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SOFTENING IN REINFORCED CONCRETE BEAMS AND
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Aestract:. The softening postpeak load-deflection relation for cracking
reinforced concrete beams and frames is analyzed by layered finite
elements. Concrete is assumed to exhibit strain softening in both tension
and compression, and the steel reinforcement is elastic-plastic. The
bending theory assumptions are used and bond slip of reinforcement is
neglected. It is shown that the model can satisfactorily approximate the
existing test results for softening beams and frames. At the same time,
the constitutive laws with strain softening, including those of continuum
damage mechanics, are shown to lead to spurious sensitivity of results
to the chosen finite element size, similar to that documented before for
other strain-softening problems. In analogy to the finite element crack-
band model, this problem can be overcome if the minimum admissible
element size is specified as a cross section property; its suitable value
appears to be equal to the beam depth.

INTRODUCTION

When loaded to destruction, reinforced concrete beams can sometimes
exhibit a softening response in which the load, after reaching its peak
value, does not follow a constant-load yield plateau but gradually declines
at increasing displacement. For prestressed concrete beams and short
columns, such softening behavior is typical. Due to the absence of yield
plateau, the conditions of plastic limit analysis are not satisfied, which
means that the ultimate load of a statically indeterminate beam or frame is
not correctly predicted from a plastic hinge mechanism. Generally, the
maximum load is less, since one plastic hinge may already soften before
another hinge reaches its maximum bending moment. The maximum load
can be either much less than the plastic limit load, or only slightly less. No
method to predict the maximum load for a softening beam or frame is
available at present, although some aspects of the problem have been
clarified in previous works (1,11,12,15,16,19,20-25,29). Formulation and
verification of such a method is the objective of this work.

For strain-softening beams and frames, the bound theorems of plasticity
do not apply, and the entire load-deflection diagram must be calculated in
order to determine the maximum load or the load at which collapse occurs.
A reasonable assumption for calculations appears to be to describe the
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effect of progressive distributed cracking in concrete as strain softening of
the material. Then, however, one must cope with strain-localization
instabilities caused by strain softening, which have been previously
demonstrated for statically indeterminate beams; see Ref. 1, in which the
effect of curvature localization length and the effect of the end restraint
stiffness were determined by stability analysis.

Another way of analyzing strain-softening frames is to assume that strain
softening is localized into point hinges, just as in plastic limit analysis
(14-16,20,21,23). Then, however, the response of the beam or frame
cannot be deduced from material properties, and the behavior of the
softening hinge must be determined directly. Moreover, the effect of the
curvature localization length cannot be captured. For this reason, we
attempt here to analyze the problem on the basis of strain-softening
material propertles in a manner analogous to other problems for strain
softening in concrete and rock that have been solved recently. -

We also need to address the question of numerical step-by-step algo-
rithm, since strain softening may cause dwergence of iterations. To
achieve stability through the peak and postpeak regions, calculations must
be done under displacement control, which makes it possible to follow the
response up to the snapback point, if such a point exists. Crisfield’s arc-
length method (13) would no doubt make it possible to follow the response
even through and after the snapback point; however, this behavior, which
is relevant primarily for dynamic response, will not be our. objective.

In this study, we attempt to model softening of beams and frames using
material behavior assumptions that are consistent with those used recently
in a number of other problems. Strain softening associated with a certain
characteristic length of the material has been used successfully to describe
the fracture test data for concrete, both the maximum load data and the
R-curves, the size effect, deflections of cracked reinforced concrete
beams, both short-time and long-time, and the effect of simultaneous
drying or wetting, or simultaneous heating or cooling, on the creep of
concrete specimens (2,4,5,7-9,18). The fact that the same strain-softening
material properties explain a broad range of phenomena lends confidence
to this approach.

PROBLEM STATEMENT

We consider beams or frames that are made of a softening material and
may be reinforced by elastic-plastic bars. The theory of bending is used,
i.e., the cross sections are assumed to remain plane and normal to the
deflection line. The deflections are small. The material behavior, consid-
ered to simulate concrete, exhibits strain softening for both tenswn and
compression.

Two types of stress-strain relations will be used in the examples. One
represents a special case of a recently introduced concrete damage model
(24) and has the general triaxial form:

6=(1-0)Ce .......eoevvvrivrinrannnn.n. seeeieteretraeenaaeenreaariaes ORI 1)
in which C = initial elastic material stiffness matrix; o, € = column
matrices of stress and strain components; and ® = damage measure (a

scalar). Loading and unloadmg are distinguished by means of the loading
function:
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where k(£) is a hardening-softening parameter; § = [(g,)* + (g,)* + (g3)*]"?
= equivalent strain, representing the positive projection of the vector
of principal strains €, , €, , €3 ; and the symbol ( ) is defined as (x) = x if
x> 0and {(x) = 0if x = 0. The evolution of damage is specified as follows:

1. For loading, i.e., for fi¢) = 0 and f () = 0:
g° .
(o=1—-(1—A)-é-—Ae_B‘E“”; KE) =& oo, (3a)

in which E = Young’s elastic modulus; €° = the specified initial threshold
of damage; and A, B = empirical positive constants. Setting k(€) = £ keeps
the current state on the loading surface during loading. We will use this
damage model only for uniaxial stress, o. Then, if the loading is mono-
tonic, the damage model reduces to

1. For tension (¢ = 0, £ > £%):
o =E[(1 —A)E® + A,ee B 0] (4a)

2. For compression (¢ < 0, ¢ < — V2 ve%:

o E

vy/2
in which & = axial strain; and v = Poisson ratio. According to past
practice, we use here different values A,, B, and A_, B, of parameters A
and B for tension and compression. Although this simple expedient would
introduce a problem with continuity for general triaxial response, it poses
no problem for uniaxial response.

As another type of uniaxial stress-strain relation for concrete, we will
also use the approximate trilinear diagram shown in Fig. 1(b), which was
used before, e.g., by Soliman and Yu (28). This diagram exhibits a yield
plateau to reflect the effect of confinement introduced by stirrups.

The unloading-reloading stress-strain diagram of concrete is assumed to
be a straight line passing through the origin. Its slope represents the secant
modulus for the maximum strain reached [Figs. 1(a—c)]. This behavior is a
simplification of the real behavior of concrete; the unloading diagram is
actually curved, with the stress changing its sign at finite strain. Such
behavior would be difficult to analyze with the secant direct iteration
algorithm that will be used here, since the concaveness of the unloading
diagram at opposite stress and strain signs would cause divergence.

The reinforcement is characterized by an elastic perfectly plastic stress-
strain relationship [Fig. 1(c)].

Our objective is to calculate the maximum load, P,,,, , of a given beam
or frame, as well as the entire load-deflection diagram. The shape of this

o=—(1—4 + A, Ee exp [B,(\/2ve + €9] coovvnrnnnnn. (4b)
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FIG. 1. Stress-Strain Relations for: (a-b) Concrete; (c) Steel

diagram, including the postpeak softening, is important for determining
ductility and energy absorption capability of the structure. To be able to
calculate the postpeak behavior, we assume that the structure is loaded in
a displacement-controlled manner, i.e., the increments of the load-point
displacement, w, are prescribed and the load, P, is solved as a reaction.

SoLuTioN BY LAYERED FINITE ELEMENTS

Even for monotonically increasing displacement w, unloading may take
place at points adjacent to a strain-softening zone. Since the unloading may
occur after previous inelastic deformations within various portions of the
cross section, the shape of the unloading diagram for the moment-
curvature relation is not unique. Obviously, it is necessary to trace the
stress-strain path independently at various distances from the neutral axis.
The layered finite element technique (30) is suitable for this purpose.

The solution is carried out in small loading steps. Among various
possible step-by-step algorithms, we choose the direct iteration method
(27). The algorithm may be briefly- stated as follows:

1. Read the input data on structure geometry and material properties.
Initialize.

2. Loop on loading steps with prescribed increments Aw of controlled
displacement w. ,

3. Store the values of nodal displacements (deflections and rotations of
nodal cross sections) at the end of the preceding load step. Also store the
maximum strains, €, , and the minimum strains, €, , achieved up to this
step in every layer and every nodal cross section.

4. Loop on the iterations for the load step.

5. Calculate the strains € at midpoints of all layers in all nodal cross
sections from the values of nodal displacements at the end of the preceding
load step, for the first iteration, or from the values obtained in the
preceding iteration, for the subsequent iterations. For each point, check
the unloading conditions € < &, for tension and € > ¢, for compression.
According to the stress-strain diagram, calculate for each point from ¢ the
stress, o, and the secant modulus, E,.. = o/t (if ¢ = 0 take E,.. = E). Note
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that, on the unloading-reloading diagram of concrete [Figs. 1{(a-c)], E,.. =
constant while for steel E .. is variable. Using the E,.. values for the
individual layers, calculate the stiffness matrix of each finite element (beam
clement). Assemble the structural stiffness matrix. Implement the bound-
ary conditions, including the displacement control. Solve the system of
equilibrium equations to obtain new nodal displacements. Compare these
displacements with those from the preceding iteration, check the specified
convergence criterion, but omit the convergence check for the first
iteration. The criterion |(Z ; u?A/%; u?p) — 1| < t has been used; u;y , U;p =
new and previous values of the ith displacement component, and ¢ =
chosen tolerance, typically 0.01. If the criterion is not met, return to step
4 and repeat step 5.

6. Calculate load P as the reaction at the point of prescribed displace-
ment, w. Calculate the internal forces (bending moment, axial force) for
each finite element and the strains and stresses of all layers. Print the
results as specified. Return to step 2 and start the next loading step, unless
the last step has been reached. :

In this algorithm, the secant structural stiffness matrix is repeatedly
updated according to the newly calculated displacements. If the steps Aw
are small (usually Aw = 5% of w at P,), only a few iterations are required
to achieve convergence (if more than 10 iterations are needed, it is more
efficient to reduce the loading step Aw than to carry out more iterations).
However, near the point of instability, which occurs, for displacement
control, when the slope of the postpeak P(w) diagram approaches the
vertical, the convergence is slow. At the critical state with dP/dw — —x,
and beyond, the present algorithm does not converge, i.e, the snapback
behavior cannot be calculated with it (however, Crisfield’s arc-length

- method (13) could then be used).

The present algorithm does not permit the use of the complete actual
curved unloading diagram. of concrete because divergence would -occur
when E.. < 0. The initial stiffness method (27) would avoid such situations
of divergence; however, inelastic strains would have to be considered. The
direct iteration method has been used because it is the easiest to program
as it does not require analysis with inelastic strains.

NuMERICAL IMPLEMENTATION AND ANALYSIS OF TEST DATA

Darvall and Mendis Tests (17)

Darvall and Mendis (17) tested a number of simply supported beams that
exhibit strain softening in the load-deflection diagram. As an example, we
consider their beam Al [Figs. 2(a—b)], with the following characteristics:
(1) Standard cylindrical compression strength 41 MPa; (2) initial elastic
modulus 30,000 MPa; (3) water-cement ratio of 0.45; (4) aggregate-cement
ratio of 3.4 (ASTM type I); (5) maximum size of the aggregate 3/8 in. (9.53
mm); (6) bar diameter [Fig. 2(b)] 12 mm; and (7) steel yield strength 400
MPa. The curvature at mispan was determined by measuring the rotation
of two symmetrically located cross sections at the distance 152 mm apart.

Due to symmetry, we analyze only half of the span and divide it into
eight elements. Each element is divided into 10 layers [Fig. 2(»)].
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The steel reinforcement is assumed to be elastic-perfectly plastic. The
reinforcing bars are treated as additional layers with the properties of steel,
having the same cross section as the bars.

The beam is solved on the basis of the damage stress-strain relation (Eq.
4) shown in Fig. 1(a). The following values of the parameters in Eq. 3 are
obtained by fitting cylinder test data: ¢° = 10™* and E_ = 30,000 MPa. For
compression, A, = 1.1 and B, = 1,000. We assume v = 0.2, while for
tension, A, = 0.8 and B, = 2.104. The test results are shown on the
moment-curvature diagram in Fig. 3(a) as the solid points. Good fit of the
experimental data has been achieved. This confirms that the present
approach can handle the postpeak decline of the moment-curvature
diagram.

Figs. 4(a—d) show the sequence of the stress distribution in the midspan
cross section corresponding to the points denoted as (a), (b), (c), (d) on the
load-deflection curve obtained numerically [Fig. 3(b)]. In Fig. 4(a), the
compression behavior is still elastic while there is already some cracking.
Beginning with point (b), concrete is completely damaged in tension as
strain softening occurs in compression. At the peak [Fig. 4(c)], concrete on
the compression face is crushed and offers no resistance according to the
assumptions of this analysis. Finally, in the postpeak decline [Fig. 4(d)],
the softening plastic hinge is almost formed.

Figs. 5(a-d) show for these points of loading the damage development.
In each element, the damage variable characterizes the degree of micro-
cracking (at the peak of the stress-strain diagram, w = 0 in tension and «©
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=~ (.6 in compression). The cracking zone first develops near the reinforc-
ing bars and expands along the beam. At the peak (¢), and in the softening
part of the load-curvature diagram (d), the cracking zone does not expand
in the axial direction while expanding further in the transverse direction.
The cracking (damage) evolution is localized at midspan once the maxi-
mum load is reached.

Nylander and Sahlin’s Tests (26)

Nylander and Sahlin tested 26 continuous beams, and two of them
(beams number 9 and 19) exhibit softening response and are selected for
analysis. These were continous beams with two symmetric long spans and
a very short third span in the middle. Figs. 6(a—b) show the beam and its
finite element discretization. In view of the symmetry of the beam and
loads, symmetric deformation is assumed and only one-half of the beam is
analyzed. The material properties are as follows: (1) Standard cylinder
compression strength 30 MPa; initial Young’s modulus 26,500 MPa;
maximum size of the aggregate 16 mm; and steel yield strength 400 MPa.
The other material parameters that are particular to the present model have
been determined so as to yield optimum fit of test data (while giving
generally the type of behavior reasonably expected for concrete). The
following parameter values have been identified:

1. For the damage model [Fig. 1(a)], v = 0.2; e}, = 107%; A, = 0.8; A, =
0.9; B, = 2 x 10*; and B, = 900.
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2. For the trlhnear stress- stram diagram (Fig. 1(b)], E = 25,000 MPa, £,
—10 3ie,=10"%;e,=4x10"3;,=1.1%x 10" 4,83—25>< 1072 ; and
=5x107%.

Fig. 7 shows the measured diagrams of load versus deflection under the
load obtained with the present damage model, and the trilinear stress-
strain diagram [Fig. 1(b)]. Point A corresponds to the formation of a
softening hinge within the short span of the beam. While the beam is still
statically indeterminate, a second softening hinge forms later at a higher
load (point B), just before a sharp load drop indicating the failure of the
specimen. This failure process is in good agreement with the experimental
results.

Cranston’s Test (10)
Cranston tested 10 pinned portal frames, of which frame P, , which =
exhibited softening, is chosen for analysis. The frame and its cross section
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culated with Damage Law and Trilinear

Stress-Strain Curve [Fig. 1(a-b)]
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are shown in Fig. 8 along with the finite element subdivision. Although the
final instability mode of the frame need not be symmetric, the bending
moments calculated from the experimental data are in fact symmetric (10).
Therefore, symmetric deformation is assumed for the analysis, permitting
consideration of only one-half of the frame.

The reinforcement in beam segment AB (Fig. 8) consists of four steel
bars placed at the bottom and two at the top. This arrangement is reversed
for the beam segment BT, i.e., two bars are placed at the bottom and four
at the top. In this case the simplified trilinear stress-strain curve [Fig. 1(b)]
has been used for concrete. The concrete has the following properties: (1)
Standard cylindrical compression strength 29 MPa; (2) initial Young’s
elastic modulus 25,500 MPa; (3) maximum aggregate size 3/8 in. (9.5 mm);
and (4) yield limit of steel 400 MPa. The remaining model parameters,
which have been determined so as to optimize the fit of the test data, are
as follows: for com ?ressnon g =g, = g3 = 1.4 X 1073 for tension ¢, =
1074, &5 = 5 x 107%, and &, = 1.5 x 10~. The measured load-deflection
diagram is shown in an 9.

According to the calculation, point A on the load-deflection diagram in
Fig. 9 corresponds to the beginning of yield in the tensile steel bars at
midspan, and point B corresponds to the beginning of strain softening in
the compression zone at midspan. Point C refers to the beginning of yield
in the tensile steel bars on top of the column, and point D to the beginning
of compression softening in concrete on top of the column.

Effect of Element Size and Other Factors

As expected on the basis of previous experience with other strain-
softening problems (1,2,4,5,7,9), the results of the present finite element
calculations in the softening range is found to be hlghly sensitive to the
chosen element size. The limit of vanishing element size gives physically
meaningless results, in which the curvature localizes into a segment of
vanishing length and failure occurs at vanishing energy dissipation. Fig. 10
shows the load-deflection diagram obtained for Darvall’s beam using
different element sizes, while the element size is kept uniform all over the
beam. As the element size decreases, a sharper postpeak drop of the load
is observed due to curvature localization in the midspan element. For even
smaller elements than those considered in Fig. 10, the postpeak equilib-
rium response curve would exhibit snapback, i.e., revert to positive slope.

A theoretically consistent way to avoid these difficulties is to use a
nonlocal continuum model (3,5), but a simpler expedient approach, which
appears to work in many practical situations and was introduced in the
crack-band model (1,2,7,9) is to assume that the finite element size has a
lower bound represented by the so-called minimum localization length [, ,
which is a material property. This length represents the smallest segment
into which the curvature in the beam can localize.

In the first study of curvature localization into a finite length segment of
the beam (1), it was concluded that the element length should not be less
than several times the aggregate size, d,. In the crack-band model (2,9),
this limit was approximately estimated as 3d,. This length roughly
represents the smallest scale on which the heterogeneous aggregate
material can be treated as a homogeneous continuum.

In the beam theory, however, another more stringent limitation arises
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from Saint Venant’s principle and the basic assumption of plane cross
sections. It is known that, in general, curvature localization into segments
whose lengths are shorter than the beam depth, h, cannot be correctly
captured by the bending theory, since cross sections for such localizations
do not remain plane, and a three-dimensional analysis is required. Applied
forces or moments that are concentrated over a portion of the beam depth
produce deformations that agree with the assumption of plane cross
sections at a distance approximately h from the cross section of load
application, but not any closer. For this reason, it was required in the
present fitting of test data that the finite element may not be smaller than
approximately the beam depth 4. The limit of three maximum aggregate
sizes for the minimum element length never decides for concrete beams
because the maximum aggregate size is always smaller than one-third of
the beam depth.

Another property that greatly affects the results is the shape and the
mean softening slope R, of the bending moment-curvature diagram (the
mean tangential bending stiffness). By fitting test data of the type used
here, the value of R, cannot be determined precisely. The reason is that the
effects of R, and of the minimum curvature localization length [, are
mutually compensating. To illustrate it, consider a beam segment of length
a(a = 1,) with a uniformly distributed bending moment. We consider two
different choices I, and [, of the element length within segment a. In either
case, it is found from stability analysis (1) that if a bending moment dM is
superimposed on an initial state of uniform curvature within the strain-
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softening regime, then only the segment of length [, undergoes further
loading (strain softening at increasing strain), while the remaining segment
of length @ — I, (or a — I}) undergoes unloading and is characterized by a
positive bending stiffness, R,. The overall deformation properties of
segment a for both /, and I, are identical if the relative rotations of the ends
of this segment are the same, i.e.

dM dM aM

?llb+ R (a_lb)=T:

II
b+R

w ©

Solving for R, , we see that for a change of the element size from [, to [,
the overall rotational stiffness of the segment remains the same if the
softening bending stiffness is changed simultaneously from R, to the value:

b h=h\"
) e e P PP
N s ®

Eq. 6 is explained in Fig. 11. This figure shows two different softening
bending stiffnesses R, and R,’, which, when applied over localization
segments of different lengths I, and I, , yield for the moment-rotation
relationship of a beam segment of length a the same softening stiffness C,
(C, <0).

The foregoing analysis means that the length of the curvature localiza-
tion segment must be given in advance if the material strain-softening
properties (or moment-curvature softening properties) should be deter-
mined from load-deflection measurements. Conversely, if the strain-
softening material properties were determined from other tests, then J,
could be deduced from load-deflection measurements. A separate deter-
mination of the material softening properties can be based on fracture
tests, especially when specimens of greatly different sizes are used.
However, no companion fracture tests have been made for the presently
considered test data.

The finite element results have also been found to be very sensitive to
the reinforcement ratio.

CONCLUSIONS

The present study demonstrates that the softening postpeak behavior of
the load-deflection diagrams or load-curvature diagrams of beams or
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frames can be explained in terms of strain-softening behavior of concrete.
The strain-softening properties are approximately the same as used in a
previous work to achieve agreement with the results of fracture tests of
concrete and of deflection tests of cracked reinforced concrete beams. An
efficient discretization procedure is provided by the layered finite element
approach. The direct iteration method (iterative secant stiffness algorithm)
for step-by-step loading provides a well-behaved convergent solution
applicable in the softening regime, provided that unloading is not allowed
to yield states at which the signs of strain and stress are opposite.

The numerical results reveal that a stress-strain relation with strain
softening, including models of continuum damage mechanics, leads to
spurious sensitivity to the finite element size and that a certain lower
bound on the element size must be imposed as a cross section property.
These problems will be analyzed further in a subsequent companion paper.
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AprpENDIX |. LAYERED FiNITE ELEMENT FORMULATION USED

To completely define the solution method and allow verification of
results, we briefly summarize the finite element formulation (8). Each cross
section is divided into N, layers, some of which may represent the
reinforcing bars. The column matrices of element displacements and forces
are u = (u;, vi, 0;,4;,v;,6)7 and f = (N,;,V;,M; ,N;,V; ,M)T, where T
denotes matrix transpose; # = axial displacement; v = transverse deflec-
tions; 6 = rotation of cross section; and subscripts i and j refer to the
adjacent cross sections i and j at the ends of element (Fig. 12). The internal
forces are referred to the centroidal axis x. ‘

The strain at any point X,y (in cartesian coordinates x,y) is e(x,y) =
du(x,y)/ox, and the displacement in the axial direction is u(x,y) = u(x,0) —
y av(x,0)/dx. We use finite elements with a cubic variation of v, and then for
any point on the axis x

X, 0) = (1 =Gty + &ty oo, (7a)
(x, 0) = (1 — 362 + 283, + (382 — 283, + L(E — 262 + &%),

FLE = ED; oot (7b)

¥

concrete
layer:

FIG. 12. Layered Finite Element
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where § = x/L; and L = element length. Substituting these expressions into
u(x,y) = u(x,0) — y av(x,0)/0x and e(x,y) = ou(x,y)/dx, we obtain the
geometric relation e(x,y) = Bu where

B= % [—1, én(1 — 28), 2Ln(2 — 3§), 1, 6n(2% — 1),

2LN(1 = 3E)] vttt )

and m = y/L. Then, applying the virtual work principle to the beam
element, we have du’f = [,3¢” 0dV = 3u? [,B” odV, and since this must
hold for an arbitrary variation du, we obtain f = [\B” 0 dV = [,B’E, B u
dV = k.u, where V = element volume, E, secant modulus (¢ = E,e), and
k. = [VvEB™B dV = 6 x 6 element stiffness matrix. Along x, we may
integrate analytically and the integral over the cross section area we
approximate by a sum over all the layers m = 1, . . . ,N,. Matrix k, must
then be transformed from element coordinates (x,y) to global coordinates;
K, = T7k.T where T = 6 X 6 transformation matrix for coordinate rotation
by angle o, which represents the angle between axes X and x; Ty = Ty, =
Tu=Tss=cosa; Ts53=Tg=1; Ty = =Ty = Tus = —Tsg = sin a; and
all other Tj; are 0. In this manner we obtain

ki, k, k, —k, —k, k,
ky ks —k, —k, ke
ke —ky —ks 0.5k,

K. = ky  ky Ky | e 9)
sym ky —kg
ke

in whichk, = QL;'c + 12 SL;%s; ky = (QL;' — 12 SL;¥cs; ks = QL 's?
+ 12 SL;3¢%; 4= —RL.'c — 6 SL,*s; ks = —RL;'s + 6 SL;%c; ks = 4
L;'S;k;=RL;'c — 6 SL;2s; ks = RL.'s + 6SL;%c; withc = cos a; s =
sin o Q = 2mE‘s(m)bmhm > R = 2mEIs(m)bmhmym > S = EmEs(m)bmhmyzn ’
b shm ;ym = width, thickness and centroidal coordinate for layer number
m. Matrices K, are finally assembled into the structural stiffness matrix K.
After the displacements are solved, the internal forces are calculated as

Ny= —N;=[(X;, - X )c + (¥, — Y)sIQL; "

F(0; = BIRLI Y oo, (10)
Vi= —V, = [(X,— X)s — (Y, — ¥)c]125L

(0 B)6SL2 i (11)
M, = [(X; — X)c — (Y, — Y)s]RL; ! |

+ [(X; — X)s — (Y, — Y)cI6SL,? + 2020, + 0)SL;* ................. (12)
M; = [(X, + X)c — (Y, — Y)s]RL;*
+ [(X; — X)s — (Y, — Y)c16SLI% + 2(8, + 20)SL7 ! . ...ovovnn (13)
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in which X, X;, Y;, Y; = the displacement components in the global X- and
Y-directions at the element nodes i and j.
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