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ABSTRACT 
The microcracking in the fracture process zone ahead of a major crack 
is assumed to consist, in the initial stage, of a two-dimensional ar- 
ray of small circular (penny-shaped)cracks and, in the terminal stage, 
of a two-dimensional array of small circular ligaments, all located on 
the main crack plane. Both cases are solved in three-dimensions accord 
ing to linear elastic fracture mechanics. The solution is approximate 
but asymptotically exact both for very small circular cracks and very 
small circular ligaments. The spacing of the cracks as well as the 
ligaments is governed by the spacing of the large aggregate pieces. The 
curve of the transverse displacement v due to cracks versus the re- 
mote applied normal stress is calculated and is found to exhibit snap- 
back instability at which a negative slope changes to a positive slope 
and v reaches its maximum possible value. Since several other influen- 
cing physical mechanisms were neglected in the analysis, it still re- 
mains to be verified whether the snapback instability does actually 
occur in the concrete fracture process. The asymptotic behavior at 
ligament tearing is further analyzed, based on St.-Venant's principle, 
for arbitrary general three- and two-dimensional situations and it is 
shown that when the ligament transmits a force (mode I, II or III), 
its final tearing is always characterized by snapback instability, 
which determines maximum possible displacement due to crack. When, 
however, the ligaments transmit only a moment (bending or torsional), 
there is no snapback instability. 

Nature of Problem 

The softening law for the fracture process zone of a heterogeneous mate- 
rial such as concrete may be characterized either by the function ~ = ~(~f) or 
the function ~ = o(y) where o is the normal stress across the plane of the 
crack ahead of the crack tip, ~f is the total displacement across the fracture 
process zone of width Wc, and ~ = 6f/w c = mean normal strain across the frac- 
ture process zone (Fig. i). The shape of the curve a(6f) or o(y) is the cen- 
tral question in the modeling of fracture in concrete as well as other materi- 
als such as rock, ceramics, composites, ice, etc. (i). 
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FIG. 1 
Three-dimensional Idealization of the Microcracking Process 

Ahead of the Main Crack 

The main microstructural influences on function o(6f) or ~(y) include: 

i) the nucleation, growth and coalescence of microcracks within the fracture 
process zone; 2) the heterogeneous microstructure, in which the difference of 
elastic moduli between the aggregate and the mortar matrix is the dominant fea- 
ture; 3) the strength of the interfaces between the aggregate and the matrix, 
which is normally weaker than the strength (or fracture toughness) of either 
the aggregate or the matrix; and 4) various inelastic phenomena occurring away 
from microcrack tips, such as frictional slip, resistance to crack closure, etc 
It is difficult to study all these effects simultaneously. Thzs study will 
focus on effect 1 and take into account effect 2 only insofar as the spacing of 
microcracks is concerned. The main objective is to study the a(6f)-curve from 
the stability viewpoint, especially in terminal asymptotic stage of ligament 
tearing, on which little information exists at present. 

Idealization of Crack System Initiatlon~ Growth and Coalescence 

To facilitate analysis, we imagine the array of aggregate pieces to be 

based on Report (23) 
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regular, organized as a cubic lattice (Fig. i). This idealization was used be- 
fore to derive from the initiation condition of interaggregate cracks a formula 
for the decrease of concrete strength as a function of the maximum aggregate 
size (1,2), which was found to agree with test results. Now we use the same 
idealization to study crack initiation as well as terminal coalescence. 

If the aggregate is stiffer than the matrix (as is true of normal con- 
cretes), or if at least the aggregate-matrix interface is weaker, the micro- 
cracks are likely to initiate in the thin contact zones between aggregate 
pieces (Fig. la). The initiating microcracks which form in the fracture proc- 
ess zone ahead of the main crack (Fig. i) may be imagined to be circular (penny. 
shaped), of diameter 2a. Their spacing in the plane (xz) of the main crack is 
the same as the spacing s of the large aggregate pieces, which may be given as 
s = nsd a where d a = maximum aggregate size and n s = empirical factor greater 
than i but close to i, perhaps n s = i.i. 

The largest microcracks form on the main crack plane, and smaller micro- 
cracks form away from the crack plane. The reality is somewhere between the 
following two ideal limiting cases: i) The microcracks arise only on the crack 
plane, thus forming a two-dimensional periodic array in the plane (xz); and 
2) the microcracks form a three-dimensionally periodic array in space (xyz), 
being the same on the crack plane as well as the adjacent parallel planes. 

Case i conforms to the classical Dugdale's and Barrenblatt's cohesive 
zone concept, in which all fracturing is imagined to be lumped into the crack 
plane. Case 2 corresponds to the more recent strain-softening models for 
cracking (i), which are now known to describe fracture realistically and in a 
theoretically consistent framework provided that the softening is treated in a 
nonlocal manner (3, 4). We analyze here only Case i. 

At the beginning, the cracks may be assumed to be circular (penny-shaped), 
of radius a << s (Fig. la,b). Later the cracks develop complex irregular 
shapes in the crack plane as they gradually coalesce with each other. In the 
terminal stage of tearing, however, the uncracked area may be assumed to have 
again a simple shape, consisting of a periodic array of circular ligaments, of 
radius 2c, such that c << s (Fig. i d,e). 

For a << s, the situation may be idealized as a single penny-shaped crack 
within an infinite cylinder (Fig. ic) of radius R. Force (and work) equivs- 
lence requires that the cylinder cross-section area of the cylinder be the same 
as one square of the lattice, i.e. ~R 2 = s 2, from which R = s/~-~, For c << s, 
the situation may be idealized as a single penny-shaped ligament of radius c 
within an infinite cylinder of radius R = s/~-~- (Fig. id,e,f). While the linear 
elastic fracture mechanics does not apply to the macroscopic fracture, we may 
assume it to apply for the growths of the microcracks. The linear elastic 
solution for the penny-shaped crack (for any a(s)) was given by Bueckner (5) 
and Benthem (6); see Tada's handbook (7, p. 27.1). The solution for the penny- 
shaped ligament was given perhaps most accurately by Nisitani and Noda (8) (see 
Murakami's handbook (9, p. 643)), and previously by Bueekner (5), Benthem and 
Koiter (6), Harris (i0), and others (cf. 7,9). 

Circular (Penny,Shaped) Cracks: Initial Stase 

For the penny-shaped crack, Benthem and Koiter (6) (see also p. 27.4 of 
Ref. 7 or p. 653 of Ref. 9) found that 

K I = Oy~'fl(~) , ~ = a/R (i) 

where 

2 "%/~ (i-~)(i + ~x~ - 85-~2 + 0.421~S). (2) fl(e) = 
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K I = Mode I stress intensity factor; o = P/~R 2 = P/s 2 = average axial stress; 
P = resultant axial force on the cylinder (Fig. ib). The error is under 1%. 
The necessary condition of propagation of the cracks is K I = Kcm = critical 
stress intensity factor of the microcracks (material constant). So the remote 
stress required for crack propagation is: 

Kcm 

a = fl(e)/~ . (3) 

To calculate the displacement v due to the cracks, we need to determine first 
the strain energy W 1 per crack that has been released due to the formation of 
the cracks. The energy release rate ~ is known to be (ii, p. 108) G = KITE' 
where E' = E/(I-~2), ~ = Poisson ratio, E = Young's elastic modulus. By defi- 
nition ~Wl/~a = 2~aG, and so 

8Wl El2 02 f2(~) . (4) 
~--~--= 2~a0 = 2~a ~7 = 2~aR ~-r 

Integrating, with the substitutions a = R~ and da = Rd~, we get 
~2 

W I = 2~R 3 ~-~ G I(~), (5) 

where 

Gl(e) = fo ~'f~(~')d~' (6) 

The displacement at y + ~ due to the formation of the crack must, therefore, be 

v = ~p = ~ ~ = 4R ~-r 0 I(~). (7) 

Eqs. 3 and 7 represent a parametric description of the stress-displacement 
curve. Choosing various values of ~, and evaluating o and v, one obtains the 
plot in Fig. 2 in which S = nondimensional remote applied stress and q = non- 
dimensional displacement due to the crack; 

S=o /R E' , q = V (R = s//~) (8) 
Kcm ~ " 

Small Circular Cracks: Asymptotic Approximation 

An explicit, asymptotically exact solution can be obtained for the special 
case of small ~ (e << 1 or a << R). Then fl(~) = 2(~/~) ½, and so 

K I = 2o/a7~. (9) 

Then $Wl/~a = 2~aK2/E ' - 802a2/E ' . By integration, W 1 = 8o2a3/3E '. Note that 
in contrast to Eqs. i, 4 and 6, these expressions are independent of R. By 

differentiation, 

~W I _ 1 ~W 1 16 E~ a 3 16 o a 3 
v = 3p ~ ~O = 3-~__~/ = -~ E --r s -Z ' (i0) 

where we used the relation s 2 = zR 2, which guarantees the force equivalence with 
a square grid of small circular cracks to be satisfied exactly. We see that the 
displacement v due to the cracks depends on R, and thus on spacing s. Setting 
K I = Kcm, Eq. 9 yields a = Z~m/4O 2, and Eq. i0 becomes 

~2~m 1 ~3Kc6m 1 
v = ~ o- ~ = ~ ~ - ~  (o -< ft ) (ii) 

Since the material can resist only finite stress, this equation is meaning- 
ful only for o < f~ where f~= tensile strength. As argued already by Griffith, 
the creator of fracture mechanics, it follows from Eq. 9 that the material must 
initially contain flaws equivalent to circular cracks of radius a = a 0, 
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FIG. 2 
Nondimensional Remote Stress vs. 
Nondimensiona] Remote Displace- 
ment Due to Cracks for the 
Initial State Idealization as a 
Circular (Penny-Shaped) Crack 
in a Cylinder (dashed segment, 
a/R > 0.70 is irrelevent since 
it is not initial stage). 
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(12) 

Although the present solution is valid only if all the initial flaws are lo- 
cated on one plane, the flaws are in reality distributed through the material 
uniformly. The initial displacement due to cracks when the cracks first become 
critical (o = ft ) then is, according to Eq. ii, 

~3K#m 
v0 = 12 E'sZft5 " (13) 

During the initial loading from o = 0 to o = f~, the cracks do not grow (K I < 
Kcm), and so the ~-v relation is a straight line, ~ = C0v , where C O = f~/~0 = 
stiffness per unit area due to preexisting flaws; 

12 E, s2 (Kf_~t) 6 (14) 
C0 = ~ cm 

Assuming that the effective width w c of the fracture process zone is such that 
the displacement at its boundary is nearly the same as v at y -> ~, the total 
initial displacements 6f across the fracture process zone before the cracks be- 
come critical is 

= [~ + C~)O (for v < v0) (15) ~f 
% 2  

where E' = E/(I-v2). E must obviously be interpreted as the theoretical elas- 
tic modulus of the material without any preexisting flaws. The elastic modulus 
measured in a tensile test is Eel f = [E '-I + (C0Wc)-l]-l. After the cracks be- 
come critical 

WcO ~ 3 Kc6m 1 
6f = ~-- + 6E-~T~s ~ (for v > v0, a << s). (16) 

In analogy to Eq. 15, deformation Wco/E' needs to be al~o added to the 
plot v(o) in Fig. 2 in order to get the plot of 6f versus o valid for any ~. 
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Circular Lisaments: Terminal Stase of Crack Coalescence 

Now consider the case of a penny-shaped ligament in an infinite circular 
cylinder of radius R. The result of elastic analysis (8,9) is: 

= ~Ef2(~) (~ = c/R) K I (17) 

where 

17 
f2(~) = ~[~(i-~)]½(i + ~ + ~ - 0.363~ 3 + 0.731~4)(i +0.i~2 if~-~) 

(18) 
c = radius of ligament (Fig. le), ~ = P/~R 2, and P = axial force. The remote 
applied stress required for crack propagation is: 

Kcm 
= f2($)~7 • (19) 

The energy release rate is 

~W~ KI 2 o2 2 
- 8c = 2zc ~= 2~cR ~-r f2({). (20) 

By integration, with substitutions c = R{ and dc = Rd{, 

= ~-~-dc = - 8c dc = 2~R 3 O2(~) (21) 

where 

G2(~) = f~ ~'f~($')d~'. (22) 

The displacement v at y ÷ ~, caused by the crack, may now be calculated as 

v ~W2 1 ~W2 
= ~p = ~ = 4R E ~ G2(~). (23) 

Eqs. 19 and 23 represent a parametric description of the stress-displacement 
curve. Choosing various values of ~ and evaluating o and v, one obtains the 
plot in Fig. 3 in terms of nondimensional stress S and displacement q defined 
by Eq. 8. 
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FIG. 3 
Nondimensional Remote Stress 
vs. Nondimensional Remote Dis- 
placement Due to Crack for the 
Terminal State Idealization as 
a Circular Ligament in a Cyl- 
inder (dashed segment, a/R < 
0.4, is irrelevant since it is 
not terminal stage). 
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Small Circular Lisaments: Asymptotic Approximation 

An explicit asymptotically exact solution 9an be obtained for the special 
case of small ~ (~ << i or c << R). Then ~ = ~ c(~R~-3) ~, i.e. 

P 
K I = ~ . (24) 

Then -DW2/Dc = 2~cK~/E' = p2/2E'c 2. Note that, in contrast to Eqs. 17 and 20, 
i 

these equations are independent of R, but only if they are written in terms of 
the applied force P rather than the applied stress o (for very small cracks, 
Eqs. 9-10, this is true only if the equations are written in terms of a rather 
than P). By integration, W 2 = (p2/2E')(c-I - K/S) where ~ is a nondimensional 
integration constant. By differentiation 

~W2 _ P 1 
v = - (25) 

Setting K I = Kcm , Eq. 24 yields c = (P/2Kcm~-~) 2/3 and Eq. 25 then becomes 

s - - 4 ~ m - 1 / 3  
V = ~k[ s----~O ~'~) - K ] a .  (26) 

For very small a, we may neglect K compared to the first term in the 
bracket, and we get 

E '3 v3 E '3 
P = os 2 = 4~K--~- ~- = 4-~-2--v 3 (small v). (27) 

cm cm 

For Eq. 26 which applies for larger (but still small) o-values, we need to 
figure out the integration constant K. If the solution were valid up to c = R, 
it would be proper to determine K from the condition that W 2 = 0 for c = R. The 
solution, however, is valid only for c << R, and so we need some other condi- 
tion to determine ~. 

For any K > O, the curve v(o) according to Eq. 26 obviously has a point of 
maximum v. For arbitrary K, this maximum point does not coincide with the ex~ 
act maximum point in Fig. 3 based on Eqs. 19 and 23. Assuming that the point 
of Vma x in Fig. 3 is still in the range of small enough c, we may determine K 
from the condition that the graph of Eq. 26 would pass through the exact point 
of Vmax, which is characterized by S r : 1.198 and qmax = 0.1549 (Fig. 3). Then, 
according to Eq. 8, Vma x = qmaxKcm R~E' and Ocr : ScrKcm/~, and setting v = 
Vmax, o = Ocr , Eq. 26 yields: 

-4~K~m-i/3 ' (4V~-~I/3 qmax K = [ SO-~-~ E Vmax = 
s [Sc--~r7 S ~= 2.299 (28) 

cr °cr cr 

Similar to the arguments related to Eqs. 14-16, the total displacement 
over the width w c of the fracture process zone is, approximately, 

s 4~K~ m I / 3  
= + -  3}o. ( 2 9 )  

Interpretation of Mathematical Results 

Although the displacement v due to cracks has been calculated for points 
infinitely far away from the crack plane, the displacement 6cr due to cracking 
which arises over the finite width w c of the fracture process zone must be 
nearly the same, i.e. 6 c = v. This is indicated by some solutions for inter- 
acting cracks on parallel planes at spacing s, which are available in the liter- 
ature. E.g., the problem of interacting circular ligaments of diameter 2c and 
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spacing h in an infinite cylinder of radius R has been solved by Nisitani and 
Noda (8). Their results show that the interaction of cracks causes K I to 
change by less than 1% if h e R (see p. 644 of Ref. 9). For the planar prob- 
lem of an infinite stack of parallel cracks of length 2a and spacing h be- 
tween the crack planes, Yokobori and Ichikawa (cf. p. 202 of Ref. 9) found the 
crack interaction to cause a change of K I by less than 1% if 2a < O.08h, and 
less than 10% if 2a < 0.21h. Although Nisitani and Noda's solution is limited 
to c/h S 0.5, one can nevertheless invoke St.-Venant's principle to conclude 
that interaction of cracks on parallel planes of spacing s should be insig- 
nificant when approximately either a ~ h/5 or c ~ h/5. Since for concrete h 
must be about the same as s, the preceding solutions are asymptotically exact 
for crack initiation (a << h) as well as for terminal crack coalescence (c ~ h). 
So we may interpret v as the additional displacement across the fracture 
process zone due to the cracks, provided that all the cracks occur on one 
plane. 

The most interesting feature of our results is the fact that the soften- 
ing stress-displacement diagram v(o) exhibits a maximum displacement Vma x after 
which both v and o must decrease. This behavior is known in stability theory 
as the snapback instability. It means that, according to the present mathe- 
matical model, the ligament tearing cannot be stable even in a displacement- 
controled test after the critical state of vma x is attained. This conclusion, 
when first reached by the writer in March 1987, appeared to conflict with the 
current generally accepted softening models and thus to cast doubt on the as- 
sumptions of the present analysis. A stress-displacement diagram v(o) which 
declines with a negative slope all the way to a zero stress is widely used in 
the present practice of finite element fracture analysis of concrete, is em- 
bodied in Hillerborg's fictitious crack model (12,1) and is also implied in- 
directly in the crack band model (13,14,1). This present practice has appar- 
ently been also corroborated by extensive experimental evidence, particularly 
the measurements of the softening stress-displacement diagrams by Reinhardt 
and Cornelissen (15), Petersson et al. (16), Shah et al. (17), Willam et al. 
(18), Wecharatana (19) and others. Some of these tests included very large 
crack displacements, which exceeded 20-times the displacement vp at peak stress 
and corresponded to a reduction of stress to less than 5% of itN peak value. 
Yet the test specimens remained stable and no snapback instability has been 

reported. 

During the discussion at the RILEM-SEM International Conference on Frac- 
ture of Concrete and Rock in Houston (June 1987), however, it has transpired 
that the experimentalists themselves have doubts about the interpretation of 
their test results, particularly the way the additional displacement due to 
cracking, accumulated over the fracture process zone, should be determined 
from measurements. The possibility of different interpretations of the test 
results then finally encouraged writing and publishing of this paper. 

It has been very gratifying to the writer to learn in June 1987 that H. 
Horii et al. (20), studying concrete fracture, as well as M. Ortiz (21) study- 
ing ceramic composites, obtained a similar result independently. They dis- 
covered the snapback instability on the curve o(v) by modeling the fracture 
process zone ahead of the main crack as an infinite row of identical uniformly 
spaced line cracks on the extension line of the main crack. The plots of v(o) 
that they obtained look similar to that in Fig. 3. Their analyses, however, 
were planar (two-dimensional). This would be fully realistic only if the 
cracks ahead of the frontal edge of the main crack had the shape of infinite 
strips parallel to the frontal edge (in the z-direction, Fig. i) and normal to 
the plane (xy) in which the problem is analyzed. Such crack strips, however, 
do not appear to be very realistic for concrete, especially for the initial 
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stage of small cracks as well as the final stage of small ligaments between 
the crack tips. 

Due to the three-dimensional nature of the aggregate framework, the 
spacing of the initial small cracks, located in the contact layers between 
the adjacent aggregate pieces, is certain to be about the same in the direc- 
tion x of fracture propagation and in the direction z normal to it (in the 
crack plane xz); see Fig. lb. The same must be true for the final stage of 
very small ligaments, as is clear from Fig. le. So one may conclude that the 
three-dimensional model of small circular cracks should be more realistic. In 
this regard it may be also noted that, in a previous analysis (2,1) the as- 
sumption that the crack spacing is determined by the aggregate spacing gave a 
realistic and experimentally corroborated result for the dependence of con- 
crete strength f~ on the aggregate size. 

The fracture energy Gf of concrete is equal to the cross-hatched area 
023460 in Fig. 5a which is enclosed by the complete stress-displacement curve 
o(v). The softening curve o(v) begins at the tensile strength limit ft'" 
Since infinitely small microcracks propagate only at infinitely large stress 

(Eq. 3), there must initially exist in the material certain microcracks of 
finite size a0, as already mentioned (Eq. 12). The initial loading up to the 
strength limit occurs without any crack growth and is, therefore, elastic, 
described by the initial straight line (02 in Fig. 5a). In the line-crack 
models of the fracture process zone, such as Hillerborg's, the stress-dis- 
placement curve which describes fracture is assumed to start on the vertical 
axis at point ft', and so the crack displacement 6cr to be used in Hiller- 
borg's model must be understood as ~cr = v - o/K where K is such that v(ft' ) 
- ft'/K = O, i.e. K = ft'/v(ft'). 

Since cracks neither extend nor shorten during unloading, the unloading 
path from any point on the o(v) curve (Fig. 5a) is a straight line toward the 
origin (Fig. 5a). 

When stress o is controlled, the crack becomes unstable at the peak- 
stress point ft' (point 2 in Fig. 5a). When the displacement is controlled, 
the crack becomes unstable when the curve o(w) attains a vertical tangent 
(~o/~w = 0); w is the load-point displacement, w = v +o/C where C is the 
elastic stiffness of the structure without the cracks, and v is the addi- 
tional displacement due to the cracks. The higher the value of C, the smaller 
is the stress Ocr at the snapback instability. The smallest Oc- is obtained 
for C * ~, which coincides with the Ocr value for the curve o(v~ (Fig. 3). If 
the displacement is controlled, the stress after the snapback instability 
drops instantly to O. This drop is called the snapdown. The snapdown path 
is dynamic and the motion is accelerated. The energy corresponding to the 
cross-hatched area 0454 to the left of the snapdown path in Fig. 5b is con- 
verted into kinetic energy, which is emitted as the energy of a sound wave 
(acoustic emission). In fact, the existence of sound emissions in a displace- 
ment-controlled fracture test implies the occurrence of snapback, 

To conduct an approximate analysis in a static manner, the equilibrium 
snapback path (40 in Fig. 5a) must be replaced by a o(v)-diagram that is 
equivalent in terms of energy. Thus, the equivalent o(v) diagram for static 
finite element analysis must preserve the correct area Gf enclosed by the 
o(v) curve, as indicated either by the vertical snapdown path 367 in Fig. 5c 
or the gradual equivalent softening path 89 in Fig. 5d. If static analysis is 
conducted on the basis of the actual snapdown path ~-~ in Fig. 5c, the results 
are incorrect in terms of energy, thus violating the most fundamental re- 
quirement of mechanics. 
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FIG. 4 
Crack Systems Expected for Other Aggregate Configurations 

The energy-equivalent snapdown along the vertical path 367 in Fig. 5 
can actually occur only if a dynamic disturbance at point 3 imparts to the 
system a kinetic energy that is at least equal to the area 3463 (per unit 
length of fracture). Area 3463 is equal to the loss of kinetic energy along 
the path from point 3 to point 6 in Fig. 5c. Along the path 67 the kinetic 
energy is increased by an amount equal to the area 0760. The system ends at 
point 7 with the same kinetic energy as it had at point 3 if the areas 3463 
and 0760 are equal, which is true if the area 02370 is equal to Gf. 

It must be admitted that certain elastic fracture mechanisms which are 
neglected in the present analysis could considerably alter the shape of the 
v(a) curve including the snapback instability. These include: i) inclina- 
tion of the main crack with regard to a cubic lattice of aggregate; 2) other 
types of periodic lattices, e.g. of tetrahedral type (Fig. 4a,b); 3) random 
arrangement of aggregate pieces, which is of course the rule rather than an 
exception. Irregular random aggregate arrangements prevent the cracks to be 
all located on a single plane, contrary to the assumption of the present an- 
alysis. This has for consequence that the crack edges have not only a Mode I 
stress intensity factor, but also Mode II and Mode III (i.e. shear) stress in- 
tensity factors, and may therefore propagate in directions that are inclined 
with regard to the main crack plane (Fig. 4a). It remains to be seen whether 
such mechanisms can significantly alter the shape of the v(a) curve, especial- 
ly the value of Vma x. 

The shape of the v(a)-curve could be also significantly influenced by 
various inelastic phenomena. These include: i) resistance to a crack closing 
due to fragmentation debris located in the crack space; 2) frictional slip on 
inclined cracks (Fig. 4a); and 3) irreversible deformations taking place else- 
where than microcrack tips. Since along the snapback path (40 in Fig. 5a) the 
portion of the crack that has formed previously is closing, the resistance to 
crack closing may significantly alter the snapback path and prevent complete 
recovery of displacement v as a ÷ 0 (i.e., prevent return to point 0 in Fig. 
5a). If crack closing is prevented completely, then there is no equilibrium 
path after the critical state of snapback (point 4, Fig. 5a) and the system can 
only follow the dynamic snapdown path (45 in Fig. 5b). But for reasons of sta- 
bility it must follow this path anyway, and so a prevention of crack closing 
does not seem to alter the essential behavior. 

It should also be recognized that the difference in elastic moduli between 
the matrix and the aggregate, as well as the fact that the microcrack fracture 
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FIG. 5 
Stress-Displacement Diagrams for Fracture Process Zone Modeling 
and Meaning of Fracture Energy. 

toughness Kcm is probably lower at the aggregate-mortar interfaces than inside 
the matrix or the aggregate, has not been taken into account in the present 
analysis. 

General Asymptotic Ana!ysis for Small Ligament Transmitting Force or Moment 

We will now show that snapback instability is a general characteristic of 
crack coalescence or terminal stage of crack ligament tearing in three as 

well as two dimensions. We consider the ligament size to be infinitely small 
compared to any cross section dimension of the structure. We assume the sub- 
sequent ligament shapes to be similar. Let P and M be the internal force of 
any direction and the internal moment about any axis transmitted across the 
ligament. (The special cases of P include a normal force or a shear force, and 

FIG. 6 
Ligament Joining Two Halfspaces 

or Half planes 

of M a bending moment or a twisting 

moment.) According to St.-Venant's 
principle, P or M can produce sig- 
nificant stresses and significant 
strain energy density only in a 
three-dimensional region whose size 
(L I and L 2 in Fig. 6) is of the 
same order of magnitude as the lig- 
ament size c. The strain energy 
produced in this region by P or M 
is 

p2 p2 

U1 = 2~ klC = 2Ek3c ' 

M2 (30) M 2 
U 2 = ~ k2c = 2Ek4c~ 

where A = k5 c2 = cross section area 
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of the ligament, I = k6 c~ = moment of inertia of the cross section of the liga- 
ment, and kl,k2,...,k 6 = constants. The remote displacement v and rotation @ 
associated with P and M, respectively, are 

~U] p ~U2 M 
v = ~p = Ek3c , 0 = -~--- Ek4c 3 . (31) 

The energy release rates due to P and M per unit circumference of the ligament 
cross section are: 

1 ~UI p2 1 ~U2 _ 3M 2 
G1 = k7c ~T - 2Ek3kTc3 ' G2 = ksc ~c 2Ek4ksc5" (32) 

Setting G I = Gf or G 2 = Gf whore Gf = K~/E = fracture energy of the material 
(a constant), we have: 

= ( p2 i = r 3 M2 i/5 
for P: c 2_~k3k7Gf~ /3; for M: c ~2Ek4k8Gf) (33) 

Substituting this into Eq. 31 we get, for very small ligament size c, the 
asymptotic approximations: 

for P: v = Clpl/3; for M: 8 = c2 M-I/5 (34) 

where Cl,C 2 = constants. Note that Eq. 34 for P agrees with Eq. 27 that we 
derived before in a different manner. 

9rom Eq. 34 we conclude that for force loading of the ligament the curve 
v(P) ~ust return to the origin (v = P = 0) as P ÷ 0 (c ÷ 0). This means that 
there must be a snapback at some ~inite P-value. 

On the other hand, for moment loading of the ligament, the curve 8(M) 
tends to infinity as M ÷ 0 (c ÷ 0). So there can be no snapback. 

For two-dimensional problems a similar asymptotic analysis is possible, 
but only for the moment loading. We have I = k6bc3 where b = thickness of the 
body, and instead of Eqs. 30-32 we get 

M 2 M 2 
U 2 = ~f k2c = 2Ek4bc- Z (35) 

e ~U~ M 
~M Ekgbc -~ (36) 

G 2 = _ $U2 _ M 2 
De Ek4bc3 . (37) 

Setting G = Gf, we have c = (M2/GfEk4b) I/3, and substituting this into Eq. 36, 
we get, for small c: 

0 = c2M-I/3. (38) 

So for moment loading in two dimensions there cannot be any snapback either. 

For two-dimensional problems in which the ligament is loaded by a force, 
the foregoing approach fails because, as it turns out, the curve v(P) is not 
of a power type as P + 0. For a sufficiently short ligament, the stress field 
must be the same as that near a ligament joining two elastic halfplanes. For 
that problem it is known that K I = (P/b)(2/~c)½ where P = normal (centric) 
force and c = half-length of the ligament (Fig. 6). Therefore -~W/~c = bG = 
bKI~E' = 2p2/~E'bc, and by integration the total strain energy release is: 

2P 2 c (39) 
w = - ~ ~n ~0 

where c O = integration constant. Furthermore, 
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8W 4P c 
v ~P - ~E'b ~n ~0 (40) 

Setting K I = K c = critical value of KI, we also have c = 2p2/~b2K 2 and sub- 
stitution into Eq. 40 yields c 

4P 2P 2 
v = - ~E'---~ %n ~ (41) 

The curve v(P) described by this equation is not of a power type, which ex- 
plains why the type of approach used in Eqs. 30-38 would fail. The curve v(P) 
obviously exhibits a snapback since, for P ÷ O, lim v = 0. The critical state 
is characterized by the condition ~v/$P = O, which yields the critical value 

Pcr = (~c0/2)½Kcb/e, from which Vma x = (2c0/~)½Kc/E'e. 

From the fact that ligament tearing in Mode I or II or III always ex- 
hibits snapback if the force across the ligament is nonzero it follows that 
the stress-displacement curve for the microcrack patterns in Fig. 4 must, too, 
terminate with a snapback. 

Conclusions 

i. To model the fracture process zone of a heterogeneous brittle material such 
as concrete, it may be assumed that the initial stage of cracking consists of 
a two-dimensional array of small circular (penny-shaped) cracks in the plane 
of the main crack, and the final stage consists of a two-dimensional array of 
small circular ligaments• Both cases may be approximately solved from the 
known value of the Mode I stress intensity factor for a penny~shmped centrally 
located transverse crack in an axially loaded long cylinder, and a small cir- 
cular ligament in such a cylinder. These solutions may be considered to be 
asymptotically exact for very small cracks or for very small ligaments. 

2. The spacing of the initial small circular cracks as well as the final cir~ 
cular ligaments may be considered to be determined by the spacing of the large 
aggregate pieces in concrete. 

3. The solution indicates that the curve of the additional transverse dis- 
placement v due to the crack versus the remote normal stress o exhibits a 
softening segment which does not descend all the way to zero stress, as as- 
sumed in the current fracture models, but terminates with a critical state of 
snapback instability at which the curve o(v) has a vertical tangent (Fig. 5). 

The displacement at this critical state, Vmax, is the maximum possible dis- 
placement due to the cracks. After this critical state, the equilibrium path 

o(v) approaches the origin as a cubic parabola with a positive slope. This 
postcritical path is unstable and a dynamic snapdown occurs in reality (Fig. 
5b). For approximate static analysis an energy-equivalent softening path with- 
out snapback (Fig. 5c,d) needs to be introduced. 

4. The present calculation of the stress-displacement curve neglects: i) the 
situation in which the cracks are inclined and are loaded in Modes II and III; 
2) possible strong interactions between adjacent cracks (other than those meet- 
ing at the same ligament); 3) the effect of the differences of elastic moduli 
between the aggregate and the matrix; 4) the fact that the aggregate-matrix 
interface may be weaker than the adjacent solid material; 5) the resistance to 
crack closing due to fragments located in the crack space; and 6) the inelastic 
phenomena taking place elsewhere than microcrack tips. It remains to be deter- 
mined whether the essence of the preceding theoretical conclusions remains 
valid if all these phenomena are taken into account. 

5. General asymptotic analysis shows that when the crack ligament transmits a 
force, its final tearing is always characterized by snapback instability and 
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there exists a maximum displacement. When, however, the ligament transmits 
only a moment, there is no snapback instability and the rotation due to the 
applied moment grows beyond any bounds. These conclusions are valld for three- 
dimensional as well as two-dimensional situations, for normal as well as shear 
forces, and for moments about any axis, bending as well as torsional (i.e., 
for Modes I, II and III). 
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Appendix. - Stabilit_ y of Three-Point Bent Specimen 

The stability analysis of crack ligament tearing is not only of interest 
for micromechanics-based modeling of the fracture process zone, but also for 
various macroscopic problems. To illustrate and corroborate the general con- 
clusions based on St.-Venant's principle, in particular Eq. 38, consider as 
an example the three-point bent beam specimen (Fig. 7), for which L = span, 
h = beam depth, a = length of crack (or of crack plus notch), c = h-a = 
length of ligament, b = beam thickness. In the literature there exist for 
this specimen various approximate Kl-formulas. However, those which are often 
used are invalid for small a/h. Nevertheless, a formula which is valid for 
the entire range 0 < a/h < 1, is asymptotically exact for c + 0, and generally 
has an error under 0.5%, has been derived by Srawley (22) for the case L = 4h: 

3PL ~ 1.99-~(1- ~)(2.15-3.93~+2.7~ 2) 
El = ~ FI(~)' FI(~) = (1+2~)(1-~)3/2 (42) 

where ~ = a/h. The rate of release of the total strain energy W of the whole 
specimen is 
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FIG, 7 

Nondimensional St~ess~Displace~ment Diagram 
Calculated for the Three-point Bent Beam Specimen. 
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~W b KI2 9z p2L2 2 
~--a = E- = 4b--~ -~-- ~F i (~)" (43) 

By integration 

~W ~ ~W 9z p2L2 
W = .aJo ~a da = f0 ~ h d~ = 4B---E-~-- F2(~) (44) 

in which 

F2(~) = fO ~'F2(~')d~'" (45) 

The deflection v under the load may now he calculated as 

~W 97 PL 2 
v = ~-~ = 2bE ~/ F2(~)" (46) 

If the crack is propagating, we must have K I = K c = critical value of K I (i.e., 
fracture toughness of the material). Thus, Eq. 1 yields: 

2DK c h3/2 
e = 3/~ L /~ Fl(e ) (47) 

Defining the nondimensional load S and the nondimensional displacement q, 

L E/h 
s = P, q = u (48) 

K bh 3/2 ~-~ 
C 

we have from Eqs. 7 and 6: 

2 ~ F2 (~) 
S = 3~-d" FI(C~) ' q = 3. FI(~) (49) 

The last equations represent a parametric definition of the non-dimen- 
sional load-deflection diagram S(q). Evaluation of S and q for various =- 
values yields the diagram in Figs. 7 or 8. We see that indeed there is no 
snapback, as indicated already by Eq. 38. The extent to which the actual 
measuredP(v) diagram in the three-point bent test deviates from the shape in 
Fig. 8 is an indication of inelastic behavior and existence of a large frac- 
ture process zone. 

Consider now the asymptotic behavior for small ligament, c/h ÷ 0. For 
that case Eq. 42 simplifies to the form: 

= 0.995(Pn/b)(z/h3)i/2~ -3/2 ($ = c/h). (50) 

Usin~ ~W/~ = -h ~W/~a = -hbK~/E, and integrating, we get W = 3.11 p2L2~-2/ 
(2bhZE), from which 

v = ~W/~P = 3.11 pL2~-2/(bh2E). (51) 

Setting K I = K and solving ~ from Eq. 50, Eq. 51 becomes 
C 

v = (l.45/E)(b2K2L/z) 2/3 p-I/3. (52) 

Exponent -1/3 agrees with Eq. 38 derived before for two-dimensional moment 
loading in general. 

For very small ~, v ~ p-6 as can be verified from Eqs. 46-47 
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