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Abstract. Strain-softening damage due to distributed cracking is modeled 
by an elastic continuum with a quasiperiodic array of cracks of regular 
spacing but varying sizes. As a model for the initial stage, the cracks 
are penny-shaped and small compared to their spacing, and as a model for 
the terminal stage the uncracked ligaments between the cracks are circular 
and small compared to their spacing. The strain due to cracks and the 
compliance per crack are calculated. The cracked material is homogenized 
in such a manner that the macroscopic continuum strains satisfy exactly 
the condition of compatibility with the actual strains due to cracks, and 
the macroscopic continuum stress satisfies exactly the condition of work 
equivalence with the actual stresses in the cracked material. The results 
show that, contrary to the existing theories, the damage variable used in 
continuum damage mechanics should be nonlocal, while the elastic part of 
the response should be local. In particular, the nonlocal continuum damage 
should be considered as a function of the spatial average of the cracking 
strain rather than its local value. The size of the averaging region is 
determined by the crack spacing. 

Introduction 

Introduction of nonlocal continuum concepts into the analysis of strain- 
softening structures [I] has recently met with considerable success. It 
has eliminated problems with spurious mesh sensitivity and incorrect 
convergence and has assured that refinements of the finite element mesh 
cannot lead to spurious localization of energy dissipation into a 
soft&ning zone of a vanishing volume [I-I0]. However, a physical 
justification of the nonlocal approach is still lacking. The objective of 
the present brief study is to show such a justification for a certain case 
of strain-softening that is caused by distributed cracking. 
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Array of Small Penny-Shaped Cracks 

We consider an infinite elastic continuum containing an array of 

small circular (penny-shaped) cracks normal to axis x of cartesian 

coordinates x, y, z (Fig. la). The cracks lie in parallel planes x = x. 
1 

i~ (i = ...-2, i, O, i, 2, ) and their centers lie at the nodes of a 

spatial cubic lattice whose nodal spacing for each of the lattice 

directions x, y and z is ~ To bring to light the nonlocal aspects, the 

crack array cannot be perfectly periodic. We make the array quasiperiodic 

by assuming that the radius a i of the cracks on the planes x = x. slightly 
i 
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Fig i Quasiperiodic Crack Array in Infinite Elastic Continuum (a) 

Small Penny-Shaped Cracks, (b) Small Circular Ligaments 
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varies from plane to plane. All the cracks are assumed to be small 

compared to ~, i.e. a. << ~ for all i. 
i 

At x ~-~ we assume a fixed boundary, and at x ~ ~ a stress-free 

boundary. Small uniform normal distributed loads Pi are applied on the 

planes x = x i + ~/2. As the boundary conditions at y ~ ± ~, z ~ ± ~, we 

assume that the boundary points are sliding on the planes parallel to x. 

These boundaries develop additional lateral normal stresses ~* and a' , 
z y 

which produce on the cracks stress intensity factors of zero values, and 

therefore they have no effect on the cracks. Consequently, these 

additional lateral stresses a ' and a ~ , which are superimposed on the 
y z 

stress field due loads Pi' are uniform in each layer ~/2 < x < x i + 

~/2. 
Due to the loads in the x-direction, there are additional nonuniform 

stresses (of all components) near each crack. If ai/~ is sufficiently 

small, the normal stress a X on each side of the plane x i + ~/2 is nearly 

uniform. Because of periodicity, each cell cross-hatched in Fig. la 

behaves as if its lateral boundaries were sliding. The average normal 

stress a X = a i°n any plane x = const, is exactly the same for all x 

within the layer x i - ~/2 < x < x i + ~/2. Across the interfaces x = x i + 

~/2 of these layers, a x varies discontinuously if Pi is nonzero. Note that 

the present boundary conditions and loading are introduced in such a 

manner that in absence of the cracks each layer is in a state of uniaxial 

strain, whose value varies from one layer to the next. 

If the cracks are sufficiently small compared to ~ (i.e., a .<<~), 
i 

they do not interact and the formation of one crack does not release any 

appreciable amount of strain energy from the outside of the layer in which 

this crack is located. Therefore, the stress intensity factor K. is the 
i 

same as for a single crack in an infinite elastic solid subjected to 

remote stress oi, which is [ii, 12]: 

K i = 2o i (ai/~)I/2 (I) 

Accordingly, the energy release rate per crack circumference 2~ a. is [13, 
i 

14]: 

aW. K~ 
i l 8 2 2 

aao - 2~ai E' - E ° a i a i (2) 
i 

where E' = E / (i - v2), E ~ Young's modulus, and v = Poisson's ratio. By 

integration, the total energy release per crack is: 
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8 3 2 
W. = -  a° ~. (3) 
l 3E' i i 

By Castigliano's theorem, the displacement v i due to the cracks lying 

in the plane x = x i is v i = aWi/ aP i where Pi = force resultant per crack. 

Since P. = ~2ai, we have 
i 3 

aW. 16 a. 
I i i 

= - a. (4) 

vi ~2 aa i 3E,~2 l 

This represents the difference of displacements between the planes x = 

x i - ~/2 and x = x i + ~/2. The average normal strain due to cracks in the 

~/2, x; + ~/2) may be defined as. 
interval (x i vi [~16 a i ] 3 

-[7,7] °i 
We may call it the cracking strain. Furthermore, assuming the cracks to be 

propagating, we must have K i = Kc = critical stress intensity factor of 

the material. Thus, from Eq. i, 

K 2 
C 

ai = 2 (6) 
4 a. 

I 
Substituting this into Eq. 5, we obtain: 

ffi ~ = ( 7 )  

ai '~3~i C( 7i' 2) 

in which function C represents the overall secant compliance due to cracks 

and is defined as" 

3E' ~ ffi 3 76  " (8) 
C 

Eq. 7 yields a decreasing stress ~i at increasing strain ~i' i e. strain 

softening. 

Note that compliance C depends on length ~, which may be regarded as 

the characteristic length of the cracked material. Dependence of the 

compliance or stiffness on some characteristic length is a typical 

property of nonlocal materials. 

Homogenization by Macroscopic Continuum Approximation 

The conditions of macroscopic equivalence of the actual cracked 

material and the homogenizing continuum have to be stated integrally for 

the basic, periodically repeated cell, in this case the layer (x i ~/2, 
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x i + 2/2). The basic conditions we must impose are the compatibility of 

deformations over this cell and the equivalence of work. For our 

example, we can satisfy them exactly. 

Compatibility of the macroscopic cracking strains 7(x) with the 

displacement v. due to cracks requires that 
z x.+2/2 

v i = 7(x) dx (9) 

x.-2/2 
1 

which implies that 
x.+2/2 

lI'l 
= - -  dx (i0) 

7i 2 xi_2~ x) = <7(xi)> 

The pointed brackets < > denote the averaging operator, and the 

superimposed bar is a label for the averaged (nonlocal) quantities. 

Equivalence of work done by the stresses in the layer (x i 2/2, x.1 + 

~/2) requires that 
x.+2/2 

ai6v i = o(x) 67(x) dx (ii) 
x.-2/2 
1 

where a(x) is the macroscopic continuum stress; and 6v. and 67(x) are any 
1 

variations of the displacement due to cracks and the macroscopic cracking 

strains which are kinematically compatible, i.e. satisfy Eq. 9. 

Substituting for v. from this equation, we obtain from Eq. ii: 
x.+2~2 x.+2/2 

67(x) dx = ) 67(x) dx (12) 
°i X . - 2 / 2  x o -  

i l 
Since a. is constant within the layer, Eq. 12 may be rewritten as 

z x . + 2 / 2  

J " l[a i - a(x)] 67(x) dx = 0 (13) 

xi-2/2 

and because this must hold generally for all possible variations 67(x), we 

have 

a(x) = ao for x. - 2/2 < x < x. + 2/2 (14) 
I 1 i 

Note that this equation for stresses involves no averaging integral while 

Eq. i0 for strains does. For the type of loading we assumed (i.e. 

distributed loads Pi on planes x = x i + 2/2), a(x) is according to Eq. 14 

a piecewise constant function. If the loads were not concentrated in these 

planes but distributed also over x, a(x) as well as a (~) would 

vary continuously and o(x) would not exactly equal ai(x) (representing the 
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average of stresses o over any plane x = const ). The reason we assumed 
x 

the applied loads to be concentrated into discrete planes was to construct 

an example for which the continuum homogenization conditions can be 

satisfied exactly. 

The presence of the spatial averaging integral in Eq. i0 is what 

ultimately impresses on the macroscopic continuum a nonlocal character, as 

we will see. At the same time, the absence of the averaging integral from 

Eq 14 causes the nonlocal character to be restricted only to the cracking 

strains. In this regard it may be noted that in the theory of 

heterogeneous materials [15] the work equivalence condition is usually 
, , 

stipulated in a slightly different form, namely ~a.~ = f ~(x)~ dx over 
, I 

an interval of length ~, c being an arbitrary uniform strain (virtual 

strain). This condition would imply that a i = f a(x)dx/~. However, it 

would not guarantee work equivalence for the actual displacements v. and 
l 

the actual cracking strains V(x) Thus Eq. 14 appears better justified for 

the present case. 

According to Eqs. I0 and 14, the relation 7i= C(Ti' ~)ai (Eq 7) has 

the following generalization. 

<V(x)> = C{<~(x)>, ~} a(x) (15) 

We see that the continuum cracking strain in this stress-strain relation 

is nonlocal, i.e., is processed through a spatial averaging operator. 

However, this is not true of stress o(x), 

The total displacement u in an elastic body with cracks represents a 

sum of the displacement obtained for the same body under the same loads if 

there are no cracks, and the additional displacement v due to the creation 

of the cracks while the loads are kept constant. Thus, the total relative 

displacement u i of the macroscopic continuum between the planes x = 

x. - ~/2 and x = x. + ~/2 is 
I i 

u°l = ~e(xi) + vi (16) 

where e is the elastic normal strain in the x-direction which is produced 

by stresses a(x) in the same elastic continuum if there are no cracks, and 

7(x) represents the increase of this elastic strain due to introduction of 

cracks of radii a i. Strains e(x) are obtained by stress analysis of the 

continuum with no cracks, which is local. 



QUASIPERIODIC MICROCRACK ARRAYS 413 

Substituting v i = ~i and defining the macroscopic strain at x = x i 

as ~(xi) - ui/~, we get from Eq. 16 E(xi) = e(xi) + ~i' and generalizing 

this to any x, we obtain: 

~(x) = e(x) + <V(x)> (17) 

So the total stress-strain relation for the normal x-components of stress 

and strain in the macroscopic continuum must have the form 

~(x) = e(x) + c[ <~(x)>, ~] a(x) (18) 

The elastic strain is determined as the strain in the continuum with 

no cracks. For the type of boundary conditions and loading that we 

introduced, the continuum with no cracks is in a state of uniaxial strain, 

i.e. all the strain components except ~x are zero. Thus 

e(x) = C O o(x) (19) 

where C O is the elastic compliance in uniaxial strain, 

(I + v)(l- 2v) (20) 
CO = (i - v) E 

To sum up, the stress-strain relation for the macroscopic continuum 

should not be fully nonlocal. The elastic strains should be local, while 

the (macroscopically smoothed) strains due to cracking should be nonlocal. 

This property of the nonlocal formulation, introduced on the basis of 

numerical experience and intuition in Refs. 3-8, has been found to be 

essential for achieving well behaving finite element solutions. 

It is possible to take an alternative approach to homogenization in 

which the relative total displacement u i = ~C0a i +S V(x)dx between x = x i 

± ~/2 is obtained before homogenization. Instead of Eq. 9 we may now 

impose the compatibility condition in the form u i = fE(x)dx over the 

layer. Writing the work equivalence in the form a.6u. = f a(x)~c(x) dx 
i i 

instead of Eq. Ii, we again recover Eq. 14 by the same procedure, however 

from the foregoing expressions for u i we obtain <c(x)> = e(x) + C[ <V(x)>, 

~]a(x). The fact that <V(x)> is nonlocal and e(x), a(x) are local agrees 

with Eq. 18 but the appearance of nonlocal <E(x)> disagrees. It would make 

the use of this stress-strain relation more complicated, probably 

unnecessarily so It should nevertheless be kept in mind that this aspect 

of homogenization is not without ambiguity. 

The idea of nonlocal continuum was originally introduced without any 

reference to strain softening [16-22] and all strains and stresses were 

considered as nonlocal, i.e. the continuum was fully nonlocal. When this 
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idea was first proposed [2] to deal with strain-softening damage such as 

cracking, the stress-strain relation was also assumed to be fully 

nonlocal : 

<c(x)> = <e(x)> + C[ <~(x)> - <e(x)>, ~] <a(x)> (21) 

This stress-strain relation, whose finite element implementation leads to 

the so-called imbricate medium and an imbricated finite element system 

[2], was found to cause various problems in finite element programming, 

due to difficulties in the implementation of the boundary conditions and 

interface conditions as well as the existence of certain spurious zero- 

energy instability modes. Thus, even though these difficulties have been 

overcome by certain artificial devices [23], this original version of the 

nonlocal formulation for strain-softening is complicated and less than 

satisfactory from the theoretical viewpoint. From the comparison of Eqs. 

18 and 21 we now understand why. 

To recapitulate, the elastic strain e is the strain of the continuum 

with no cracks, and so it must be local. On the other hand the macroscopic 

cracking strain must be defined by averaging (smoothing) of the effect of 

the discrete cracks in order to satisfy the strain compatibility 

requirement, and so it must be nonlocal. The basic reason is that the 

displacement due to a crack (Eq. 4) is defined with a unique value only at 

a sufficient distance from the crack. 

Nonlocal Continuum D~u~ge Nechanics 

In continuum damage mechanics [24-27, i], the stress-strain relation 

is written in the form: 

C o 
~(x) = i - ~(x) a(x) (22) 

where ~(x) is called damage and C ~ the elastic compliance for the 

continuum with no damage (~ = 0), i.e. no cracks. Comparison of Eqs. 18 and 

22 and substitution e(x) = Coa(X) yields for the damage the expression: 

C o 
~(x) = 1 - C[ <?(x)>, ~] + C O f( <V(x)> ) (23) 

i.e. the damage is a function, f, of the average cracking strain rather 

than the local cracking strain. 
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From Eq. 23, it is clear that continuum damage D should be considered 

to be a nonlocal variable. Moreover, Eq. 23 shows that D should be a 

function of the average of the macroscopic cracking strain V(x) Such a 

definition was introduced for reasons of proper convergence at mesh 

refinements in Refs. 3, 4 and 6. Ref. 3 also considered an alternative in 

which ~ is obtained as the average of the local damage energy release rate 

Y (or local damage ~) that depends on local ?. This is equivalent only 

approximately, not exactly. The same is true when ~ is considered to be a 

function of <E(x)> rather than <?(x)>, as done in Ref. 8 for other 

reasons. 

The definition of damage in Eq.23, along with the stress-strain 

relation in Eq. 18 in which ~, ~nd a are local, was found to yield 

excellent results in various finite element applications. The solutions 

were found to converge properly on mesh refinement [3, 4-6] and the 

numerical implementation proved to be quite easy even in large finite 

element programs [5, 7, 8]. Moreover, the nonlocal version of such 

programs provided faster convergence than the local version. As one 

application, the problem of cave-in induced by compressive strain 

softening at the sides of a subway tunnel excavated in a cement-grouted 

soil was solved using meshes with up to 3248 degrees of freedom [7]. 

If ?(x) varies so slowly that the change of ? over distance ~ would 

be negligible, then of course <V(x)> can be replaced by V(x), and the 

damage is then local. However, since strain softening causes strain 

localization, such a slow variation of ?(x) cannot be assumed to occur for 

all x. This is why a local treatment of strain-softening damage is always 

inadequate. 

Other Crack Systems and Ceneralization~ 

Many other types of crack systems can be analysed similarly. As one 

further example consider the terminal stage of damage in which the planes 

x = x i are fully cracked except for small circular ligaments of diameters 

2c i (Fig. ib). The centers of these ligaments coincide again with the 

nodes of a cubic lattice of step ~, and the ligaments are assumed to be 

very small compared to ~, i.e. c i<< ~ for all i. This problem was 

analysed for a different purpose in Ref. 28.1t was shown that (for K. = 
i 
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K ) the curve v i (ai) attains a maximum of v .after which it exhibits a 
c i 

snapback, whose final stage is described by the equation 

E '3 3 
a. = v. (24) 
l 4o K2~ 2 l 

c 
Again v. is the relative displacement between the planes x = x. ~/2 and 

l l 

x = x. + ~/2. 
i 

.+ The average normal strain due to cracks in the interval (x i- ~/2, x I 

~/2) may again be defined as ~i = vi/~" Eq 24 may then be written as 

a .  = (25) 
i 

C (7i' ~) 

in which 
3 

E' 2 
C (~i' ~) = 4o K 2 7i 

(26) 

c 

To satisfy the requirement of compatibility of displacement v. with the 
l 

macroscopic cracking strain 7(x), the value of V ~ay be replaced by 

<V(x)>, and further analysis is the same as before (Eqs 9-20), with the 

same conclusions 

The detailed form of the compliance function C(Ti, ~), as defined by 

Eq. 8 or 26 is for our conclusions about the nonlocal aspects obviously 

unimportant. What is important is that C depends on the characteristic 

length ~, and even more that it depends on the average cracking strain 7i 

which is macroscopically equivalent to <7(x)> rather than 7(x). Various 

other types of crack arrays should therefore lead to similar conclusions. 

The preceding analysis neglected the microscopic heterogeneity of the 

material, such as the differences in elastic moduli between the aggregate 

and the matrix found in concrete. This heterogeneity no doubt has a large 

influence but it alone might not necessitate a nonlocal treatment 

According to numerical experience, the nonlocal approach is required only 

if strain softening takes place, and strain softening is the consequence 

of microcracking, void growth or other damage 

The crack spacing in real materials is randomly irregular. To model 

this, one might consider a certain statistical distribution of lengths 2. 

Accordingly, one could introduce a certain weighting function in the 

averaging integral (operator < >) in Eq. 18. This has already been done in 

Refs 3-8 for reason of numerical efficiency° The analysis should also be 
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generalized to three dimensions, although this would bring about much 

greater complexity. 

The number of cracks increases during the progress of damage, and 

this reduces their average spacing. This might require the characteristic 

length to be considered as a variable. The question would then arise as 

to what is the proper domain over which the averages should be taken. 

Also, it needs to be recognized that there are other sources of softening 

damage than cracking, e.g., void nucleation and growth in metals, or 

interface slips with softening. Further extensions would be needed for 

such problems. 

C o n c l u s i o n  

i. Based on the analysis of an array of small penny-shaped cracks it 

appears that the damage variable in continuum damage mechanics should be 

treated as nonlocal while the elastic part of the response should be 

local. 

2. The nonlocal damage should be formulated as a function of the 

spatial average of the cracking strain over a zone whose size, 

representing the characteristic length of the macroscopic continuum, 

coincides with the crack spacing. 
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