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STRAIN-SOFTENING MATERIALS AND FINITE-ELEMENT 
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,\hstrsct-Closed form and tinite-element solutions are examined for \rveral problem\ \bith strain- 
softening materials. In the closed form solutions, strain-softening causes localization of the strain 
v.hich is accompanied bb an instantaneous vanishing of the stre(h. The tinite-element solutions agree 
closely with analytic \oIution\ in many C;LSC~ and exhibit a rate of convergence only slightly belo% 
that for linear problem<. The main difficulty which has been idsntitiecl in strain-xjftsning con\titutive 
models for damage is the absence of energy dissipation in the strain-softening dumain. and this can 
be corrected by II nonlocal formulation. Finite-element solution\ for the converging spherical \\ave 
problem exhibit multiple points of localization which change dramatically ttith ms\h retinement. With 
a nonlocal material formulation. thi\ pathology i\ eliminated. 

I. INTRODCCTION 

In materials such as concrete or rock. failure occurs 
by progressive damage which is manifested by phe- 
nomena such as microcracking and void formation. 
In most engineering structures. the scale of these 
phenomena. as compared to the scale of practical 
finite-element meshes. is usually too small to be 
modeled and their effect must be incorporated in 
the numerical analysis through a homogenized 
model which exhibits strain softening. 

Strain softening. unfortunately. when incorpo- 
rated in a computational model. exhibits undesir- 
able characteristics. In static problems. finite-ele- 
ment solutions with strain softening often exhibit a 
severe dependence on element mesh size because 
of the inability of the mesh to adequately reproduce 
the localization of strain which characterizes static 
strain softening[ I]. Furthermore. the solutions are 
physically inappropriate in that with increasing 

mesh refinement the energy dissipated in the strain- 
softening domain tends to zero[lJ. 

It was first hoped. although in retrospect little 
practical evidence existed for this optimism. that in 
dynamic problems, strain softening would not be as 
troublesome because the inertia of the continuum 
would alleviate the instability. Support for this can 
be found in the snapthrough of an arch; in this prob- 
lem the load-detlection curve contains a limit point 
after which the force-deflection curve is negative. 
or softens. A static solution for the snapthrough is 
often very difficult. whereas a dynamic solution is 
relatively straightforward because the inertia of the 
structure alleviates some of the difficulties intro- 
duced by the negative slope in the force-detlection 
relation. The use of strain-softening models has be- 
come quite commonplace in dynamic concrete an- 
alysis. For example, in Marchertas cut tr/.[3]. strain 
softening appeared to reproduce the salient features 
of dynamic response of a concrete reactor vessel 
even after severe failure had developed. In the com- 

munity as a whole. a certain complacency evolved 
and except for the work of Baiant and colleagues[l, 

11. little effort was devoted to examining the basic 
soundness of numerical solutions with strain-soft- 
ening materials. 

Attention was recently focused on the validity 
of strain-softening models by the work of Sandier 
and Wright[4]: they asserted that strain-softening 
models are basically ill posed because a small dif- 
ference in load results in large changes in the re- 
sponse. Sandler’s example. which will be described 
in more detail later, consists of a one-dimensional 
rod with the velocity prescribed at one end in which 
the material strain softens. By increasing the load 
slightly, a significantly different response was ob- 
tained for the problem. Sandler and Wright also 
noted a strong dependence of the solution on the 
mesh size. They concluded that “a rate-indepen- 
dent dynamic continuum representation of strain 
softening is incapable of reproducing softening be- 
havior in a dynamic simulation of experiments” and 
then proceeded to show that in this problem the 
introduction of viscosity eliminates the sensitivity 
of the response to the load. Incidentally. as will be 
shown later in this paper, viscous damping is not a 
panacea for the sensitivity observed in strain-soft- 
ening solutions: in certain problems which will be 
described herein. sensitivity to mesh size persists 
even after the introduction of damping. 

In an effort to develop a problem with strain soft- 
ening in which the localization does not occur on 
the boundary, we investigated two problems: one, 
which was presented in Ref. [S]. consists of a linear 
elastic barjoined to a strain-softening bar. Solutions 
for this bar were obtained by the method of images 
and compared to finite-element solutions. These re- 
sults exhibited convergence with decreasing ele- 
ment length. BaZant and Belytschko[61 constructed 
a more interesting problem in which tensile waves 
are initiated at two ends of a bar so that strain soft- 
ening occurs at the center. It was shown that a so- 



lution to this problem exists but that the behavior 

of the strain-softening domain is rather unusual: the 

strain softening localizes to an infinitely thin do- 

main. a set of measure zero. in u hich the strain 

becomes instantaneously infinite and in which the 

energy dissipation is zero. 

In order to remedy some of these undesirable 

features of strain-softening solutions. Baiant. Be- 

Ivtschko. and co-workers[7.8] proposed a new non- 

local formulation for treating strain softening. Non- 

local theories have been introduced by Kroner[9]. 

Krumhansl[ IO] and Kunin[ I I], and developed fur- 

ther by Eringen and co-workers[l?-l-l] and Ede- 

len]lS]. The basic ingredient of a nonlocal theory 

is that the stress-strain relation is not considered to 

be local but relates the stress at an)- point to the 

state of deformation within a finite volume about 

that point. In this respect. the theory lends itself 

admirably to problems of heterogeneous media. 

where the representation of the microscopic detail 

of strain fields and cracks is an insurmountable 

task. By dealing with an average of the strain over 

a finite domain about each point. the heterogeneity 

can be neglected. and the dispersion which occurs 

in inhomogeneous materials can be modeled vvith- 

out any artifices. It should be noted that in the tran- 

sition from a microstructural theory to a macro- 

theory. strains and stresses are often averaged 

over finite volumes. Hovvever. this averaging is 

only considered in tl~~~~/r~pi/rp the macroconstitutive 

equation. In the solution of the governing equa- 

tions. the constitutive equations are considered to 

apply only to points so the theory is local and the 

localization limiting property of nonlocal theories, 

i.e. the attribute of the theory which prevents lo- 

calization to a set of measure zero. is then lost and 

the energy dissipation associated with strain soft- 

ening vanishes. 

An obvious question which arises is why one 

would want to introduce this complication in order 

to deal with strain softening. The reason for this is 

that when the constitutive equations are applied lo- 

cally at points. then. as will be described here. no 

dissipation of energy occurs in the strain-softening 

domain because it is a set of measure zero. Thus 

the material can fail without any permanent dissi- 

pation of energy. which is physically quite unreal- 

istic. By introducing a nonlocal character into the 

constitutive law. it is possible to restrict the local- 

ization to a domain of finite size just as is observed 

experimentally. and to achieve a finite amount of 

energy dissipation in the strain-softening domain. 

However. we found we could not simply estend 

the existing nonlocal models to account for strain 

softeningl7. 161. The existing nonlocal laws are not 

even self-adjoint. so they did not lead to symmetric 

stiffness matrices. This lack ofsymmetry~ was found 

to be undesirable and was corrected by introducing 

the same averaging operation over the stresses as 

that for the strains. Such double averaging is in fact 

required by a consistent application of the v,aria- 

tional principls[8]. It was ;dso found that the strxin 

softening could only be introduced in the nonlocal 

law in a subtle t’dshion. necessitating a split of the 

constitutive equation into 2 local and nonlocal 12~. 

w.ith the strain softening included only, in the non- 

local portion. Numerical experiments indicated that 

without this particular combination. numerical ho- 

lutions were often unstable. 

The nonlocal law as introduced in Kct’s. 17. 81 

offers substantial promise in pro\ iding well-posed 

solutions for heterogeneous materials that are sub- 

jected to damage and hence strain softening. There 

are hovvever. substantial breakthroughs that yet 

need to be achieved: (1) efficient implementations 

of nonlocal laws in the finite-element method: t2) 

design of experimental methods for identifying the 

local and nonlocal portions of constitutivc laws: 

and (3) methods for reconciling the bifurcation be- 

tween local damage. i.e. microcracking. and large- 

scale fracture of a cleavage type in heterogeneous 

materials. However. the work reported here has 

shed light on the questions of numerical modeling 

of structures in the failure regime when strain soft- 

ening takes place and provides the basis for future 

work. 

We have organized the material as follows: in 

Sec. 2 we describe several of the generic onc-di- 

mensional problems which can be used to examine 

the mathematical character of dynamic strain-soft- 

ening solutions. In Sec. 3, the nonlocal continuum 

law will be described. In Sec. 4. some finite-element 

solutions are presented for planar problems that in- 

dicate that the solutions converge to the analytic 

solution: however. only for a nonlocal law can finite 

energy dissipation be achieved in a strain-softening 

domain. In Sec. 5. local and nonlocal solutions will 

be given for the converging spherical and cylindri- 

cal wave. followed by conclusions in Sec. 6. 

The problem by Sandier and Wright[4] is shown 

in Fig. I. The essence of their argument was that 

the solutions are very sensitive to the constant qi. 

which represents the maximum prescribed velocity 

at the left-hand boundary. and that the solution 

changes markedly and so does not appear to con- 

verge as the mesh is refined. Although the Sandkr- 

Wright stress-strain law is nice from the viewpoint 
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that it provid2s a continuous relationship between 
stress and strain in the loading domain. it is not 
amenable to any attempts at a closed form solution 
by d’.Ilembert mzthods because of the dispersive 
charactsr of the wave solution even in the loading 
range. For this r2ason. w2 have limited our studies 
to piecewise linear prescribed velocities or stresses 
and stress-strain laws of the type shown in Fig. 2: 
this will be called th2 modified Sandler-Wright 
problem. Note that the stress goes to zero as the 
strain becomes large on the strain-softening sides 
of the law tusually~ the tensile side). 

The analytical solutions to this problem are de- 
velop2d next. The salient characteristic of the ana- 
lytical solution is the appearance ofan infinite strain 
on the boundary once the strain E,, is exceeded. The 
construction of the solution for this case will follow 
the approach presented by Bafant and Be- 
lytschko]6] for a similar problem. As will be seen. 
when strain softening occurs. then the strain im- 
mediatrly localizes and reaches infinity within a 
time interval that approaches zero. Therefore. the 
solution can be generated by adding an image wave 
which cancels the incident wave so that the strain- 
softening point is instantaneously converted to a 
free boundary. 

The governing equations can be stated as fol- 
lows: 

0.8 = pi/.,,. (‘.I) 

rJ.r = E(E)//.,, = E(Ek.,. (7.‘) - - 

where u and E are the stress and strain. II the dis- 
placement. and subscripts preceded by commas 
denote differentiation: P is the density and E the 
tangent modulus. We will consider two types of 
boundary conditions on the left-hand side, .r = 0: 

velocity condition: I/.,(0. 1) = -V,,(1). (2.3) 

traction condition: ato. t) = U,)(f). (2.4) 

where (f) designates fH(f). H being the Heaviside 
step function. The velocity boundary condition will 
be considered first. The right-hand boundary is as- 

Fig. 2. Stress-strain law nith strain softening showing no- 
menclature. 

sumed to be sufficiently far so that the rod can be 
considered semi-infinite. 

Not2 that prior to the onset of strain softening. 
the problem is governed by the standard one-di- 
mensional vvave equation 

I 
II.,, = 7 II.,,. 12.5) 

c’- 

where 

(2 = t‘ 
P . 

(2.6) 

Once the strain-softening regime of the material is 
attained. then at those points the governing equa- 
tion is 

_T 

(‘- II.,, + II.,, = 0. (2.7) 

E (-2 = _ - 

P 
(2.8) 

and T: vanishes once E,, is attained. Equation (2.7) 
is elliptic in space-time, which is peculiar in that 
information can be transmitted at infinite speeds. 
Hadamard[ 171 commented on this in 1903 and he 
claimed that the negative character of the square of 
the wave speed precluded its applicability to real 
materials since the wave speed would then be im- 
aginary. However, the case of c = 0 has been 
treated extensively by Taylor[l8], who noted that 
for perfectly plastic solids the deformation is lo- 
calized at the point of impact. Wu and Freund[l9] 
have recently presented a lucid description of these 
localization phenomena and investigated the effects 
of strain-rat2 sensitivity and heat transfer on the 
localization. However. the analyses were limited to 
the case where in the limit c = 7 = 0. 

We will here consider the strain-softening situ- 
ation using the concepts developed in 161. The 
present situation differs from [6] in that the stress 
wave is a ramp rather than a step wave. but it will 
be found that all of the singularities associated with 
a step input remain. 

The procedure of constructing a solution con- 
sists of three steps: 

(I) 

12) 

(3) 

It is shown that the boundary between the 
strain-softening and elastic domain cannot 
move, so the strain-softening domain is limited 
to a point. 
This is shown to imply that the strain and strain 
rate in the strain-softening points must be in- 
finite. 
Since the strain rate is infinite for the class of 
materials considered here. in which u - 0 as 
E - x. the stress can be considered to vanish 
instantaneously at the points which strain 
soften. 

The last conclusion enables the solution to be 
easily constructed by the d’Alembert method by 



simply adding a wave to satisfy the zero stress con- the displacements and stress conditions across the 

dition. interface. From eqn (2. IJal. it follows that 

For the prescribed velocity problem. let I, be the 

time when the left-hand end. .V = 0. reaches E,, and 

begin5 to strain soften: I, is given by 

it0 
e- = z = (itI - f,) f E,,. (2.17, 

If the two displacement solutions. eqns (2.1-k) 

and Q.15). are now matched across the interface 

.Y = s. then 

hi,, 
I, = - 

i’,l 

and the solution prior to the onset ofstrain softening 

is given b), 

Strain softening first occurs at .V = 0. We now 

show that the boL]nd~tr~ between the elastic and the 

softening interface cannot move. For this purpose. 

the usual formula for velocity V ot’ discontinuities 

is used tn development is given in [6l): 

U- - <r- = p L%* - EC). (2.1’) 

where the superscripts + and - designate the state 

variables to the right and left of the discontinuity, 

respectively. If the material is strain softening be- 

hind the interface and not yet before it, it follows 

that E- > E- and u* 2 CT-. Substituting these in- 

equalities into eqn (2.12). it follows that V’ must be 

negative or zero: since the former assumpt;on 

would yield an imaginary velocity for the discon- 

tinuity. only V = 0 is tenable. and it can already 

be concluded that 

ir* = CT-. (2.13) 

To show that the strain and strain rates must be 

infinite at a point which strain softens. a solution 

is constructed in the strain-softening domain which 

is considered to be U 4 A G s where .s - 0. It can 

be seen that 

,,* = - y ((,, - $) (2.14b) 

satisfies the governing equation in the strain-soft- 

ening domain. 12.7). This solution. t2.14). is now 

matched to a solution in the elastic domain 

where the second term is a wave emanating in the 

strain-softening region w,hich w?ll be used to match 

II” + It/( f - II ) + E,,j.T 

= - T ((t - $) f f(E). i7.i&l) 

(2.18b) 

Eliminating (I from eqns (7.17) and 12.18) yields 

It can be seen that ass-+ 0. E- -+ 0 instantaneously. 

which through eqn (2.13) implies uc = 0. The func- 

tion f(Q is then found from this condition. Using 

the displacement field of eqn f2.15) and letting tr+. 

and hence E + , vanish. we find 

f’(~, = E,,L’ H (1 - I, - ;) 

f LI~(~ - ti - $, (2.20af 

f(S) = E,‘(’ (r - II - ;> 

Hence the complete solution is 

This solution will subsequently be compared to fi- 

nite-element solutions. 

The solution for the stress boundary condition. 

eqn (2.4). can be found by replacing z’(, by u,,ciE. 

However. in the prescribed stress form of this prob- 

lem. eqn (7.4). the introduction of the image at the 

strain-softening point poses a difficulty since the 

first point to strain soften is initially on the bound- 

ary. Thus. in one sense it can be said that this 
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boundary must satisfy two different boundary con- softening instantaneously and no wave should 

ditions: eqn (3.4) and cr = 0. reach the interior. 

This contradiction can only be reconciled by re- 

quiring the second boundary condition (that the 
stress vanishes) to take precedence. In fact. the first 
boundary condition would be impossible to enforce 
in an experiment. The notion of a boundary con- 
dition depending on the result of the solution is not 
totally unexpected in an analysis of a continuum 
which fails. For example. in a buckling problem 
with unstable postbuckling behavior, the pre- 
scribed force would also be limited by the capacity 
of the structure. Yet the situation in the buckling 
problem is not completely analogous: in a dynamic 
buckling problem. any force may be prescribed and 
the excess force will generate accelerations. which 
depend on the magnitude of the force, whereas in 
this problem, the solution is completely indepen- 
dent of the value of the prescribed stress once the 
failure stress is exceeded. Nevertheless, this model 
does appear to represent a physically meaningful 
situation: the behavior of a rod in which the material 
can sustain a limited tensile strain before it fails, 

and the solution appears reasonable. 

(2) The solution does not depend on the specific 
functional dependence of stress on strain in the 
strain-softening portion if the stress vanishes as the 
strain becomes large. 

One conceptual difficulty of the Sandler-Wright 
problem is that strain softening occurs only at the 
boundary, which confuses the role of the boundary 
condition and the strain softening. For this reason 
we have attempted to construct problems in which 
strain softening occurs within the domain of the 
problem. 

From a mathematical viewpoint, the character 

of the solution presents some other dilemmas. First 
of all, we consider 0 < x < s to be a segment in 
developments of eqn (2.19), but it is only a point. 
Second, since the strain softening portion localizes 
to a point at which the displacement is discontin- 
uous, within conventional theories for partial dif- 
ferential equations, the body would no longer be 
considered to be a single body: strain softening sub- 
divides the initial body into two by introducing in- 
terior boundaries. Similarly in three-dimensional 
problems, the strain-softening domain is a surface. 
In both cases, these are sets of measure zero. Al- 
though mathematical theories for such partial dif- 
ferential equations are not known to us, there is no 
reason to arbitrarily exclude such phenomenolog- 
ical models. 

The strictly one-dimensional problems of this 
type are shown in Figs. 3 and 4. The first consists 
of an elastic rod joined to a rod with a strain-soft- 
ening material[S]. We will not give the closed form 
solution but only explain its major features. If the 
applied stress is sufficiently large. then strain soft- 
ening is initiated at the interface between the two 
materials. The strain localizes at this point. and as 
in the previous problem. the stress vanishes in- 
stantaneously at the interface. The solution can 
thus be viewed as a case in which a body separates 
into two. 

The second problem, given in (61. consists en- 
tirely of a strain-softening material. Equal and op- 
posite velocities I’,) (or forces) are applied to the two 
ends of the bar. so that tensile waves are generated 
at the two ends. These propagate to the center; 
when they meet at the center. the stress doubles 
for elastic behavior, so strain softening is possible 
at this midpoint even though it did not occur at the 
boundaries. 

The solution is given in [6] for prescribed ve- 
locities that are step functions in time. As in the 
previous case, localization occurs at the midpoint 
where the strain becomes infinite. The solution is 
symmetric about the midpoint x = 0; for the left 
half (x < 0 and 0 C t c 2Llc) 

Another difficulty posed by this model is that 
the energy dissipated in the formulation of the 
strain-softening region is not finite but instead van- 
ishes. This can be seen from the fact that the only 
irreversible energy loss in the material shown in 
Fig. 2 occurs in the strain-softening domain. Be- 
cause the strain-softening domain in a one-dimen- 
sional problem becomes a point, and since the en- 
ergy dissipated per unit length is finite, the total 
energy dissipated vanishes. This in fact is a more 
serious difficulty than the mathematical difficulties, 
for the strain-softening constitutive equation is 
often intended to represent microcracking. which 
is a dissipative process. It will be seen that, in spite 
of the mathematical questions, the behavior of fi- 
nite-element solutions is not pathological. 

II = Ll,,(f - +> - <!,,(, - +). 

(2.22a) 

+ 4 (et - I!,) 6(r) , (2.22b) 1 
where 6(x) is the Dirac delta function. 

Remarks: (1) The solution is puzzling when the 
ramp loads, eqns (2.3) and (2.4). are replaced by step 
functions. According to the present analysis, if u,, 

> E,,E, then the boundary point should reach strain 

ELASTIC SOFTENING 

-L/2 

Fig. 3. Problem with strain softening at interface between 
elastic and softening domain (Ref. [.(]I. 
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Fig. 1. One-dimensional problem in uhich strain wtiening 

occurs at v = 0 (Ref. 161). 

Fig. 5. Spherical converging wave problem 

Another problem we have considered is a sphere 

loaded on its exterior surface (see Fig. 0. This 

problem is not easily physically realizable with a 

tensile load: however. it is physically meaningful 

with a compressive load, and strain softening can 

occur in some materials in compression (although 

the stress usually will not vanish as the dilatation 

becomes large). 

This problem has an intriguing feature. Consider 

a load which is a ramp function in time. Prior to the 

onset of strain softening at an interior surface, part 

of the wave can have passed through this surface. 

Since the stresses in the wave which are inside the 

initial surface of strain softening are amplified as 

the wave passes to the center. the formation of ad- 

ditional strain-softening surfaces is possible. As a 

result. this problem has considerably more struc- 

ture than the one-dimensional problems. 

3. NONLOCAL CONTINLWI FOR STRAIN SO+TENISG 

The major shortcoming of strain-softening 

models for representing local damage is that the lo- 

calization phenomenon associated with strain soft- 

ening results in no dissipation of energy. For ex- 

ample, in one-dimensional problems. the strain- 

softening process is limited to a single point and 

since the rate of work per unit length is finite, the 

amount of work dissipated in the strain-softening 

domain vanishes. Analogously. in three-dimen- 

sional problems, strain softening localizes to a sur- 

face. and since the work per unit volume is again 

finite. the total energy dissipation due to the sep- 

aration across the surface is finite. Thus. no energy 

is required to separate the material along the surface 

of strain softening, which is physically quite un- 

realistic. It should be stressed that all of these com- 

ments apply only to materials in which the stress 

across the surface tend\ to zero ;IS the strain be- 

comes large: if the stress tends to some nonzrro 

value. then the response of the material may be 

quite different and the dissipation no longer van- 

ishes. However, any dissipation in excess of that 

which corresponds to the perfectly. plastic dissi- 

pation associated with the final stress vanishes. 

To achieve finite energy dissipation during fail- 

ure by strain softening. the artifice of imposing ;I 

certain minimum element size which depends on 

the aggregate size (crack band model) has been pro- 

posed[Z]. However, this artifice may be inconven- 

ient in practical analysis. since it requires the ele- 

ment size to be dictated by a material constant 

rather than by the size of the structure. 

In order to avoid this difficulty. we have inves- 

tigated the possibility of using nonlocal constitutive 

laws in which the stress at a point is related to the 

weighted average of the strain in a neighborhood ot 

that point. This is a special case of the existing 

(or classical) nonlocal continuum theories[%-14). 

However, it was found to be necessary to make two 

modifications of this theory in order to obtain re- 

alistic results in the strain-softening regime: ( I) the 

existing nonlocal theory is not self-adjoint and 

hence possesses certain spurious zero-energy 

modes of deformation: (2) in order to achieve stable 

solutions even in one dimension in the presence of 

strain softening with a constant weight. ;I material 

law consisting of a combination of a local law vrith- 

out strain softening and a nonlocal law with strain 

softening was required. 

We will now sketch the essential features of this 

nonlocal theory for one-dimensional problems. De- 

tails may be found in Refs. 17. 81. The fundamental 

assumption in a nonlocal theory is that the nonlocal 

strain r at a point is a weighted average of the strains 

in a neighborhood of that point. Thus 

i 

t-12 

E(s) = ct.\’ + .S)II’l.S) d.s 
t-12 (3. I) 

-I -I 2 i),, 

= J , _, ~ z (x + .S)~l~(.S) d.s. 

where n’(.s) is a given weighting function. The 

stress-strain law is then written in terms of Z. and 

its rate form is 

u.,(x) = L-(E)E.,lx). (3.2) 

Although the classical nonlocal theory directly 

uses the stress CT in the momentum equation. eqn 

(2. I ). the resulting form is not self-adjoint[ In]. This 

leads to the existence of spurious. zero-energy’ 

modes of deformation for certain weighting func- 

tions II.(.V): deformations which are associated with 

vanishing strains E and hence do not generate any’ 

stresses. These spurious modes have been found fc71 

uniform (constant) weighting functions 1i.t~). 

To remedy this difficulty. the stress 17 is pro- 
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cessed through an operator identical to (3.1). 

I 

I -/I 
i3.r) = a(.r + .s)u~(.v) ds. (3.3) 

t-12 

and the resulting stress is used in the equation of 

motion. eqn (2.1). Once eqn (3.3) is added to the 

system. spurious modes are eliminated even for 

constant weighting functions nG). It was also 

shown by Bafant[S] that the averaging of a(x) is 

required within a consistent application of a vari- 

ational principle such as the principle of virtual 

work. A nonlocal continuum which is characterized 

by double averaging. once on the strains. as in 0. I) 
and then on the stresses. as in (3.3). is the limiting 

case of a series of imbricated (overlapping) finite 

elements. Therefore. this type of nonlocal contin- 

uum was termed an imbricated continuum by Ba- 

iant[8]. 

Even with a self-adjoint form of the nonlocal 

laws. solutions for strain-softening materials are un- 

stable for constant weights ~cG). So far, only by 
combining a local and nonlocal law has stability 

been achieved[l6, 71. By superimposing two dis- 

tinct field systems, one local and wirhour strain soft- 

ening. and a nonlocal law ~vith strain softening, 

stability is achieved in a model which exhibits a 

negative slope for a finite segment. 

The governing equations for this model can be 
summarized as follows: 

o.r = EC., Ecan be negative, (3.4) 

T., = EE,~, E>O. (3.5) 

eqn (3.3): u--+ ij’, (3.6) 

S=Cl -y)cJ+yT, O<y<l. (3.7) 

5-C = Pll.rr. (3.8) 

Finite element solutions for this nonlocal law are 
given in Sec. 5 for cylindrical and spherical geo- 

metries. These results were obtained with an im- 
bricate finite-element model, and with various fi- 
nite-element meshes. It will be seen that the strain 
distributions computed by the nonlocal law are 
quite well-behaved for various meshes, whereas the 
local formulation predicts strain that vary errati- 
cally with mesh refinement. 

1. FISITE-EI.EMENT SOLUTIONS FOR PLA\NAR 

PROBLE\lS 

Finite-element solutions for the moditied San- 

dler-Wright problem. Fig. I, obtained with the 

local material law given in Fig. 2. are shown in Fig. 

6. Solutions were obtained with meshes of 50. 100. 

and 200 elements. Linear displacement. constant 

strain elements. and lumped mass matrices were 

used. Time integration was performed with the cen- 

tral difference method. 

g -3.700 

0 
-e- AN.4 soi 

-6.700 + 100 ELE 

- 10.000 
,000 2.000 4.000 6.000 8.000 10.000 

TIME - SEC (xl O-‘) 

Fig. 6. Velocity-time history at .v = L/4 for geometry 
shown in Fig. I. stress-strain law given in Fig. 2: t,, = 

O.OI. E, = 0.05. L = 100. C‘ = IO’. 

The finite-element solutions are compared with 

the analytic solution given in the Sec. 2. It can be 

seen that the agreement is quite good and improves 

with mesh refinement. although the instantaneous 

drop in the velocity. which is a result of the strain 

localization, cannot be reproduced even with the 

finest mesh. 

The rate of convergence for the case when E, = 

er = 0.01 is shown in Fig. 7. Here the error (3 is 

defined by 

- I,‘~,‘)’ d.v dt. (4. I) 

where v with superscripts FEM and ANA are the 

finite-element and analytic velocities. respectively. 

As can be seen from Fig. 7. the rate of convergence 

is approximately proportional to I/‘.‘” where 11 is the 

element length. This is not much less than the the- 

ij 

( (i=& 

I i 

In h 
1 

1 

1 
Fig. 7. Rate of convergence of finite-element solution for 
velocity to analytic solution for modified Sandier-Wright 

problem with e, = e, = 0.01. 
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Fig. 8. Rate of convergence of finite-element solution for 
velocity to analytic solution for modified Sandler-Wright 

problem with t, = ZEN = 0.02. 
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*so0 i 
ma 2.cal 4.m 6.000 8.000 10.000 

TIME - SEC (x10-') 

- AhA SOL 

-a- 50 ELE 

+3- 100 ELE 

Fig. 9. Finite-element solution to modified Sandler- 
Wright problem with p = p,,H(f). H being the Heaviside 

step function. 

oretical value of 11’ expected for linear solutions by 

these methods, so the sensitivity to meshing which 

Sandier and Wright pointed out is not evident. The 

rate of convergence for a material with E, = Ze,. = 

0.02 is shown in Fig. 8; as E( increases, the rate of 

convergence deteriorates. Figure 9 shows the finite- 

element solution when the input is a step function. 

Theoretically. there should be no waves inside the 

rod. but because of the finite size of the elements. 

a small pulse penetrates the mesh in a numerical 

solution. 

5. FINITE-ELEMENT SOLUTIONS FOR SPHERICAL AND 
CYLINDRICAL PROBLEMS 

As mentioned in Sec. 2. the converging spherical 

wave problem is particularly intriguing because it 

offers the possibility of strain softening being ini- 

tiated at many points by a wave. Although we have 

not been able to find a closed form solution for this 

problem. we have examined both local and nonlocal 

finite-element solutions. The local finite-element 

solutions exhibit radical differences as the mesh is 

refined. and this ostensible absence of convergence 

is not alleviated by the addition of damping. Non- 

local solutions are free of these difficulties. These 

solutions will be summarized in this section. 

In spherical or cylindrical coordinates. the 

strain-displacement relations are 

Ex=u,,, c,=;, t; = l y (spherical), 

eL = 0 (cylindrical), 
(5.1) 

E = E, + 3,. PI = i (E, - E,). 

e, = 6 (E, - E,) (spherical). (5.2) 

E = E, + 2EV, (‘, = i (ZE, - E, ). 

e,. = i (EV - E,) (cylindrical). (5.3) 

We denote by F,. E,.. E. 7,. 7,. the means of e,. 

ey. e, e,, e,, respectively; defined as in eqn (3.1). 

The stress-strain law is 

o.r.1 = i& + z?Z,,,, 

o,., = KE., f 2?%,.,,. 

79.1 = KE,, + ZGr,,,, 

‘Tb .I = KE.~ + ZGr,,,. 

and the total stress S is obtained by 

1 
.I * /:2 

v, Lr) = a,(~ + S)II~S) ds. r_,,? 

s,, = (1 - y)Z, + yir, 

s,. = (I - y)aV + -yTY. 

The equation of motion is 

s,,., + f (5, - S,.) = PlJ.,, (spherical), 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

ST., + ; (S, - S,.) = ptt,,, (cylindrical). (5.8) 

Here u = radial displacement (Fig. 10~): e.<, E, = 

radial and circumferential normal strains (local): E 

= volumetric strain; e,. e,. = deviatoric strains 

(local): T.,, TV = local radial and circumferential nor- 

mal stresses: o.,, u,. = broad-range radial and cir- 

cumferential normal stresses: S,, S,. = total radial -- 
and circumferential normal stresses: K. G. K, G = 
local and broad-range (nonlocal) bulk and shear 

moduli. In eqns (5.4) and (5.5) isotropy of the ma- 

terial is assumed. The shear moduli G and c are 

assumed to be constant. while K and ?? depend on 
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b) used: bulk modulus K = I .O. density p = I. shear 
modulus G = I x IOwh. eV = 1.0. e, = 5.0 (see 

bottom of Fig. I I ). Damping was added by a viscous 

stress defined by 

d) 
local 

-%,\I1 - _ -- _.. 
e-7: 

-al 
nonlocal ;-l i itl - 

I 

r-- 

Fig. IO. Notation for spherical and cylindrical wave prob- 
lems. 

E and Z, respectively: K > 0 but ?? may become 
negative, which represents strain softening. 

We consider waves generated by a sudden ap- 
plication of a uniform normal traction at the exterior 
surface of a hollow sphere or a hollow infinite cyl- 
inder. The traction is a Heaviside step function of 
time. so the boundary condition at .r = h (Fig. IOa) 
is u., = p. H(r), and the interior surface is load- 
free, i.e. ux = 0 at x = o (a, h = internal and 
external surface radii). Initially, the body is at rest. 
The elastic solution[20], consists of a step wave 
with a strain which grows as the wave propagates 
toward the center. 

The closed form solution is 

for 7 2 0, (5.9) 

as may be checked by substitution in eqns (5. I )- 
(5.8) with y = I. K = constant; 7 = t - (h - v)/ 

c,, 5 = 2 cj/(bC,), w = .$+z)’ - I I”‘, (‘, = [3K( I 

- u)/(l + u) p]“‘, cz = (G/p)“‘, v = (3K - 2G)/ 

(6K + 2G) = Poisson’s ratio. 

For the numerical solutions, one-dimensional 
meshes with (Fig. lob) two-node elements with lin- 
ear displacements and a single quadrature point (at 
the element center) were used. The local elements 
are of length /I and the imbricate elements of length 
I = n/r. The mass matrix is lumped. 

The first group of numerical solutions was made 
with the aim of examining the character of the 
spherical wave solution and determining whether 
damping is sufficient to achieve well posedness, as 
in the planar one-dimensional problem[4]. 

Shear moduli G and ?? are assumed to be neg- 
ligibly small (IO-‘). The following constants were 

g;;‘ = 21 (pK)’ ’ E8,,. (5.10) 

with n = 0. I. This provided enough viscosity to 
damp the cutoff frequency of the mesh by 44% and 
6% of critical damping in the fine and coarse 
meshes, respectively. In some solutions. the damp- 
ing was turned off whenever er, the strain at which 
the stress vanishes. was reached. This is called a 

damping cutoff. 
Comparing the results in Fig. I2 for the various 

meshes, one can see a striking difference in the re- 
sults within the strain-softening domain. which is 
the domain to the left of what is marked as the tran- 
sition point. As the mesh is refined, several points 
of localization develop and the points of localiza- 
tion change arbitrarily with mesh refinement even 
with damping. However, the displacement outside 
the transition surface appears to converge with 
mesh refinement. 

Figure I3 shows a similar solution except that 
the damping was not cut off when localization de- 
veloped. Again, the solution does not exhibit any 
pattern of convergence in the strain-softening do- 
main. The stresses in the region near the transition 
point are quite different from those in Fig. 12, which 
employed a damping cutoff. 

The next group of solutions examines the effect 
of the nonlocal formulation. In these solutions. the 
bulk behavior follows the bilinear total stress-strain 
diagram in Fig. I la, characterized by elastic bulk 
moduli K = K,, = I. strain E,, = I at peak stress 
and er = 5 at the end of strain softening. This dia- 
gram is obtained by assuming that the local behav- 
ior is elastic-ideal plastic (Fig. I lb), and that the 

broad-range behavior (Fig. I la) exhibits oversoft- 

6” 

t 
s Total 

Fig. I I. Stress-strain law for spherical and cylindrical 
wave problems: only the lowest figure applies to local 

laws. 
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wing for the purpose of achieving total behavior 
in which the strain softening terminates with a zero 
stress value[?j. The introduction of the local 
stresses through the coefficient y. see eqn (3.7) is 
required for stability. For one-dimensional planar 
bvaves. it was shown[7] that stability is assurred for 
y > 0. However. when y is small the noise is ex- 
cessive. For one-dimensional planar waves. the 
value y = 0.1 gave noise-free response. Curiously. 

6X 

600 r 

N=20 
I(’ ,(’ _._- 

jll_ 

// _*,* A ,,** 
/’ ,,’ .._’ .:’ / ’ _, I’ ,.: 

/ 
/ , ,’ ,.I’- 

/ ’ I’ ._I’ 
,/ ,//I /* _:” 

,.,’ 

_ / _ _** _/” _-_.-. 

the value of y for the cylindrical wave had to be 
higher ty = 0.3) than the value for the spherical 

wave (y = 0. I) in order to obtain a noise-free re- 

sponse. 
The values of the applied surface pressure are 

chosen as p. = 0.708 for the spherical wave and p,, 
= 0.8 for the cylindrical wave. For these boundary 
conditions, the wave propagating from the outer 
surface remains elastic until the wavefront reaches 

0 iv=40 
M 

ol’ J J ! 

Fig. 14. Comparison of numerical solutions for elastic. linear spherical geometry with analytic 
solutions. 



30% of the thickness h - (I. The dimensions are (I 
= 10. h = 100. L = h - (I = 90. 

In order to ascertain the mesh refinement nec- 
essary for this class of problems. elastic local so- 
lutions were obtained first. The convergence with 

a- 

t 

i 0 ’ 
3 r I 
I 

: k 
r N=40 

increasing numbers of elements (ic’ = IO. 20. 40. 
80. 160) is shown in Figs. I-l and 15. The results 
converge to the exact solution given by eqn (5.9). 

Subsequently, the problem was solved for a non- 
local continuum (E, = I. E j = 5) with characteristic 

“y------ 1 
1 N=10 

I 

-1 N=20 

N=40 

,/; 
i 1, 

/ ; /\ 
)/ ,‘d’ 
i’ ii-, 

Fig. 15. Numerical solutions for elastic, linear cylindrical geometry. 
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length 1 = L/IO. The results for progressively finer relation with strain softening: see Figs. 16-19. left 

meshes IN = IO. 20.10.80. 160) are shown in Figs, columns. It is seen (Figs. 16-19) that the nonlocal 

16- 19. right columns. For comparison. the solution solutions with strain softening converge well with 

was also run for a local continuum ii = Ir = L/I%’ increasing N. On the other hand, the corresponding 

= variable with A’) having the same stress-strain local solutions do not converge at all. 

N=lO 

10 
X 

-_L 

Iv=80 

N=160 

loo 10 

N=40 

N=80 

X loo 

Fig. 16. Comparison of numerical results for local and nonlocal materials with spherical geometry- 
volume change. 



local 

N-40 

nonlocal ____*. / 
,’ _-+-_- 
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G= 
/I 

/ 
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1. 
_;’ 1:I.;: ,;’ 

,;’ 
,,,’ 

,,1’ 
.:’ 

__= 

10 X 100 JO X 
10 

Fig. 17. Comparison of numerical results for local and nonlocal materials with spherical geometry- 
radial displacement. 

In Sec. 3. it was shown that for the uniaxial in the exact solution for the planar wave. the strain- 

planar wave, finite-element solutions converge to softening region appears to localize. producing sin- 

the exact solution with a local strain-softening ma- gular strains, as can be seen from the spikes in Fig. 

terial. For spherical waves. no exact local material I6 on the left. These singular strains begin to ap- 

solution with strain softening has been found. As pear. as expected. when the strain at the wavefront 
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IO 
X 

100 10 X too 

Fig. 18. Comparison of numerical results for local and nonlocal materials with cylindrical geometry- 
volume change. 

reaches the strain at which strain softening begins. points increases with increasing mesh refinement. 
In contrast to the planar wave. there is not one point The impression is that of chaos. It is anticipated 
of localization but many, and they appear at dif- that if the loading is a ramp function in time, the 
ferent locations for different N [i.e. for different set of localization points would be an infinitely 
mesh re~nements~. and the number of localization dense set of discrete points. i.e. a Cantor set. The 
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Fig. 19. Comparison of numerical results for local and nonlocal materials with cylindrical geometry- 
radial displacement. 
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reason for the appearance of multiple strain-soft- 

ening points (the spikes in the left columns of Figs. 

16 and 18) is that part of the strain step at the wave- 

front is transmitted across the surface of strain soft- 

ening before the stress is reduced to zero. The part 

of the wave which has been transmitted then grows 

as the wavefront converges toward the center until 

the elastic limit ep is reached again. so the situation 

repeats itself. 

6. COSCLLWOSS 

The following are the major conclusions of the 

work: 

I. Analytic solutions can be established for cer- 

tain simple problems which include strain-softening 

materials. The solutions exhibit singular strain dis- 

tributions but the rate of convergence of tinite-ele- 

ment solutions is quite rapid. 

2. In the spherical wave problem, numerical so- 

lutions of strain-softening models exhibit severe de- 

pendence on element mesh size. This is particularly 

true of field variables inside the surface of initial 

strain softening. Nonlocal models provide rapidly 

converging solutions to this problem. 

3. A major difficulty of local laws \vith strain 

softening is that the energy dissipation vanishes. 

Thus, the failure process is not accompanied by en- 

ergy dissipation. which is physically unrealistic. 

4. Nonlocal laws provide a means for obtaining 

rapid convergence and finite energy dissipation in 

failure. However, the technology for efficiently im- 

plementing these techniques in large-scale, multi- 
dimensional problems remains to be developed. 
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78, L A;,,. :,, = T,, - AT,,. Then calculate all the local Then calculate all the nonlocal nodal forces at element 
nodal forces a[ element nodes /, and VI f Fig. t&c). nodes b and m (Fig. IOd). 

= - y [Tc, x2 - T,, (I - ?h)hl. 

(spherical) 

AFL= -- 

(Al) 
(spherical) (MI 

AF,,, = + [u.;s’ + u,, (.r + ;j h] . 
Icylindricall (AZ) 

Af,,, = y (T,, .I- + I/r r,,)J. AF& = - + (o,,.r - ; UXi) . 

These forces are accumulated at each node, fk + fk + 

Af4. f”, +-- fm + Afrn.L 
(6) DO 7. i 5 I, , E, (imbricate elements). 
(7) Set k = k(i). m = Xi). I = i,fi). x = f,(i) and evaluate . _._ 
AZ,; + (v, - vm)Arll. ,i +- ?,i + A&* AZ.“/ - (u, + 
L’~)A rl2.r. Fyi + Z,; + AZ,., For spherical wave AZ; = A,, 
+ 217,;. and for cylindrical wave Zi = AZ.,, + AZ,+; E = 
7; + AZ;. Then call a subroutine w&h determines the 
incremental (tangential) moduli K,. Gi for the imbricate 
elements from their mean strains &. Z.Vi, Zi and also de- 
cides whether virgin loading, unloading, or reloading ap- 
plies. Then calculate Au,, = Ki AC, + ZGiAeri. Au,; = 

z,Aei + ZG,Ae,.i, u.1; + u,, + Au,;. cruj + cr,., + AuO,.~. 

(cylindrical) (A4) 

I--Y 
AF, = - 

n 
These forces are then accumulated at each node: FL + FL 
+ AFL. F.,, + Fe,, f AF,,,. 
(8) DO 8. k = I. . . . NA (all nodes). 
(9) Calculate 1’~ = r’l + (FL + FL + fC”)~/i(plr.v’). 11~ = 
,,I, + l.llV~. 

For more detailed explanations. a similar algorithm for 
planar stress wave given in Ref. 171 may be consulted. It 
may be checked that the sum of the nodal forces given by 
eqns (A I )-(A41 on one node yields a second-order discrete 
approximation of the conrinuum equation of motion (5.X). 


