials (Hoagland et al. [6]; Schmidt and Lutz, [7]; Wnuk 
and Mura, [8], Wecharatana and Shah, [27]), consists in using a variable fracture toughness depending on 
crack extension length. This is described in terms of the crack resistance curve, called the R-curve. An 
R-curve is obtained by plotting a certain parameter characterizing an energy absorbed during the fracture 
process at each step of crack growth as a function of the crack length. Since we model fracture that occurs 
at a continuously increasing load, the classical formula for the energy release rate at a constant load, 
namely ~1 -- ( p 2 / 2 t n ) d Z / d a ,  does not apply; here P is the load, Z is the compliance, which is a function 
of the current crack length a, and t n is the thickness in the plane of crack. To remedy this drawback, certain 
new approaches have been suggested, one of which provides a direct extension of this formula through an 
introduction of so-called 'modified' strain energy release rate (Wecharatana and Shah, [27]). To apply this 
modified approach, however, the rate of change (per unit crack extension) of the reloading compliance, 
d~R/d a, and the permanent deformation upon unloading (Si~re v), have to be either calculated or measured, 
which is not an easy task. 

An alternative approach, proposed for metals and rocks (Wnuk, [33], Wnuk and Mura, [8]) is based on 
the so-called 'final stretch' concept, which in turn may be derived from the concept of true fracture energy 
or 'essential work of fracture'. Physical assumptions of similar nature underlay the models proposed by 
Broberg [10], Cotterell [9], Miller and Kfouri [11] and Kfouri and Rice [12]. The energy separation rate, 
which represents the energy absorbed within the process zone during a fracture increment, is invariant with 
regard to stable crack extension and, therefore, it represents a true fracture parameter. 
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Fracture criterion and the equation of motion of a quasi.static crack 

Consider the small zone of material immediately adjacent to the crack front, called the fracture process 
zone or end zone. It may be assumed that within this zone the laws of the classical fracture mechanics 
break down, and that instead of r -~/2 stress singularity one has a certain unknown distribution of the 
restraining force, say S(x~), defined within the interval 0 _< x~ < R, where x~ is the distance from the crack 
tip and R is the extent of the nonlinear zone (Fig. 1). On the basis of the Green function for an infinite half 
space, the stress intensity factor may be expressed as 

in which p(x) is an even function which represents the stress acting on the crack surface. The 'toughness' 
associated with a quasi-static crack, KR, is interpreted as the stress intensity factor arising from application 
of the restraining stress S =  S(x) transmitted through a fictitious crack extending up to x = a + R 
(a _< Ixl-< a + R), as shown in Fig. 1. If we replace a by (a + R) and set 

p ( x ) =  (0  forO_<x < a  
S(x) f o r a < x < a + R  (2) 

then integral (1) becomes 

---~----a ~(a+R)2_x 2 =2 V/2(a + R) ~/a+R-X (3) 
R ,~K a 

When we substitute xl for x - a, Eq. (3) reduces to 

~/-~_ fR S(xl) dxl (4) 

For a growing crack the quantities R and S are dependent on the current crack length, i.e. 

R =R(a), S= S(x 1, a). (5) 

Therefore, the integral represented by Eq. 4 and used as a measure of material toughness, is also crack 
length dependent, i.e. KR : Ka(a). This observation suggests that the quantity KR may be used merely to 

NON-LEFM 
Restraining Stress 

J \ 
S(x)  S ix )  

~Fracture / 
Zones 

Fig. 1. Fictitious crack model. 
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measure an apparent toughness which is not invariant with regard to the crack extension occurring prior to 
the unstable fracture. For the same reason, the energy release rate, as defined in the realm of the linear 
elastic fracture mechanics, i.e. 

2 2 (jo   Xl dXl) forp,ane ,ress 
~ R = ~  ~ , w i t h e  1= ( 1 - ~ 2 ) - ' E  for plane strain (6) 

also becomes a variable which varies with crack extension. Within the socalled 'small-scale yielding' range, 
that is, when the extent of the end zone is much smaller than the crack half-length (R << a) and much 
smaller than the specimen size, the use of the fracture parameters ~R, KR or R is optional and equivalent, 
since all three quantities are uniquely related once a certain distribution of the stresses over the end zone is 
specified. For instance, if we assume a constant value oft he restraining stress S(x 1 ) = o 0 (see Fig. 2a). then 
integral (4) yields 

/-2-0 rR dxl 

o r  

( KR/Oo ) 2. R (8) 

If, on the other hand, the restraining stress is allowed to vary in a bilinear fashion, first increasing from 
zero to a maximum value o0 attained at a distance fl from the crack front and then maintained at a 
constant level o0 for fl < x 1 _< R, as shown in Fig. 2b, then integral (4) leads to 

~ ( K R )  2 ~ ( f l / R )  2 

R=~ -~o [ l_ (1_ f l /R )3 /2]  2' (9) 

growth step 

(o) -'IA ~//S(x') 

_ IIlnlIlJIIIIIIJf -- j x, 

(b) ~ x , )  

(c)  ~ I ~/~-~S (x,) 

o I R 

Fig. 2. Three types of cohesive (restraining) stress distribution considered in the text. 
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where fl and o 0 are two additional constants. For a linear distribution of the restraining stress over the 
entire end zone (see Fig. 2c), Eq. 9 yields 

9(KR) 2" 
R l e - . = -~ "~ k "-~o (10) 

The formulae (9) and (10) result by substituting the bilinear distribution 

S ( x , ) =  {{ (°°/fl)x' '  O<_x, <fl (11) 
o o, fl_<x 1 _<R 

into Eq. 4 and carrying out the integration, i.e. 

KR=i-~(fo~(%/fl)x'dx'~x: [R dx, } + o o  . (12) 

Equations (8) and (9) are examples of the so-called finiteness condition, i.e. conditions for the stress S(x,) 
in the nonlinear zone to remain finite. For a general case of an arbitrary distribution of stress S(xl), this 
condition is given by Eq. 4. 

To derive the governing equation of motion for a quasi-static crack which interacts with the damage 
band formed ahead of the front, one needs to solve a boundary value problem for which the traction p(x) 
is prescribed over the crack surface, as in Eq. 2, while the displacement component normal to the crack 
plane Uy is set zero along the symmetry line (y = 0) beyond the end zone, i.e. for ]x] > a + R, or x I > R. 
For the three idealized distributions of stress S(x~) considered here, the solutions which define the 
displacement Uy within the end zones (0 _< x~ _< R) are as follows: 

(a) Constant restraining stress (Fig. 2a): 

/ - = "hE 1 R 2 R  l o g  - -  . 1 (1-(x,/R) 
(13) 

(b) Bilinear restraining stress (Fig. 2b): 

(4°o t 
• ' ~rE, ]Rg(fl /R)F(x, ,  ft. R), (14) 

in which 

,{ 
F(~,,~,R)--B+½A ,ogB--:~o-SOB +4~ / 2R ~ log---¢-~o 

x~ , B+I  +X,)B+.~(I_B~)B]" 2R 2 log ~ - ( 1 -  Bo)(1 -~- 

A=~-~- 1 -  1 -  Bo = 1 - B  B =  1 -x--L. 
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(c) Linear restraining stress (Fig. 2c): 

Uy(X, ,R)= R 1 - ~ R  ) log (15) 
1 + Ja 

Derivation of the last formula is given in Appendix A, while Eqs. 13 and 14 were derived by Rice [13] 
and Knauss [32], respectively. 

In contrast to the energy release rate fir defined in accordance with the fundamental concepts of LEFM 
(see Eq. 6), we will employ a somewhat different measure of material toughness for the early stages of 
fracture formed by coalescence of micro-cracks. We imagine a discontinuous crack extension consisting of 
a sequence of finite growth steps, each of equal length A. We now need to modify the well-known integral 
representing the energy release rate 

fg-- lim ~ S(x)~Uy(X, a) dx (16) 
~a---* 0 

to introduce a finite growth step, .4. This may be done as follows: 

o +  ) 
ffa = s.-,,~lim ~a S(x)rSUy(X, a, A) dx . (17) 

This is called the energy separation rate, which may be interpreted as the work done to produce crack 
extension a. The associated increment in the crack opening is gUy = Uy(X, a + ,$a, A) - Uy(X, a, a).  

Using the expression given by Eq. 17 as a measure of the intensity of the stress field induced in the 
immediate vicinity of the crack tip, we postulate that fracture will occur whenever the fracture work (or 
energy separation rate) attains a certain critical value, ~: 

lira S(x)SUy(X, a, A) dx = ft. (18) 

The quantity ~ represents a material constant, sometimes called the essential work of fracture (Cotterell 
[9]), and it in turn may be related to other fundamental properties of material (Wnuk and Mura [34]). 
Integral (17) is difficult to evaluate, at least for the case of an arbitrary distribution of the restraining stress 
S(x). However, it may be shown (see Appendix B) that for the three particular cases of a constant, a linear 
and a bilinear distribution of S, the evaluation of the left-hand side of our fracture criterion (Eq. 18) may 
be greatly simplified. Simplifications of this kind lead to the so-called 'final stretch" criterion of fracture 
(Wnuk [8,33]). As may be shown, the choice of a particular shape of the S-function has little effect on the 
predictions regarding the shape of the R-curve (the final product of the analysis); see Fig. 3. Therefore, we 
will restrict our further consideration to the most simple choice of the S-function, i.e., S(x])=o0 for 

1.5 

i~ 1.2 
ee 

o:: 
I.I 

2 M, 1.1382, Rln l lA "  1 . 02 ,  I r q .  (C 'P )  • • • * • B . 

0 I ; 1 I 
I ' - I0  II 12  13 14  15 

o / R + n i  

Fig. 3. R-curves obtained for constant (case a) and linear (case c) restraining stress distributions. 
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0 < xl < R. As shown in Appendix C, we have in this case 

8O2/AdR+R R R RI~-~-  R ~ / ~ - I  } - - ~ .  (19) 

Furthermore, introducing the quantity 

M--go-- ~ -  or M- -~- t~o]  t (20) 

called the tearing modulus, the equation defining an R-curve, R = R(a), reads 

dR R / R R RvtRT~-- ~ - / D  - 1 
da = M - ~ - +  ~ - ( ~ - - a ) + ½ 1 o g  ~ + V / ~ / A  1 (21) 

This is a nonlinear first-order differential equation for which the initial condition R = Rim at a = ao has to 
be provided. Then the integration can be carried out numerically (see the next section for comparison with 
experimental data). The outcome is an R-curve valid for the case when the size of the end zone is much 
smaller than the length of the crack. Note, however, that no restrictions have been imposed on the size of 
the growth step (A) versus the extent of the nonlinear zone (R). 

Finally, the dependence of load on the crack extension may be predicted by specifying the stress 
intensity factor as a function of the specimen shape parameters 0, type of loading and the crack length, i.e., 

K = oCr~(Oi, a). (22) 

If the applied stress o is characterized by the non-dimensional loading parameter 

Q = ~ (23) 

2 

G) 
E 

g 
Ch 
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0.4 
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3 P o i n t  B e n d  

I • - I 1 
015 O.Z 0.25 
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Fig. 4. R,curves obtained by numerical integration of eq. (21) at four levels of ductility parameter 0~ - 5, 2.5, 1.67 and 1.1. The 
upper-most and lower-most curves resulted from the asymptotic equations vafid in the limit of A ,~ R (curve 1) and A = R (curve 6, 
Eq. C8). 

Fig. 5. Nondimensional loading parameter Q shown as a function of extension of a stable crack. A a, recorded in a 3-point bead 
specimen for the 4 levels of ductility parameter used in Fig. 4. Circles mark the terminal instabilities attained in a load-controlled test, 
while the stars denote the instabilities reached in a displacement-controlled test. 
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then one obtains a simple relation between an R-curve 
extension), namely 

Q ( a ) = O - l ~ /  2~rR(a)a 

and a Q-curve (load vs. increment of crack 

(24) 

Examples of integration of the governing equation (21) are given in Fig. 4, while the Q-curves for 
three-point bend specimens are shown in Fig. 5. We note that both sets of curves are strongly affected by 
the assumed value of the ratio 

Pi = Rim/A" (25) 

As it turns out, the size of the growth step (A) when compared against the initial extent of the nonlinear 
zone, Rmi, provides an excellent measure of material ductility or brittleness. From Figs. 4 and 5 we 
conclude that the two opposite limits of material behavior are obtained as follows: 

A << R, ductile behavior, (26) 
A = R, brittle behavior. 

Compar i sons  of  the  exper imenta l  and theoret ical  results  

Most of the data available in the literature [14-27] are given in terms of the apparent fracture toughness 
(R-curves) and the curves of maximum load vs. the critical crack length. 

To fit these data, we will have to define the optimum choice of fracture parameters that enter our model. 
We note that there are two undetermined parameters in Eq. 21, namely: (i) tearing modulus, M, and (ii) 
near-tip stress distribution parameter, which may be called ductility index, R ini/A. To obtain the best fit 
values of these parameters, we have employed the Hermite-type interpolation, using the initial slope of an 
experimentally obtained R-curve and the coordinates of some point on such a curve located far from the 
initiation point to obtain two equations for two unknown quantities, M and Rim/& If the initial slope 
7 = (dR/da)ini ,  and the final plateau Rss of the R-curve, are known, then application of the Hermite 
interpolation combined with the differential equation defining an R-curve leads to the following equations 
for M and R i n i / A :  

~ , -  ~ , - 1  
M - P, + V:& ( P , -  1) + ½ log = y, 

_ _  = 0. (27)  M -  ps.~ + VPss(Ps~- 1) + ½ log 
~/~-~ + ~ -  1 

Eliminating the tearing modulus M and denoting the ratio R ss/R ini by m, we reduce this system to a single 
equation 

7 -- rap, + v'rnpi(mp, - 1) + ½ log 
m~, - ~/m p i - 1  

+ P, - V"P, ( P, - 1 )  

r--  / - -  
CP,-  VP~- ] 

- ½ log _ _  = 0 (28)  

which is of the form 

F(y.  m .  Pi) = O. (29) 
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Since both initial slope and the upper plateau, i.e., 7 and m, may be read from the experimentally 
determined R-curves, the only unknown is #,. It may be found numerically for a certain range of the 
constants "y and m. This procedure was applied whenever possible in choosing the optimum values of the 
tearing modulus and the near-tip stress distribution parameter R ~,i/A. 

The location of the maximum load point was determined from the equation 

dR [ ()RA ] (30) 
da = --~'-a IQ 

in which the symbol R~ denotes intensity of the applied stress field relative to loading parameter Q and the 
K-factor as follows: 

=z(  tq ]2= a 2 
RA 8~o0 ] ~-~Q@, @= Q =  " 3 0 / 2 o  0 . (31) 

Specific relations of this type, corresponding to various geometrical configurations frequently used in 
fracture tests, are given in Appendix D. 

Let us now discuss a typical fitting problem using the three R-curves obtained recently in Wecharatana 
and Shah's experiments. Using their data for three materials of low strength: (a) concrete (C) (E --- 3 × 106 
psi, a 0 = 700 psi), (b) mortar, Mix I (M1), E = 2.5 × 106 psi, effective stress g0 = 620 psi, and (c) mortar, 
Mix 2 (M2), E =  2.2 × 106 psi, effective stress o0--590 psi (see their Fig. 12 and the corresponding 
regression equations listed in their Table 4 pertaining to the R-curve data), the experimental R-curves may 
be reduced to two normalized R-curves, since the R-curves for concrete (C) and mortar Mix 2 (M2), when 
plotted in terms of nondimensional variables ff/ffinJ and a/Rin i, converge to just one curve. To fulfill the 
requirement of smallness of the R/a ratio, the current crack length of 5 inches is considered as the initial 
crack size, and then the following data may be read from the R-curves shown in Fig. 12 by Wecharatana 
and Shah [27]: 

(0.718 lb./in, for C 
ffi~ = [ffR]a=s" = ~0.526 lb./in, forM2 

~0.465 lb./in, forM1 
(32) 
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Fig. 6. Comparison between the test data, Ref. [27], and the predictions of the present model. Curves 1 and 2 were determined by Eqs. 
(40) and (C8a). 
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Fig. 7. Maximum load fracture test data (data points and the source are indicated in each box) compared with the theoretical 
predictions of the present model. 

The 'steady-state' values of the apparent material toughness, as given by the same authors, are 

[0 .920 lb. / in ,  for C 

fg, ffi [ ~R ] a=20,, = ~0.670 lb. / in ,  for M2.  
~0.558 lb. / in ,  for M1 

(33) 

The size of the nonlinear zone, Rim, measured at the current crack length of 5 inches, can be estimated 
from the equation 

(34) 

in which the empirical factor n usually varies between I and 2.6, and the effective stress o 0 is known. Based 
on this, the following estimates for the extent of the nonlinear zone may be obtained: 

f l .00"  for C 
Rini = ~0.78" for M2 

~0.66" for M1 

(35) 

The interval for the variation of coefficient n has been restricted to 1.7 < n < 1.74. These numbers are then 
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employed to normalize the increment of stable cracking according to the formula 

A X =  (a  - a o ) / R i n  i (36) 

in which a 0 is taken to correspond to the current crack length of 5 inches. Note that the ratio of the extent 
of the nonlinear zone to the current crack length lies within the range 

( R/a)ss <- R /a  < ( R/a)i,, (37) 

and, for the materials under consideration, one obtains the estimates 

1 /5  = 0.2 for C 

(R/a)i , i  = ~ .78 /5  = 0.156 for M2 (38) 

.66/5 =0.132 for M1 
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and 

(1.28/20 = 0.064 for C 

( R/a)ss = ~ .99/20 = 0.050 for ME. 
.792/20 = 0.040 for M1 

(39) 

Such a range of R/a values suggests a relatively low level of material toughness (brittle limit of behavior), 
which justifies applicability of the asymptotic equation (C8a). Figure 6 compares the experimental curves 
with the theoretical curves obtained by numerical integration of Eq. (C8a) for the initial values: 

curve 1: (dR/da)ini = 0.067, 

curve 2: (dR/da)ini = 0 . 0 3 5 ,  

R i . i / A  = 1.53, 

R i . i / A  = 1.65 (40) 

which were chosen so as to obtain the best fit. 
Table 1 summarizes the results of similar analyses of other typical experimental data available in the 

literature, Figs. 7-8 illustrate the match between theoretical and experimental results. In addition, Figs. 9 
and 10 shows the results of a statistical analysis of the deviations of theoretical values from the measured 
ones. As may be seen from Fig. 10a, the coefficient of variation for the deviations of R-curve predictions is 
roughly 7%, and that for the deviations of the maximum predictions does not exceed 5%, as seen from Fig. 
10b. 

The same degree of accuracy has recently been obtained with another nonlinear fracture model for 
concrete (B~ant and Oh, [28]), which requires finite element solution of the field problem. That model is, 
however, more general in various respects. It does not require the fracture process zone (end zone) to be 
negligibly small compared to the cross section and ligament dimensions, and it permits considering the 
effect of boundaries or loads that are close to the fracture process zone or intersect it. The effect of 
compressive normal stresses parallel to the crack plane can be considered in that model, in quite a natural 
way. Furthermore, the effects of reinforcement and bond slip, as well as nonlinear material behavior 
outside the fracture process zone, can be considered in that model. 

In judging the meaning of the coefficients of variation for the deviations from test data, one should also 
note that, in contrast to the present theory, the values of the fracture parameters for various concretes were 
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concretes in independent investigations. 
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Table 1 
Coefficients obtained for various test data 

Test series o0 ffini "Y I1 Pi R ini M 

[psi] [Ib/in] [inl 

Naus 1 800 0.1648 1.0 1.0 2.0 0.45 2.47 

2 
Walsh 1 680 0.1071 1.0 1.0 1.5 0.3 2.29 

2 750 0.1052 1.0 1.0 1.5 0.3 2.29 
3 480 0.0679 1.0 1.0 1.5 0.3 2.29 
4 430 0.0520 1.0 1.0 1.5 0.3 2.29 
5 840 0.1148 1.0 1.0 1.5 0.3 2.29 
6 750 0.1094 1.0 1.0 1.5 0.3 2.29 

870 0.0924 1.0 1.7 1.5 0.3 2.47 
580 0.0613 1.0 1.0 2.0 0.3 2.47 
660 0.2842 1.0 2.0 2.0 0.8 2.47 
660 0.1421 1.0 1.0 3.0 0.4 2.47 
441 0.1926 1.0 1.0 2.0 1.05 2.47 
726 0.3216 1.0 1.0 2.0 0.75 2.47 
610 1.0978 0.45 1.0 1.8 1.85 
350 0.0518 0.88 1.0 2.9 2.56 
700 0.64 0.2 1.0 1.4 1.45 
580 0.65 0.3 1.0 1.5 1.59 
580 0.273 0.65 1.0 1.5 1.94 

Mindess 
Kaplan 
Huang 

Carpinteri 

Sok, Baron 
Brown 
Shah 
Entov 

considered to be correlated by the theory to separately measured values of the strength of concrete and to 
the maximum aggregate size, which limited the freedom in fitting test data. Without these limitations, still 
smaller coefficients of variation could be achieved with Ba~.ant's and Oh's [28] model. 

Stimulated by the present work, the practical fracture analysis of concrete with the R-curve approach 
has been subsequently investigated by B~ant and Cedolin [36], who introduce for the R-curve, instead of a 
differential equation (Eq. 21), a simple algebraic formula with parameters related to concrete strength and 
aggregate size, but independent of body geometry and the location of loading points. Using solutions of 
linear elastic fracture mechanics, they demonstrate good agreement with typical maximum load data from 
fracture tests of concrete. The coefficient of variation of errors is about the same as here, and the same as in 
Ref. [29], which confirms that the errors are due mainly to the randomness of material behavior rather than 
the method of analysis. 

Conclusion 

Good agreement with available fracture test data for concrete may be obtained if the crack length 
dependence of the energy consumed per unit fracture extension is calculated for an infinite elastic medium 
loaded at infinity and if this energy is matched to that indicated for the actual body geometry by a linear 
elastic fracture mechanics solution for an effective crack length. The concept of energy separation rate 
associated with a finite crack growth step, and the assumption of uniform tensile stress within the nonlinear 
zone ahead of the fracture front, yield realistic R-curves. 
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Appendix A. Solutions of boundary, value problem and derivation of Eq. (15) 

Sneddon (40) considered an integral transform approach to a boundary value problem involving a 
two-dimensional stress field generated around a Griffith crack. In particular, he obtained an integral 
representation for the opening displacement as a function of location, u, = uy (~, .~ ). Within the crack plane 
(~ = 0), Sneddon's formula reads 

[Uy(X,y)]y=o = "~E1411fx t d t  f f p ( u )  dU____u2 
Jo 

(A1) 

Here, E a = E for plane stress, E 1 = E(1 - v2)-1 for plane strain; l denotes the half-length of the crack, and 
x, u and y are nondimensional variables 

x = Y~/I, u = f i / / ,  y = y / l .  (A2) 

Symbol p (u) denotes the pressure exerted directly on the crack surface. For the fictitious crack model, in 
which the crack is extended by an additional cut from ~ = a to ~ = a + R, the length I should be replaced 
by a + R, in which a denotes the half-length of the actual crack, while R is the length of the end zone 
adjacent to the crack, see Fig. A1. Pressure p is given in terms of the remotely applied stress o and the 
restraining stress S(x) ,  defined over the end zone a < ~ < a + R, as follows (see Fig. A1): 

o, 0 _< .~ < a, (A3) 

o r  

p ( x )  = ( o, 0 <_ x <_ m ,  (A4) 
o - S ( x ) ,  m < x < l .  

Here we consider a restraining stress S which falls off from the maximum value o 0, attained at ~ = a + R ,  

: I - - - - - -  j 

I 
, i 
! y' i 

Physicol [ Fictitious / 
Crock Crock [ 

, Elo.$!iC (end Z . e )  J 

------S (~) - o- 

(a) 

(b )  

Fig. A1. Assumed distribution of stresses on the surface of an extended crack. 
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to zero at the crack tip, ~ = a, i.e., 

O0 _ 
S ( Y , ) = - ~ ( x - a ) ,  a < ~ < a + R .  

Introducing the nondimensional quantities 

m = a / ( a +  R) ,  x = ~ / ( a +  R)  

we rewrite equations (A4) and (A5) in the following way: 

o° ( x - m ) ,  m < x < l ,  S ( x )  = 1 - m 

{~'_ x - m  O<_x<_m,  

p ( x )  = o° 1 - m - 
, m < x < l .  

Let us now evaluate the integrals involved in 
given by Eq. (A1). Denoting the inner integral 

(f' edu 

f(t)=So --~t2~7 |[m _..~odu_ 
So ¢7-7  

(A5) 

(A6) 

(A7) 

the Sneddon's representation of the opening displacement 
by f ( t ) ,  we have 

_ _  =f , ( t ) ,  

,o-s(~) 
- -  + £ ~ - ~ - - ~  d u = f 2 ( t ) ,  

O < t< _ m ,  

r e < t < 1 .  

(A8) 

To obtain the information pertinent to the essential work of fracture ffa, we need to investigate in detail 
the displacement Uy within the end zone, that is, for m < t _< 1. With the notation defined by Eq. (A8), Eq. 
(A1) reduces to 

[Uy] v=0 = 4(a  + R)  ~ / ~  x-2 ' (A9) 
- "hE1 tf2(t ) d t  

t  vTr:-Z_ ' 

O < x < _ m ,  

m < x ~ l .  

The second equation in (A9) is of particular interest. Let us first evaluate the auxiliary function 

£ f ° - ° o  fo, Odu O o L u _  m m t ~ du = - du o d u  t- . . . . .  A ( t )  = 
v/~-_ u: V ~ _ u  2 ~ - - u  2 1 - m  ¢ 7 i ~ u 2  

-- --0r COS-I + COS-I 
o ~ - m  ., 1 - m  , V ~ _ u 2  

~r moo [ m ] Ooff~-- m 2 
= o~- + 1 _--7-- ~ cos - '  ~ ) T  1 - m  (A10)  

Substituting this last expression for f2(t ) into the second equation in (A9), we obtain, for m < x < 1, 

4(a + R) (~r fx 1 t d t  
[ U y ] y = O --'-- -- F 1 "~ a t I~.~-X2----" t- 

1 - m  t T - x  2 t d t  " 

mo o [1 t c o s - l ( m / t )  dt  

1 - m 4  t(i~_x2 

(All) 
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The first integral in the braces is elementary while the second one may be evaluated by parts. 

f f c o s - ' ( m / t )  [ l ( m ) ]  1 fx I l /T i -  x2 (m/ t2)dt  , d , =  ¢ 7 - x : c o s -  T - : : = = = ,  
" ~/1 - ( m / t ) "  

= V / 1 - x  2 cos-%-mf'a/t2-x2 dt 
y z - ~  , G V  (A12) 

Now we have (m < x < 1) 

1 } 
1 - m  t 2 _ x 2  t d t  

4ooR{ ){ t cos m),,lx 
- ~rE1 O + "i - m 

1 f f [ ~  t2-x2  m2 i t2-m2 - + 

1 m t 2 - -  m 2 t t 2 x 2 
(A13) 

It remains to evaluate the integral 

t 2 - -  m 2 I 

~/ t 2 -- m 2 ] 1 
+- -~_x2 t d / = ~ .  m2t2--mZx-2-+(t)---m2)t2,v.(T:Zg~_tTZx T dt 

(_-m_2x___~ : + !_')_ dt 

= fx t~/(t2-- m 2 ) ( t 2 _  x2 ) 
(A14) 

W i t h  f 2 = Z this last integral becomes 

I = - m2x2f  1 dz 
Jx:z~(z - m 2 ) ( z -  x 2) 

1 z_ d._._z. 
(A15) 

or, concisely, 

I = -mx211 + 12 . (A16) 

The integrals 11 and 12 can be evaluated in a closed form. After a number of algebraic operations the results 
are 

rax ~ 1  l°g x/m + ~/(1 - x 2 ) / ( 1  -- m 2) 
I i  

x/m -- ~/(1 -- x2) / (1  -- m 2) 

12 = i(1 --m2)(1 - x  2) -4 
m 2 + x  2 l + ~ / ( 1 - x 2 ) / ( 1 - m 2 )  

2 log 
1 - ~/(1 - x2)/(1 - m 2) 

(A17) 

Combining these results with (A15-A16) and replacing [Q + (m/1  - m )cos-lrn] by [(1 + m)/ (1  - m)]l/2 in 
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Eq. (A13), 1 we obtain the final expression for the opening displacement (m < x < 1): 

l 
4%R a +  R J 

[u."]: ' - ° =  ~rE, 4 R ( 1 - m )  t 2 V / ( 1 - m 2 ) ( 1 - x 2 ) - 2 m x l ° g  
1 + m x  + l/(1 - m2)(1 - x 2) 

1 + r e x -  ~/(1 - m2)(1 - x 2) 

V / l - m 2 +  1 - ¢ ~ x 2  } 

- ( " - m ) : l ° g  m=-- 1-¢T77: " 
(A18) 

For simplicity, denote 4oR/~rE, by C and let 

~ -  rn2 = M, ~/1-  x2 = X. (A19) 

Since m = a / (a  + R), we see that (a + R ) / R  = (1 - rn) -1. Therefore, Eq. (A18) may be briefly written in 
the form (m < x < 1) 

• = _C { 2 M X -  2mx log 1 + mx + M X _ ( x _  m)2 log M + X ~  (A20) 
[u" ]~-°  4 ( l _ m  2) l + m x - M X  M - X ) "  

So far we did not restrict the quantity m in any way, and thus the formula for the opening displacement 
(A20) remains valid for an arbitrary ratio R/a .  This means that Eq. (A20) holds for both the large scale 
yielding and the small scale yielding situations. 

Since the tip opening displacement (Ut~p) is directly proportional to the J-integral, it is of interest to 
provide an expression for u,i p which would be valid for a large scale yielding situation. This expression 
results from Eq. (A20) when x is set equal to m. We have then 

C [ 2 ( l _ m 2 ) + 4 m 2 1 o g r n ] .  (A21) 
utip = 4(1 - m 2 ) 

Returning to the dimensional quantities R and a, we may rewrite this equation as 

4% [ R a l o g ( a + R ) ]  (A22) 
uti p = qrEt a 1 + 2""a - R  

For brittle fracture, however, it is appropriate to assume that the length of the end zone is small 
compared to the crack length. In this case the ratio R / a  approaches zero and this implies m --* 1. Treating 
the quantity e = 1 - m as a small parameter and expanding all terms in Eq. (A20) into a power series of e 
we reduce the lengthy expression (A20) to the following form (m < x < 1): 

{ ( ~ /  ' 2 l + v f J - - - '  - - ½ ( 1 - - ' ) 2 / 3 e +  } 

• i _ V/fZ-~ 

Here ~ denotes a distance x, measured from the tip of the actual crack, normalized by the length of the end 
zone, i .e . ,  

= --==xt x - m . (A24) 
R 1 - m  

It should be noted that the load Q and the size m of the end zone are not independent. The finiteness condition established for an 
extended crack requires that the applied load o and the length of the end section R are related in a certain manner. This relation 
ensues when the K-factor defined by Eq. (2.1) is set to zero. We obtain then o = (2/~)f~S(x)(l - x2) - I /2  dx.  Substituting (A4) 
for the distribution S(x) and carrying out the integrals involved, we obtain Q = [ ( 1 -  m ) / ( 1  + m)] I/2 - [ m / ( 1 -  re)]cos-Ira, in 
which Q ffi ~ o / 2 % .  This equation applies for the specific type of the restraining stress distribution considered here, i.e., 
S(x) = %(x - a)/R. 
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If only the term of the zero order, contained in the square bracket, is retained, we have 

(( l+vl-XljR 4ooR  x I x 1 x~ log (A25) 
[ u - v ( x "  R)]ssY = 'hE, 1 - -~ - -R  R 4 R  2 I _ Vq _ x l / R  

where the subscript ssy refers to small scale yieldings. We may note now that Eq. (A25) is identical with Eq. 
(15) used in the text. It is readily seen that when the distance xl is set to zero in (A25), we obtain the tip 
displacement 

u tip = (4Oo/'nEm) R .  (A26) 

This formula is in accordance with Eq. (A22), quoted earlier, since when R / a  << 1, we may use the 
expansions 

log(l+R) + 
a a 

log 1 +  = - 1 + ~ - - +  -- .  (A27) " a 

which reduce (A22) to (A26). 

Appendix B. Reduction of essential work criterion to final stretch condition 

Evaluation of the energy separation rate ~a  involves an integration of the product of the restraining 
stress S and the crack opening BUy associated with an incremental crack extension,/Ja. Rewriting Eq. (17) 
we have 

f¢,a = _ 2 j o S (  X 1 ) B u y ( x 1 ) "  (B1) 

Here we have replaced the variable x, present in Eq. (17), by the distance measured from the crack tip x 1. 
The minus sign in Eq. (B1) is added to account for the fact that the work that is being computed is done 
against the restraining stress (stress and the displacement vectors are at 180 o to each other). This renders 
the integral ]oaS(x l )~u .v (x l )  negative, while we would like to have a positive energy separation rate ~a.  
Note also that if the control point at which work ~a  is evaluated is considered stationary while the crack 
front approaches, the distance x 1 may be treated as a timelike variable, x I = x 1 (t), just as the current crack 
half-length was in the previous formulation. Since the relation between a and x~ is a + x 1 ---- X, and since x 
is constant, we also have 

d a  = - d x  I , 3 / O a  = - O/Ox  1. (B2) 

From BUy = Uy(X 1, a + 8 a )  - Uy(X, a )  we get 

~/'JV 
8u, = Uy(X, a + 8a) - u~(x ,  a)  = -~a ~a. (B3) 

Replacing a by the time-like variable x 1, and employing Eq. (B2), we have 

0 Uy 
Buy = ~ dx  I . (B4) 

With this expression, integral (B1) becomes 

= - 2 f 0 a S ( x l )  3 U y ( X l )  d x ,  (B5) lea 
0X 1 

We will prove that, for certain types of the distribution of the restraining stress, the integral in (B5) 



M.P. Wnuk, Z.P. Ba$ant, E. Law / Stable growth of fracture in brittle aggregate materials 279 

reduces to an expression involving the difference between the crack opening displacement at the point 
coinciding with the current crack tip (instant t 2) and the crack opening displacement (COD) that existed at 
this point at the instant just prior to collapse of the process zone associated with the crack of length a 
(instant t]). It is easily seen that the two values of the variable x I which correspond to these two instances 
are 

x ] = A  a t t = q ,  crack l e n g t h = a ,  

x 1 = 0  a t t = t  2, crack l e n g t h = a + A .  (B6) 

If the notation Uy = Uy(X], a) is adopted, then the crack opening displacements evaluated at the same 
control point P (Fig. B1), but corresponding to the two instances, may be written as 

u y ( a ,  a)  at instant q,  (B7) 

Uy(0, a + A) at instant t 2. 

Next, we may consider two cases: 
(a) constant restraining stress, S = o 0, over the entire end zone, and 
(b) restraining stress which fails off in a linear fashion from a maximum value, a o, at the outer edge of 

the end zone, to zero at the current crack tip, i.e., 

XI 
s ( x ] )  = -200,  0 _< xl _< R. (B8) 

For the first ease we have 

ffa = _ 20°'".,,( °,"+a)/"'(a' o ) 8 u y = Z % [ u v ( O , a + a ) _ U y ( A , a ) ]  " "  (B9) 

Setting this quantity equal to the essential work of fracture 

if= Oo~ (BIO) 

(in which ~ denotes the final stretch) reduces the energy criterion of fracture, ff~ - if, to the final stretch 
condition, namely, 

uy(O, a + / t )  - Uy( A,  a) = 6/2 .  (Bl l )  

It may be noted that the quantities ~ and ~ are material characteristics while the quantity ffa measures the 
intensity of the near-tip stress field and results from a solution of an appropriate boundary value problem 
involving a crack modified by an assumption concerning the type of the S-stress distribution (which is not 
included in the continuum treatment of the problem). 

For the second case, which is that of a restraining stress decreasing linearly from o 0 to zero over length 
R, we note 

S(O) -- O, S(Zi )  = ( z i / n ) o  o, d S / d x  a = ao /R .  (B12) 

Using these properties and integrating the integral in Eq. (B1) by parts, we obtain 

a d S ( x l )  

-~OOlly( A ) +'-~ J 0 lly(X,) = 2(7o'~{--Uy(A)"~-~ l~y(X]) 

This is as far as we can go without making any simplifications. However, the quantity A-lf0~ Uy(X l ) d x  l c an  
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be approximated by the mean value of function u,(xl) over interval 0 < x a < A. i.e.. 

1 a u,,(0) + Uy(a) 
~ f o  u , . (x l )dx, - - -  " 2 (B14) 

With this, expression (B13) becomes 

f¢a= 2Oo ~ { Uy (O)-u. ,'('~ ) 2 }' (B15) 

Consider now the work done on a material element located at some control point P while the stress at 
this point is being gradually released from the value (A/R)% to zero when the crack front reaches point P. 
Since the time interval involved ( t = -  t I = & = A/a )  is small, we may consider the motion of the crack 
front to be uniform during such incremental crack extension. This implies a variation of stress at P which is 
linear with time. Thus, if the final displacement increment attained during the time interval 8t is denoted by 

(final stretch), the work done is 

This is the so-called essential work of fracture. To make an extension of fracture possible, the energy ~ has 
to be continually supplied from the near-tip stress field. When the expressions (B15) and (B16) are equated, 
and when it is recalled that Uy(0) is in fact uy(O, a + It) while Uy(Z~) is uv(A, a), we again recover the final 
stretch condition (Bl l )  which describes the stable phase of crack extension. 

Appendix C. R-curve equation based on final stretch concept. Derivation of Eq. (21). 

As shown in Appendix A, the displacement normal to the crack plane occurring within the end zone, 
0 < x 1 < R, is obtained by a continuum mechanics approach with a non-continuum type of stress 
incorporated into the modified boundary condition for an extended crack (Fig. A1). The final result may 
be represented in the form 

For a moving stable crack, the extent of the nonlinear zone (R) varies with the crack length (a), and so one 
must regard R as a certain, a priori unknown, function of a. Examples of specific forms of expression (C1) 
are provided by Eqs. (13) (14) and (15). In what follows we assume that the solution of the field problem, 
of the type of Eq. (C1), is known. The objective is to employ the form (C1) in order to derive an equation 
which would define the R-curve. Although the J-integral is a commonly used measure of the apparent 
material resistance to stable cracking, we may equally well employ the length of the end zone, R, as such 
measure. Indeed, within the small scale yielding range discussed here both measures are equivalent. 
Therefore, we seek to determine the function 

R=R(a) .  (C2) 

As will be shown, a certain nonlinear differential equation may be derived for R(a). 
An incremental change in the material resistance to cracking, d R, may be related to the increment of 

crack growth, da, through the application of the fracture criterion based on the final stretch concept, see 
Eq. (Bll). The quantities Uy(0, a + z~) and uy(Zi, a) entering into this criterion are evaluated from Eq. (C1) 
as follows: 

u,.(O, a + A) = (4Oo/'nE,)R( a + a ), 

uy(A, a)= (4Oo/~rEl)R(a)f [xl/R(a)]. (C3) 
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Replacing R(a+A) by the first two terms of the Taylor series expansion, R(a)+AdR/da, and 
employing Eq. (Bll), we obtain 

4°o{ +A dR ) -2='~£i" R(a) da -R(a ) f [a /R(a ) ]  • (c4) 

This equation may be used in two different ways. First, it can be applied to define the energy separation 
rate ~a,  which is given by the integral (B1), namely 

= [ t R + a dR - R I ( a / R ) } ,  ~a 
da 

(c5) 

where R briefly stands for R(a). Secondly, Eq. (C4) may be used for solving for the rate of change of the 
apparent material toughness, that is, 

dR [~rEl ll R +R f(  R )" (C6) 

When the group of material constants appearing on the right-hand side of this equation is identified with 
the tearing modulus, M, the form (6) becomes identical with Eq. (21) used in the text to define an R-curve. 
This is so for a constant restraining stress, while for a linearly varying restraining stress Eq. (C6) combined 
with Eq. (A25) yields 

da = M - - ~ +  1 A A R ~ - ~ +  ~ ( R / A ) -  1 (C7) 

Examples of the R-curves which resulted from numerical integration of Eqs. (21) and (C7), both of which 
are special cases of Eq. (C6), are shown in Fig. 3. It should be emphasized that a different R-curve is 
obtained each time when the basic assumption regarding the distribution of the restraining stresses is 
changed. Since each time a new boundary value problem has to be solved, a new function f(A/R) is 
generated. This fact is reflected by the presence of the function f(A/R) in the governing Eq. (C6). 

It may be demonstrated, however, that large variations in the S-stress distribution have only minor 
effect on the final shape of the R-curve, see for instance Fig. 3. To illuminate this point, consider a limiting 
case of R = A when both equations defining the resistance curve, i.e., Eqs. (21) and (C7), reduce to simple 
asymptotic forms which differ only insignificantly, 

dR 
da 

M -  p +~ ( p -  1)3/2 
--_ pl/2 0 --' 1, constant S, (CSa) 

p ~ 1, linear S. (C8b) 

These equations describe the R-curve for the limiting case of brittle fracture, when the ductility parameter 
p ~ R/A approaches one. 

Contrasting with this observation is the substantial effect of the initial condition on the shape of an 
R-curve. The value of the material toughness at the onset of crack growth, R i~a, and in particular the ratio 
of Ri~ to the process zone size (or the growth step A) has a distinct effect on the slope of R-curve, and 
consequently, on the occurrence of stable-unstable transition in the mode of fracture propagation (compare 
the curves shown in Figs. 4 and 5). 
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Appendix D. LEFM K-factors and compliances for fracture specimens 

1. Single-edge notch (SEN) tensile specimen 

According to the Tada-Paris-Irwin manual [39], the stress intensity factor is 

o(; V'~fl (b)f2 (b)  - -  P (D1) = , o =  b B  ' 

in which P denotes the applied load, remote from the crack plane, a is the crack length, b is specimen 
width, B is its thickness, and 

f l (b )  = { 2b tan( 'rra ~\ '/2 
, 

rE(b)  = .752+ 2.02(a/b)+.3711-sin(~a/2b)] 3 
cos(~a/2b) 

(D2) 

The accuracy of these expressions is better than 0.5% for an arbitrary a/b ratio. If we denote a/b by a and 
~ra/2b by a 1, then 

d~ ¢~- ( ; )  f2 al - ½ sin 2t~1 
d--a = ~ 0~12 COS2al 

+ ¢~-fl [ cos2"02a1 ¢~(1 _ sin al)2 +f2tanal]. (D3) 

In order to determine the compliance function, C = C(a/b), we consider the displacement at distance h 
from the crack plane, 

8tot = 8~o c~cl, - 8===k, 

; 111  

O/z, ,0/2 

I 
P 

1 n ' l  -v- b 

]- , J 
PI2  I P I2  

s / b = 4  

Fig. D1. Common geometries of specimens used to test fracture behavior of structural materials. 
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in which 

[ E  ( )] 40b 3,0 ~ck = 2 h = h=2b E ' 

6~r~ck= E4oa 1 - - ~ " b )  2 ( a / b )  0 . 9 9 - a ( 1 - ~  1 . 3 - 1 . 2 - ~ + 0 . 7 ( b  ) 

Then C(a/b)= 8tot/P, i.e., 

C ( b ) = K { l _ a  2a'----~z [ ' 9 9 - a ( 1 - a ) ( l " 3 - l ' 2 a + 0 " 7 a 2 ) ] + 1 }  

where K = 4ob/E. In a nondimensional form we have 

a2 [ 0 . 9 9 - a ( 1 - a ) ( 1 . 3 -  1 .2a+0 .7a2) ]  +1 .  Z ( b )  = : ' C ( b )  = 1_ 2 

The derivative dZ/da  becomes 

(D4) 

(D5) 

(D6) 

0t 2 
d_..ZZ = 2a [0.99-a(1-a)(1 .3-1.2a+O.Va2)]+1----~[-1.3+2.6a-5.7o,2  ]. (D7) 
d¢~ (1 - a2) 2 

b. Three-point bent specimen 

According to the Tada-Paris-Irwin handbook [39] 

where o = 6M/b2B, M = Ps/4, provided that 0 _< a/b <_ 0.6. In this range, the accuracy of Eq. (D8) is 
better than 0.2%. The nondimensional @factor and its derivative are given by 

= vr~-(1.090 - 1.735t~ + 8.20a 2 - 14.18a a + 14.57a4), (D9) 

d.__~_~ = ¢-~(_ 1.735 + 16.4a - 42.54a 2 + 52.28a3). (D10) 
da  

The deflection at the point of load application is 8to t = 8no crack "{" 8crack in which 

8.o~,~k----~ ~ , ( D l l )  

8crack ---- ~1 ~ (5.58 -- 19.57et + 36.82et 2 -- 34.94a 3 + 12.77a4). (D12) 

When the constant K1 = (93s2p/2Eb2B) is factored out, 

in which F(a ) - -  5.58 - 19.57a + 36.82a 2 - 34.94et 3 + 12.77a 4. This form indicates a nondimensional com- 
pliance function 

Ot 2 
Z ( a / b ) = r ~ ' C ( a / b ) = ( ~ _ ~ )  F(a)+-~. (D14) 
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Hence we find the derivative 

da  = ~ a -O--~)  t- ~-a ' d---~ = - 19.57 + 73.64a - 104.82a 2 + 51.08a 3. (D15) 

c. Four-point bent configuration 

The Tada-Paris-Irwin handbook [39] indicates, without any restrictions on the a/b ratio, 

K=ov~-~Fl(b)[O.923+O.199F2(b)] 6M (D16) 
, o -- b2 B , 

in which 

~/ ,rra Fl (a , )  = 1 tana___.__.L F 2 ( a , ) =  ( 1 -  sin a,)  a, a , = - - .  (D17) 
cos a~ a~ ' 2b 

Accuracy of this formula is better than 0.5% for any a/b, while the accuracy of the expressions for the 
compliance function (which follow) is better than 1% for any a/b. From Eq. (D16) 

dad~-~ _. (2)¢~- (0.923 + 0.1991=2)+ O.199F,~al j (D18) 

in which 

d F  1 _- _/ x, a , - ½  s in(2a~)+2a ,  sin2a, d..F 2 

da~ V tan a~ 2a~ cos3otl ' da~ 
= - 4(cos a~ )(1 - sin a, )3. (D19) 

The compliance of a four-point bent specimen is defined as a reciprocal of the ratio of the moment M 
and the relative angle of rotation of two cross sections located symmetrically a certain distance h from the 
crack plane (we assume h = 2b), namely, 0to t = 0,0 crack + 0crack, in which 

Onocrack=[24M(h)] 48M 2 4 M (  a ) 2 
[Eb2B -b h-2b= Eb2B' Oc~'ck =~Eb2B ~ - a  G(ot), (D20) 

G(a) = 5.93 - 19.69a + 37.14a 2 - 35.84a 3 + 13.12a 4. (D21) 

Therefore, the compliance assumes the form 

C ( b )  0tot 24 [( a ) 2 1 
=--M'=Eb2B ~ - a  G ( a ) + 2  

(D22) 

or, in a nondimensional form, 

(D23) 

From this 

d z  
d._.ff_G = _ 19.69 + 74.28a - 107.52a 2 + 52,48a 3. 
da  

(D24) 
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