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The test specimens are cylinders with a circumferential notch, loaded in torsion. Maximum loads of geometrically similar 
specimens of sizes 1 : 2 : 4 are measured and Ba~ant's size effect method is used to determine from them the value of fracture 
energy for Mode Ill (antiplane shear). This value is found to be about three times larger than the Mode I fracture energy and 
about nine times smaller than the Mode II fracture energy measured before. These differences appear to be explicable by 
inclined tensile microcracks in the fracture process zone and a dependence of the fracture energy on the confining normal 
force across the fracture process zone. 

1. Introduction 

Shear failure is an impor t an t  cons idera t ion  for dy- 
namic  loading of various hardened  structures and  
nuclear  reactor  vessels, as well as some ordinary  types 
of beam or slab structures.  In some of the failures 
observed, the fracture appears  to take place in the shear  
mode  or at least a combina t ion  of the shear mode  and  
the opening mode, and  so the failure analysis necessi- 
tates the value of the fracture energy for shear. 

Shear fracture energy tests have been conducted  by  
Ba~ant and  Pfeiffer [7] with Mode  II loading, i.e. in- 
p lane  shear loading. The present  s tudy presents  the 
results of shear fracture tests in Mode  III, i.e. the 
an t ip lane  shear. A cylindrical specimen with a cir- 
cumferent ia l  notch,  subjected to torsion, is used for this 
purpose;  see figs. I and  2. 

2. Description of the experiments 

Opposi te  couples were applied at the ends of the 
no tched  cylindrical specimen to produce  a torque, T, as 
shown in figs. 1 and  3. To de termine  fracture energy by 
the size effect me thod  [2,4,13], geometrically similar 
specimens of significantly different sizes were tested. 
The  diameters  of the cylinders were d --- 1.5, 3, and  6 in. 
The length- to-diameter  rat io  was l / d =  2. A circular 
no tch  of thickness 1 / 1 6  in. was cast at mid- length  
perpendicular  to the axis of the cylinder (figs. 1 and  2). 
The no tch  dep th  was a 0 = d / 4 .  

H 
Fig. 1. Torsional circumferentially notched fracture specimens. 

The  torques were applied at each end as force cou- 
ples in the way shown in figs. 1 and  3. The wedge-shaped 
cut-outs  on  which the loads were applied were formed 
in a s t andard  cylinder mold  using inserted pieces of 
wood t reated against  mois ture  absorpt ion.  The  size and  
shape of the wedges are def ined in fig. 1. Each end 
couple had  an  a rm of 2 d / 3  and was applied in a p lane  
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Fig. 2. Specimens of all sizes tested. 

perpendicular  to the axis of the specimens at a distance 
of d / 8  from the ends. 

Nine  specimens were used, three for each size (fig. 
2). Three compan ion  cylinders for compress ion strength,  
3 in. in d iameter  and  6 in. in length, were cast from the 
same batch of concrete as the fracture specimens of 
each test series. The mean  and  s tandard  deviat ion of the 
compression s t rength fc' after 28 days of moist  curing 
are given in table 1, The 28-day £ '  values were not  
directly measured but  calculated from the measured 
compression s trength £ ' (35)  measured at the t ime of the 
tests at which the age of concrete was 35 days. The 
adjus tment  for age was based on the approximate  for- 
mula  [151 f~'(t) = fc'(28)[1 + 0.277 log( t /28)] ,  f rom 
which £ ' (28)  = 0.974fc'(35). 

The specimens were cast with the longi tudinal  axis in 
a vertical position, using water-cement  rat io 0.6, and  
cement-sand-gravel  ratio 1 : 2 : 2  (all by weight). The 
max imum gravel size was d a = 0.5 in., and the maxi- 
m u m  sand grain size was 0.19 in. The aggregate con- 
sisted of crushed l imestone and  siliceous Illinois beach 
sand (Lake Michigan).  Por t land cement  C150, ASTM 
type I, with no admixtures  and  no air -entraining agents, 
was used. 

The specimens were removed f rom the waxed card- 
board  molds after one day and  were subsequent ly cured, 
unti l  about  one hour  before the test, in a moist  room at 
95% humidi ty  and 8 0 ° F  temperature.  The execution of 
the tests had to be pos tponed unti l  the age of concrete 
was 35 days, instead of the s tandard  28 days, because a 
temporary  malfunct ion  of the testing equipment  caused 
delay. Fig. 3 shows the specimens of all sizes installed in 

Table 1 
Compression strength of concrete used 

a 0 f~ (psi) Std. dev. (psi) 

d/6  5588 158 
d /4  5633 221 
All tests 5610 158 

1 psi = 6.895 kPa. 

the test ing machine.  Fig. 4 exhibits  the fractured speci- 
mens after the test showing the failure surface. The 
values of the s t rength  and  fracture energy given in this 
paper  are all corrected from the measured values to 
obta in  comparab le  values at 28 days. 

All the tests were carr ied out  at room tempera ture  in 
a closed loop MTS machine  under  s troke-control  condi-  

Table 2 
Maximum torque 

Test Maximum torque (lb-in.) 

d a0 T1 T2 

Average 
max. torque 
(lb. in.) 

6.0 1.00 10560 11520 10920 11000 
6.0 1.50 6840 7020 6540 6800 
3.0 0.50 1560 1524 1584 1556 
3.0 0.75 936 984 966 962 
1,5 0.25 213 219 216 216 
1.5 0.38 140 132 128 133 

1 lb.in. =175 N.m. 
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3. Size effect method for determining the fracture en- 
ergy 

Fig. 3. Specimens during test and the loading arrangement: (a) 
large specimen ( d =  6 in.); (b) medium specimen (d = 3 in.); 

and (c) small specimen (d = 1.5 in.). 

tions. The loading rates were chosen such that the time 
to failure was 3 to 5 rain for specimens of all sizes. To 
calculate the fracture energy from size effect analysis, 
one needs to measure only the maximum loads of the 
specimens of various sizes. The measured maximum 
torques T are given in table 2. 

The size effect is understood as the dependence of 
the nominal  stress at failure ~'N on the characteristic 
dimension of the specimen, d, when geometrically simi- 
lar specimens or structures are considered. For three-di- 
mensional similarity, ~'N is generally defined as r N = 
CP/d  2 where P = maximum load, d = characteristic di- 
mension of the body, and C = arbitrary nondimensional 
constant. For  the present specimens ~'N = 161"/~d3= 
CP/d  2, where T = maximum torque, and C = 16R/~'d 
which is constant since R / d =  constant for geometri- 
cally similar specimens ( T =  PR where R is the arm of 
the force couple applied at the ends). Note  that the 
value of C has no effect on the values of fracture energy 
given by eq. (3) which follows. The value of TN as 
defined represents the maximum elastic stress if there 
were no notch or crack. 

Because the cracks in concrete propagate with a 
relatively large microcracking zone which blunts the 
fracture front, the size effect represents a transition 
between the plastic limit analysis, for which there is no 
size effect (i.e. T N is constant), and the classical linear 
elastic fracture mechanics, for which the size effect is 
the strongest possible and is of the type z N - - d - 1 / 2 .  
This transition may be described by the approximate 
Ba~ant's size effect law 

where B and ?t o are empirical constants, d a is the 
maximum size of aggregate, and ft '  is the tensile strength 
of concrete. Eq. (1) has been theoretically derived for 
three-dimensional problems in ref, [13], and for two 
dimensional problems in ref. [2] and more precisely in 
ref. [4]. It has been experimentally validated in Mode I 
(opening) fracture [7,12] and has also been found to 
approximately apply for Mode II (shear) fracture [3,7]. 
Tests further showed that eq. (1) is applicable to various 
brittle failures of concrete structures such as the failure 
of beams in torsion, the punching shear failure of slabs, 
the pull-out failure of steel bars embedded in concrete, 
etc. [6,8,9,10]. 

To determine parameters B and ?to, eq. (1) may be 
transformed to the form: 

[/:] 2 1 d 1 

"rN B2?t0 da + B 2 (2) 

Eq. (2) represents a linear relation between (ftt//'rN) 2 
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Fig. 4. Fractured specimens after the tests, showing the failure surfaces: (a) complete set of specimens; (b) detail of large specimen 
(d = 6 in.); and (c) detail of small specimen (d = 1.5 in.). 

and  d / d  a and may be rewrit ten as Y =  A X +  C with 
Y = ( f t ' / ' rN)  2, X = d / d a ,  C = 1 / B  2, and A = C / N  o. 
So the constants  A and C may be obta ined  by linear 
regression of the test results, from which B = C 1/2 
and  )t o = C / A .  The regression plots also yield statistics 
of the errors. The coefficient of variat ion ~0 r l x, and  the 
correlat ion coefficient r are given in fig. 5. 

As proposed by Ba~ant [4,13], the concrete fracture 
energy, G e, may be uniquely defined as the energy 
release rate required for crack propagat ion  in an in- 
finitely large specimen. This definit ion must, in theory, 
yield results independent  of bo th  the size and  the shape 
of the specimen, provided the correct size effect law for 
extrapolat ion to infinite size is known. The exact size 
effect law is unknown,  but  the approximate  size effect 
law in eq. (1) was shown to be adequate  for practical  

purposes.  The following formula has been derived 
[5,11,131: 

af g('~o) ,2 = - - f t  da (3) AL'~ 

in which a 0 = ao/r ;  a 0 = notch  depth;  r = radius of the 
cylinder;  E~ = modulus  of elasticity of concrete;  i f =  
direct tensile s t rength of concrete;  A = 1/B2~.o = slope 
of the regression line as already defined; g ( a o ) =  
nondimens iona l  energy release rate of the specimen 
according to the l inear elastic fracture mechanics,  which 
can be found for the basic specimen geometries in 
textbooks and  handbooks ,  and  can be in general de- 
termined by l inear finite e lement  analysis. For  the speci- 
mens with the no tch  depth a o = d / 6 ,  g ( a 0 ) =  1.57(1 + 
v) = 1.85, and  for the specimens with the notch depth  
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which yields Gf(28)=0.976Gf(35).  Fig. 5 has been 
plotted using the 28 day values. The resulting fracture 
energy value, which represents the basic result of this 
study, is 

G~ II = 0.61 lb . / in . (106  N / m ) .  (5) 

For comparison, previous tests of essentially the same 
concrete yielded for Mode II and Mode I [7] the values: 

G~' = 5.9 lb . / in . (1040  N / m )  

G~ = 0.19 lb . / i n . (33  N / m )  t" 
(6) 

72- 

A = 0 . 3 1 2  Gf = 106 N/m 
C = 4 . 1 6 7  

10- r = 0 .951  
W y l =  0 . 0 6 7  

b~ a- 

4' 

Notch depfh = d/A,  i ~ . ~  

i0 is 
d i d  , ,  

Fig. 5. Tests results: (a) size effect plots, and (b) linear regres- 
sion plots. 

a o = d / 4 ,  g(ao)  = 6.99(1 + u) = 8.25 [14,16]. These val- 
ues, which are valid for Poisson ratio ~, = 0.18, have 
been used in all the calculations. 

The tensile strength was estimated from the formula 
ft" = 6fc ']/2 where f" and ft' are in psi, fc' = compression 
strength. Since the slope A of the linear regression plots 
is proportional to ft '2, an error in ft" has no effect on 
the fracture energy values. 

The values of '7" N = 1 6 T / ~ d  3 calculated from the 
measured maximum torques T, are plotted in fig. 5. The 
plots at the top demonstrate that the measured ~'N 
agrees with the size effect law (shown as the solid curve) 
quite well. The plots at the bottom show the linear 
regression used to determine the mean values of the 
parameters of the size effect law. 

The fracture energy values obtained in this manner  
correspond to the age of 35 days. They were then 
transformed to 28 days by using Ba~ant and Oh's 
empirical formula [1]: 

Gf = (2.72 + O.0214f t ' ) f t 'Eda /E ,  (4) 

.4. Discuss ion of  test results 

Comparison with the Mode II and Mode I fracture 
energies (eqs. (5)-(6) shows a surprise. The values of 
G]II might have been expected to be about the same as 
G[ l (and far larger than G]). But this has not  turned out 
to be the case. The measured G] 1I is much smaller than 
G] ]. The mechanism which explains this finding will 
require further study. Since the present Mode III test 
achieves the shear fracture conditions better than the 
Mode II test, the meaning of the G~ l values obtained 
previously calls for closer examination. 

A clue is provided by the experimental observation 
that the results of shear fracture tests are very sensitive 
to the restraint of the specimen in the direction normal 
to the fracture plane (the axial direction of the cylinder 
for the present tests). In pilot tests prior to those 
reported here, it was discovered that very differertt 
results are obtained if friction at the supports is not 
eliminated. The confinement  of the shear fracture zone 
due to the axial friction force, F, from the supports no 
doubt  can raise the value of G f  significantly. 

One series of pilot torsional tests of Mode III frac- 
ture was carried out with a different equipment - a 
large triaxial torsional testing machine which is very 
stiff because the test chamber (of 8.5 in. in diameter) is 
designed to resist chamber pressures up to 20000 psi 
plus axial forces up to 1 100000 lb. The tests in this 
machine, which were made at essentially zero axial 
displacement at the ends of the cylindrical specimen, 
showed a different mode of failure, with a conical 
failure surface (see fig. 6). The axial force due to re- 
straint in these tests was even capable of altering the 
failure mode, although the failure with a conical surface 
was still of the shear type. 

To explain these observations, it is logical to assume 
that G~ II as well as G~ 1 is not a material constant but  a 
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Fig. 6. Conical failure surface observed in previous tests of 
Ba~ant and Prat with stiff axial restraint. 

material function g(Nf)  of the normal force Nf across 
the fracture process zone of length lf, normal to the 
shear fracture plane, per unit length of the crack front 
edge. On the other hand, it may also be logical to 
assume that function g(Nf)  is the same for Mode II and 
Mode III shear fractures, i.e., for the same Nf, G~ 1= 
G~[I= G~=shea r  fracture energy (regardless of the 
mode) such that 

G ~ = g ( N f ) ,  (7) 

where g(Nf)  is a function of Nf. The dimensions of G~ 
and Nf are the same, i.e. N / m .  

That G~ I must in general strongly depend on Nf has 
already been corroborated by Ba~ant and Pfeiffer's [7] 
finite element analysis of their Mode II fracture tests. 
Their study in fact made an even more general assump- 
tion, namely that both Mode I and Mode II fractures 
can be modeled by the same stress-strain relation for 
the fracture process zone. The reason one gets very 
different effective values of the fracture energy in Modes 
I and II can be found in the fact that in shear the 
microcracks in the fracture process zone do not lie in 
the fracture plane but are inclined to it by angle a (see 
fig. 7e,f). The column of intact material between adjac- 
ent inclined cracks carries compression force ( F  c in fig. 
7f). This force has an axial component  ( E  a in fig. 7f) 
which must be resisted together by the tensile stresses in 
the undamaged portions of the ligament (01 in fig. 7a) 
and by the axial force F provided by the support. If 
axial displacements are prevented, the inclined com- 
pressive forces, F~, are high and can offer a large 

resistance to shear. Hence the apparent values of frac- 
ture energy must be large. If the axial displacements are 
free, the inclined compression forces must vanish and 
thus cannot contribute to transmit shear stresses across 
the fracture process zone, and then the apparent value 
of shear fracture energy is small. 

The action just described was automatically ex- 
hibited by a finite element model with a tensile soften- 
ing stress-strain relation for the fracture process zone. 
Using such a model, Ba~ant and Pfeiffer [7] showed that 
the results of both Mode I and Mode II fracture tests 
can be matched with the finite element program using 
the same material properties. In this finite element 
analysis one does not directly use the fracture energy. 
Rather, one uses a triaxial stress-strain relation such 
that the area under the implied uniaxial tensile diagram 
equals G f / w  c where w~ = effective width of the fracture 
process zone. This type of finite element analysis is 
planned to be carried out for the Mode II! fracture tests 
in the subsequent stage of this shear fracture project, 

As a crude approximate description of the role of the 
confining force Nf, we may write the longitudinal equi- 
librium condition assuming a zero axial resultant in the 
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Fig. 7. Transverse stresses and inclined microcracking induced 
in the fracture process zone in shear fracture tests. 
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cross section (see fig. 7a, b). With the notation 61 = 
average tensile stress in the tensile zone of the ligament 
and r 1 = radius of this zone, the equilibrium condit ion 
is ~ r ? o l = - 2 ~ ' r z N  f or Nf = - ~ l r 2 / 2 r 2  where r2= 
radius up to the location of the compression force 
resultant Nf in the fracture process zone (fig. 7a). We 
may assume that r 2 = k2rl where k 2 = empirical con- 
stant of the order of 1 and k 2 > 1. Approximately we 
may write ¢~1 = kl f t '  where k 1 = empirical constant of 
the order of 1, perhaps k 1 = 0.5 to 1.0, and ft '  = direct 
tensile strength of concrete. Solving for Nf, we get: 

klft' 
N f -  2k2 r 1. (8) 

For  the previous Mode II fracture tests of Ba~ant and 
Pfeiffer [7], a similar equilibrium condit ion for the 
fracture plane cross section yields 2bclff 1 = - 2 b N f  or 
Nf = -c161 where b = specimen thickness, 2c I = height 
of the tensioned port ion of the ligament (fig. 7c,d). 
Setting again 1~1 = k l f t  t, we get: 

Uf = -Clk l f t ' .  (9) 

Let us assume that function g(Ne) can be approximated 
linearly (fig. 7g), i.e. g ( N e ) =  G d - c f N f  where G~= 
shear fracture energy at zero confining stress and cf = 
nondimensional constant. For  Nf = l f f  t' the fracture 
energy should become approximately zero, and so we 
have 

g ( N f )  = c f ( l f f t ' - N f ) .  (10) 

Using eqs. (8) and (9) in eq. (10), we obtain 

G~ I If + k i t  1 

a~ 11 - If + r l k l / 2 k  2 " (11)  

The previous analysis is based on the assumption of 
a linear dependence of Gf on Nf. In reality this depen- 
dence must be expected to be nonlinear. Materials such 
as concrete exhibit a br i t t le-duct i le  transition at a cer- 
tain confining pressure Pbd; for ordinary concrete ap- 
proximately p bd ~"  10 000 psi. Above this pressure value, 
there is apparently no softening and no fracture, and so 
G~ -~ o0. To satisfy this condition, the nonlinear depen- 
dence of Ge on N r may be assumed in the form (fig. 
7g), 

G f = A ( N f - U b d ) - n + B ,  (Nf  > Nbd) ,  (13)  

where A, B, n = empirical positive constants and Nbd 
= / fPbd .  Constants A and B may be determined from 
the conditions: (1) G~ = 0 for Nf = lfft ' ,  and (2) G~ = G~0 
for Nf = 0 where G s = shear fracture energy at zero f0 
normal force across the ligament. This yields (see fig. 
7g) 

G~ = G ~ ( U f - - N b d ) - " - = ( N - ° - -  N b d ) - "  (14) 
f0 (__gbd) " __ ( g  ° _ g b d ) - -  ' 

where N o = lfft'. This nonlinear form of the function 
Gf(Nf)  can considerably alter the values in eq. (12) 
which correspond to the observed ratio G~II/G[ I. 

The foregoing analysis has one weakness in the fact 
that the size effect law in eq. (1), which underlies the 
determination of fracture energy, might not be valid 
when the value of the normal force Nf across the 
fracture process zone is different for various sizes. If 
this were so, a more sophisticated extrapolation to 
infinite size would be required to obtain the fracture 
energy value. It remains to be seen whether this aspect 
can significantly affect the present results for the practi- 
cal size range. 

Since the fracture energy is defined for the limit case of 
an infinitely large specimen, we must assume If << cl, 
If << r 1 and so 

G~ I 
~ = 2 k 2 ~ .  (12) 

According to the results of the tests made (eqs. 
II in (5)-(6)), G f / G f  --- 9. This value can be obtained from 

eq. (12) if it is assumed that k 2 = 1.5, c I = 0.75c0, and 
r I = 0.25% (c o = r0). These values do not appear to be 
out of the range of the reasonably expected behavior. So 
we may conclude that the difference between G~ l and 
G~ It is not all that surprising and might be explicable 
by a rational theory. But further test as well as finite 
element studies will be required. 

5. Conclusions 

(1) The torsional circumferentially notched cylinder 
represents a relatively simple fracture test which yields 
consistent results and can be used to determine the 
shear fracture energy quite easily by Ba~ant's size effect 
method. 

(2) Although according to the elasticity theory this 
specimen yields a perfect shear state (a stress field with 
antiplane symmetry near the crack front edge), it does 
not  in general yield a perfect shear state for the actual 
material behavior. The reason is that transverse confin- 
ing normal stresses are inevitably produced in the liga- 
ment  cross section due to volume expansion caused by 
microcracking of the fracture process zone. 
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(3) The value of fracture energy obta ined  from the 
present  Mode III tests is about  3-times larger than  the 
Mode  I fracture energy and  about  9-times smaller than 
the Mode II fracture energy obta ined with the double-  
no tched  four-point- loaded specimens used by Ba~ant 
and  Pfeiffer [7]. 

(4) The discrepancies between the aforement ioned 
Mode  II and  Mode  III fracture energy values appear  to 
be explicable by inclined microcracking in the fracture 
process zone, the associated volume change and  the 
induced compressive force across the fracture process 
zone. As a result of this force, the shear fracture energy 
for Modes II and  III  (unlike the Mode  I fracture 
energy) is not  a material  cons tant  but  must  be consid- 
ered to be a material  funct ion of the confining normal  

force. 
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