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STRAIN-SOFTENING BAR AND BEAM : 
EXACT NON-LOCAL SOLUTION 
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Abstract-Using the recently developed imbricate non-local continuum approach. zones of strain 
softening (distributed micr~racking) which have a tinite size can be modeled. A differential approxi- 
mation of the averaging integrals for the non-lo4 continuum makes it possible to obtain exact 
analytical solutions for uniaxial softening in a hdr or for flexural softening in a beam. The ditforential 
equations of the problem along with the essential and natural boundary conditions and the con- 
ditions at the interface between the softening and non-softening regions are derived by a variational 
pro&me based on the principle of virtual work. The faiiure due to strain softening is analyzed as 
a stability problem. In contrapt to the blunt crack band mod& the si7e of the strain-softening region 
is treated as an unknown to be solved by stability anal>&. Numerical results show that the size of 
the strain-softening region is approximately constant. and so is the energy dissipated due to failure. 
Ductility diagrams. giving the strain :H failure as a function of beam sire and support stitfncss are 
also crtlculntrd and are found to bc quite similar to those ohlained previously by local analysis with 
an assumed six of.the snftcning r&n. These conciusion~ lend further support to the use of a blunt 
crack hand tnodcl for localircd cracking. 

Failure of brittle hcterogcneous materials such as concrctc or rock usually involves large 
zones of distributod cracking. On the maoroscalc, the material in thcsc zones exhibits strain 
softcnin~. i.c. a gradual dccrcasc of stress ut increasing strain. The m~lthcmati~l modeling 
of this phcnomcnon has rcccntiy gcncrated extonsivc dcbatc[ I-31. Problems arise with the 
strain-softening concept when a rate-indcp’cndcnt local continuum is considcrcd. For that 
CXX, it may bc shown that strain-softening zones of finite size arc in general unstable, and 
the cracking or strain softening may tocalizc to a zone of zero volume, i.e. a surface, or a 
linr. or a point. Ncvcrthclrss. large zones of cracking arc often obscrvcd experimentally. 

A simple way to describe cracking zones of tinite size in a finite element code is to 
prescribe the minimum size ofthc strain-softening finite elements. This approach, proposed 
on the basis of stability analysis in 1974[4]. has lrd to thr formulation of the blunt crack 
band modcl[4-71. which has been shown to bc in agrccmcnt with fhc fracture test data on 
concrete or rock available in the literuturc. An altcrnntivc method to obtain agrccmcnt with 
these fracture data is to lump the cracking into a lint and postulate a stress-displacement 
r&ion at the tip of it lint crack[Xj, in a manner which is similar to tho original models for the 
cohrsivc zone in ductile fracrurc[9, IO]. This altcrnativc approach, however. is incapable of 
handling cracking situations in which the cracking dots not localize to a zone of minimum 
possible width, as detcrmincd by the aggregate size or grain size, but remains distributed 
over much larger arcas. Such situations happen, e.g. in rcinforccd concrete when the steel 
ratio is sulficicntly large, or in dynamics whcrc inertial forces prcvcnt immediate localization. 
and also in certain situations whcrc a compression zone immcdiatcly ahcud of the fracture 
front provides a restmint which prcvcnts the localization of cracking. as has been dcm- 
onstratcd for curtain thcrmul stress problems. 

A rigorous formulation for distributed cracking. which has the blunt crack band model 
as its special cast and can describe strain-softening zones of finite size, was recently proposed 
in Ref. [6]. Like the classical non-local continuum thcory[l I-IS], the macroscopic stress, 
called broad-range stress, is considered to bc ~1 function of the mean strain over a certain 
representative volume the size of which (the characteristic length) is a property of the 
material, Unlike the classical non-local continuum theory, however, the averaging operator 
that defines the mean strain must be applied once more to the broad-range stress in 
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order to obtain the stress to be substituted into the differential equation of equilibrium. 

Furthermore, this non-local continuum must be coupled in parallel (i.e. overlaid) with a 

local continuum in which the (local) stress at a point depends only on the strain at the same 
point. This overlay is necessary to prevent spurious zero-energy periodic deformation 

modes. The continuum may be considered as the limiting case of ;I system of imbricated 

(regularly overlapping) finite elements the size of which is kepr constant and equal to the 

characteristic lengh of the medium while the mesh is refined. Therefore. this new type of 

non-local continuum is called imbricate. 

The imbricate non-local continuum has so far been used only in numerical finite 

element studies. Various problems of one-dimensional planar. cylindrical. and spherical 
waves as well as the fracture process in ;1 two-dimensional rectangular specimen have 

been solved for strain-softening materials. However. no enact analytical solutions for the 

imbricate non-local continuum have yet been obtained. Development of such solutions is 

the objective of this work. Such solutions are useful for verification and calibration of 

imbricate non-local finite element programs. They can also bring to light some simple basic 
properties of the imbricate non-local continuum, e.g. the variation of the size of the strain- 
softening domain and the energy dissipated in it as a function of the structure size. support 

stiffness. and the softening slope of the macroscopic stress-strain diagram. We will 

demonstrate such solutions for one-dimensional problems of axial deformation as well ~1s 
bending. 

flcforc cmharking on our analysis. it is proper to mention that some researchers at 

present bclicvc that continuum models with strain softening. cvcn in the rcccnt non-local 

form, do not adcquatcly dcscrihc the physical reality. Sornc of them assert that the only 

rwlistic approach is cithcr rni~romcshani~s iln;ltysiS introducin 0 sonic spccilic form ol c 

Illiltcri~ll inlioIiiogcIIoili~s or rcprcscIit;tlion of ;I damage YonC through il sofkning stress 

tlisptaccrncnt relation for iln isohtod cquivalont crack. Others propose the LISC of hwno- 

gcnimtion theory. although clucstions then arise bvhcthcr homogcnizatio~l is physicillly 

realistic ifcliscc)lltinuitius can dcvctvp within the sof[cning Lone or on its boundilry. Inter- 

csting though such proposals anti criticisms may hc. they have not so far Iccl to any usable 

IllilttlClll~l~iC;Il Inodd for slruclurd analysis. Wilhin lhc liniitcd Scope of this paper, thcsc 

rlivcrgcnt views cannot hc analyzccl adcquatcly. k‘or ii more tlCtililCll discussion see, c.g. 

kf. [I ] which gives iI11 cxtcnsivc bibliography. 

It is proper to point out also hat aiiolhcr forniulation Of il non-local continuum for 

strain softening hiis been found after the comptction of fhc prcscnl an:ilysis[ 16-151. This 

formulation in which the clilstic strains ;lrc considcrcd to bc local and the non-local 
trcutmcn~ is applied only 10 those internal variables which cause strain softening, has been 

I‘ound lo perform very wctl in tinitc element analysis and has already been succcsst‘utly 

applied to ;I linitc clcmcnt system with several thousand nodal displaccments[l6] (c.g. 

problems of stability of the excavation of it tunnel in ;I grouted strain-softening soil). The 

:ldvilnt:lgcs 01‘ this :lltcrnative formulation are that: (I) it requires no elcmcnl imbrication 
and thus is simptcr to program. (2) no extra boundary conditions of higher or&r (such as 

crlns ( I?) (I 5)) arc nccdcd. and (3) there exist no periodic zero-energy instability modes, 

making an overlay with ;I locat ctasticcon~inuum unnecessary. This altcrnativc formulation, 

however. dots not apparently pcrmil explicit analytical solutions such as presented in this 
paper. Also, the operators in it arc no1 symmetric. uhilc those in the present formulation 
arc. 

I~II~f~ERENTIAI. ,\I’PRONIXlr\TION FOR A SON-LOCAL CONTINUUM DAR 

We consider ii bar of uniform cross section with a unit arca (Fig. I(c)). The bar is 
initially in equilibrium at initial total stress S” and initial :lxiill displacements II” which 
depend on the axial coordinate X. We consider increments U(S) of the axial displacement 
from this initial state. In the imbricate non-local continuum. we must distinguish two kinds 
of incremental stresses: the local stress 5 and the broad-range stress 6, which may bc 
expressed ilS 
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in which E, f? arc the locat and non-local irlcrct~~cnt~ll cl&c moduli, &r/d_x = I: the tocitl 
strain incrcmcnts, C the mcxn for non-local) strain inorcmcnt. x(x) the given ompirioal 

wciyhting l’unction. antI /the hrxtcristic Icngth. over which the strain avcruging is carrid 

out. 

‘I‘hc intcgrai ~~~liIiiti~)l~ of’ the n~c;~n strain in cqn (I) makes it dillicult to ohtain 
amtlytical solutions. It i\lso rquircs modilication at points closer to the ends of the bar 
than I,‘?. Thcrcforc. WC will use ;I di!Ycrcntial approximation (1). which is obtnincd bq 
cxpnndiny In into ;I Taylor scrims, integrating and truncating the resulting scrics after the 

second term ; this lcads to 

in which i is the Icngth constant (quai to liV/I!4 if r = I ; SW Ref. [S]). It may be shown 
by variational calculus (2) that the JifTcrcntial equation ofequilibrium associntcd with cqn 
(3) must have the form dSjd.t- = 0 in which S is the total stress (ix. the actu:~l stress), 

dclincd ;1s 

(3) 

whcrc r7 is the mean stress and c the empirical coctlicicnt characterizing the frnction of the 
locnl rcsponsc. For c = I all rcsponsc is local, and for L = 0 all rcsponsc would he nonlocal. 

Howcvcr. its shown bcforc cyn (2). the case c = 0 is unstable (for a uniform weighting 
function Z(J)). permitting periodic zero energy deformation modes. Stability requires that 
c > 0. although for practical numerical reasons the vnlucs of c less than about 0.1 should 
bc avoided in finite elcmcnt analysis bccausc they produce excessive numerical noise. 

Tht material of the bar is assumed to obey a rate-independent stress-strain relation 
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which exhibits a post-peak strain softening (Fig. I(a)). As shown before eqns (1) and (2). 
the strain softening is admissible only for the non-local part of material behavior. i.e. for 

the dependence of the broad-range stress B on the mean strain c. The local behavior may 

be elastic (Fig. I(b)) or elastic-plastic hardening. but not softening. For the non-local 

inelastic behavior. we must distinguish the incremental elastic moduli for further loading 
(increasing strain). E= E,. and for unloading (decreasing strain). I? = E,. For the pre- 

peak. hardening regime. E, > 0, while for the post-peak, softening regime. E, < 0. Always 

E,, > 0. For the local behavior. E > 0 always. 

We consider only static deformations. in which the bar must be in equilibrium. and so 

S = const. along the bar. When the broad-range stress is in the pre-peak hardening regime. 

only one strain value corresponds to a given stress value. and so the strain distribution 
must be uniform. For the post-peak softening behavior. however. the strain does not have 

to be uniform because more than one strain value is associated with a given stress value. 

Accordingly. we assume that a centrally located segment of length 3 undergoes further 

loading. and the remaining segments of lengths L-/z undergo unloading from the same 

initial state characterized by stresses r’), 0”. S” and strains E” = 6” (Fig. I(c)). (It may be 

shoivn that strain softening always localizes into a single segment rather than several 

segments.) To simulate the behavior of a specimen in a testing machine. we consider the 
spccimcn to bc loaded through springs of spring constants C attached at the ends. 

Due to symmetry. we analyze only one-half of the bar of length L, loaded by one 

spring. The objcctivc or our analysis is to check succcssivc post-peak states in the strain- 

softening rcgimc and dctcrminc the initial strain E ” at which the strain distribution first 

hccomcs unstable. with strain localization into a scgmcnt of Icngth Il. This length is also 

unknobvn and is to hc solved. The bar is lo;~lcd at the end of the spring in ;I displaccmcnt 

controlled fashion. and the strain incromcnts I: arc assumcrt to happen so rapidly that the 

tlisplaccmcnt at the cntl of the spring is zero, i.c. no work is done by the external loads or 

prcscribctl displaccnicnts during the incrcmcntal deformation. 

The csscntial and natural boundary conditions ucrc determined bcforc[Z], but the 

intcrfacc conditions and the conditions for elastic boundary restraint or symmetry wcrc 

not. To obtain thcsc conditions. WC consider the virtual work of the incrcmcntal strcsscs in 

the system 

I. I. 
dlY = 

s 
(I -+K d.~+ 

I, s 
L’51: d.r + s cv,, = 0 

I, 

(i IV!. = C[tr, -ark] [&l, -cilrl(L)] (4) 

in which II:(L) is the displacement at the end .V = L of the bar. and 11~ is the displacement 

at the end of the attached spring. The still’ncss C of the sprin, 4~ is assumed to bc constant. 

Distinguishing the strcsscs and displaccmcnts in the loading and unloading scgmcnts by 

subscripts I and 2, and substituting eqn (2) for C with I: = dlrid.v = II’, wc obtain 

I, 
5CI’= [( t - (.)0, (,h’, + L’&i’;‘)] d.v+ ” [( I - ,,)fl,(,iuj + ;.‘&y)] J.v 

I, I. 

+ 
s 

(‘5, h’, t1.v + 
f 

c.rlii14: d.~+drl’,. = 0 (5) 
0 I, 

in which the primes arc used to dcnotc the dcrivativcs with rcspcct to .v. Through succcssivc 

integrations by parts NY may transform cqn (5) ;IS follows : 

SIC.‘= [(I -~.)a, (Sir, +i.2j~~‘;) +cT,~u,]:~ 



Strain-softening bar and beam : exact non-local solution 

6fi’= [[(l-c)(d,+j.20’;)+~T,]6~,]~+[(I-c)i.’(a,du’~-a;Su;)]~ 

o’;)+c:,]‘&r, d.\-+[[(l-C)(ul+i.‘al)+cs:]juz]: 
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h 

SLY= [S,SlcI]:,+[(l-c)i.‘((2,S~r’;-a’,61r;)]5- S’,&I, d.y 

L 

+[S,Su2]/4+[( I -c)i.‘(o,Slr~ -o’,&>)]t-- S:&r, d.r+6Ct:, = 0. (8) 

The condition that this variational equation must be satisfied for any kinematically admis- 
sible variations &l,(s) and &,2(.v) yields: 

differential equilibrium equations 

boundary conditions of symmetry at s = 0 

S;Slr, = 0, a’, hl; = 0. 0, h’; = 0 ; (10) 

(11) 

The foregoing conditions imply both the natur:ll (static) and the esscntinl (kinematic) 
boundary or intcrfxr conditions. We must now choose bctwccn the two and we do so as 
follows : 

for .v = 0 

II, = 0, II’; = 0, a’, = 0 (or 14:’ = 0) ; (13) 

for .v = L 

s1 = [llJ -u:(L)]. a’? = 0, tr’; = 0. (15) 

Equations (I 3) give the boundary conditions which satisfy the requirements of symmetry 
of the displacement field with regard to the middle of the bar and the condition that strain 
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E should be nonzero at .Y = 0. Note that the conditions a; = 0 and 11; = 0 at .V = 0 implq 

II’\ = 0. which could replace the boundary condition C; = 0 at .Y = 0. 

Equations ( II) and eqns ( ISJI and (I 5)! can also be derived phgically if one considers 

the imbricate microstructure as described in Ref. [J]. At each point of the bur there are 

intinitely many infinitely thin elements of length I o\-trrlupping each other (Fig. I(d)). and 

the end of the bar the imbricated elements protruding beyond s = L are chopped off and 

anchored at .V = L (Fig. I(e)). The corresponding difference equations agree in the limit 

with eqns ( I-I) and ( IS). 

The differential equations in eqns (9) for segments 0 < .Y < 11 and 11 d .V d f are of the 
sixth order and. therefore. their general solution involves 12 arbitrary constants. This agrees 

with the number of boundary and interface conditions in eqns ( 13) ( IS). \vhich is also 12. 

SOLUTIOS OF DIFFERESTI.\L EQUATIOSS 

Since C. E. E,, and E, are constants within the unloading and softening segments. and 

E, < 0 with the other constants being positive, the general solution of eqns (9) may be 
bvrittcn 3s 

anti 

Substitution ofthcsc ccluations into the boundary and intcrfacc conditions in cqns ( 13) ( I-i) 
yields :I system of I2 algebraic linear equations for the unknown constants 8,. tl:, . , II,,, 
C’,. . C’,,. Solution of this Iincur cquiltion systcni was prograninicd for ;I computer. 

SI‘KAIN-LOCAI.IZATIOS INST:\I~ILITk 

To check for stability, we may apply the procedure first used in Ref. [4] in 197-I in an 

:lnalysis of the same problem for ;I local medium. The system is stable if the work that must 

be done on the system to produce any admissible kinematical variation ofdisplaccmcnts is 

posilivc. Thus. if this work is not done. no displacement variation occurs, i.e. the system is 

stable. Howcvcr. if at Ic;~st for one kinematically admissible displaccmcnt variation this 

work is ncgativc. the displacement variation will happen spontaneously and cncrgy will bc 

rclcascd. This is an unstable situation. The C;W when the work is zero is the critical state. 
One type of incrcmcnlal loadin g which obviously tends to induce strain localization is 

to cnforcc displaccmcnt &, at the intcrfacc .Y = /I bctwecn the softening and loading 
scgncnts. the end of the spring being held tixcd (11~ = 0). If the reaction 4C’ at .V = h is 
positive. the kvork AIL’ = (iQ j@ is positive. and so the system is stable. Othcrwisc it is 
unstable. 

r\t the critical state &r = 0. i.e. the reaction variation is zero while the displacement 
variations arc nonaro. These displacement variations arc accompanied by a change of 
stress S:(L) in the spring. Thus. the critical state is characterized by the possibility of ;I 
change of the end reaction in the spring at no change of end displacement. This means that 
on approach to instability the incremental stifr’ncss for end loading of the system tends to 
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infinity. or that the incrementai compliance tends to zero. If the incremental compliance is 
positive, the system is Gable. and if it is negative. the system in unstable. This method of 
detecting instability is used in our numerical calculations. 

We assume that the broad range stress-strain dia_eram in Fi_e. I(b) is given. which 
means that the tangent modulus for loading. E,. is known as a function of strain c: Also 
&yen is the unloading modulus &, as a function of I (Fig. 1 (b)). The elastic modulus E for 
local behavior is specified. too, and so are the length L of the bar, the spring constant C, 
and the material characteristic length 2. 

At which value of strain S does the system become unstable? This question may be 
ansuered by the following numerical procedure in which stability is checked for a sequence 
of increasing discrete values $ (i = I .1.3.. . .) of initial strain 2‘. and for each .$’ for a 
sequence of increasing values II, (j = 1.2.. . . , fV) of segment k. 

(11 Loop on initial strain values E” of a uniform initiat strain in the bar, increasing 
from 0 to 3 certain specified maximum value (e.g. 5) E,. where E, is the strain at peak stress. 

(2) For the $‘, determine E, and Et, as specified. 
(3) Loop on discrete values /I,. increasing in discrete steps from 0 to f_. (i = I, 7.. . . , IV). 

(-iI Solve 8,. B,, . . . . c ,. . . . . C,. and ~1~ from the boundary conditions in eqns (13)- 
(1% in which S2(tf = -1. 

(5) If I63 Q 0, go to stop 7. Othcrwisc return to step 3 and repeat steps 3-5 for the nest 
II-v;1luc. 

(6) No h-value gives a critical state for this f:’ -value. Return to step I and repeat steps 
I -5 for the next cy’-value. 

(7) Now tt1 6 0. So the critical vaiuc of It is hctwccn the last two values II,. intcrpolatc. 
using Newton itcr~~ti~~ns, to dctcrminc the criticat h more accuratcty. 

(Y1 Then rcpcat these iterations for various values of 2’ lying bctwccn the last two 
discrctc values of C:‘. This involves rcpctition of steps I-3 for intcrmcdiatc discrete values 
of C” in or&r to clctcrminc the critical value of 2’ more uccuratcly. along with the car- 
rcspondiny II. 

N~)rn~;llly Iz < I,. cnccpt for very small bc:m~ Icngths. Then the smallest i?’ for which ;I 
critical state exists is charactcrizcd by two simultaneous conditions: uz(lr,P) = o and 
?!I ,(/I ,t?‘)/c’/J = 0 for S:( f!.) = - I. The foregoing algorithm is one way to solve these 
conditions, but other numerical root search mcthodscan be employed just as well. However, 
if td l = 0 occurs for h = L, which may happen for very small L, then the condition ?lr ,,‘r% = 0 

need not apply. 
The results of numerical c;llclIl~itions arc plotted in Figs 2-5. Figure :! shows an 

example of the dcpcndcncc of the Icngth of the strain-softening scgmont. 3/r, on the length 

I 
0°2 3 4 5 

10 

L/l 

Fig. 2. Dcpcndcncc of kngth h of strain-softening scgmcnt (Icft scale) and of dissip;ttcd cncrgy IV, 
(right scale) on length L. 
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of the bar. 11~~rl~~;lli~~~~ witfi rogxrl to the ~l~;lr~t~t~risti~ length I (I’ = 236-‘). The spring is 
considcrcd infinitely stiff, the ratio of the loading ad unloading IlWl-l0cill mocfuli is 
E,/Et;, = -0.2. the local elastic modulus is I:’ = O.Z!E,,. and the non-local participation factor 
is c = 0.25. We see that the length of the localization scgmcnt is not constant, but it may 
bc considcrctf as approximately constant. in this GISC 21 z 1.21. This agrees with the 
~~~sumpti~rt made in the crack band motlcl, cqn (6). 

Figtrrc :! also shows how the cncrgy, IF;,, dissipntsct in the str~iirl-s~ft~nin~ zone Jcpcnds 
on the rclativc Icngth ofthe beam, for which C- 0. The dcnrity of tVf (ix. energy dissipated 
per unit length of the bar) is dcfincxl by the cross-hatchcd ;trc;I in the broad-range strcss- 
strain dingram in Fig. I(b) (the reason that this rcprcscnts the dissipated energy, or the 
fracture energy, is given in Ref. [6] or fkf. [ZJ). If; is norm;~li/ctl with respect to the elastic 
cncrgy IrS’,QE,,. Note that. except for some initial ll~~~tt~~ltil~~~, the dissiputcd cncrgy, which 
is cssentiafly cyuivalent to the fracture cncrgy. is ~~ppr~~ini~it~ly intfcpcndcnt of the rci;ltivc 

---- local theory 

02 0.3 0.4 
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Sire L/h bcall, o L /h (nonlocal) 

Figure 3(tOp) shows the cflixt Of the ratio ofthc louding and unloading moduli E, E,, 
on the relative length of the strain-softoninp scgmcnt , 7/r/l, thr the case Of ;I rclativcly lens 
bar. L./II = 20 (Other pqxrties king the same as hforc). In this ~ii~i~r~in~, the v~~ri~ition of 
the length of the strain-softening segment is somcwhnt mOrc pronounced : 7/r/f varies from 
0.8 to 1.2. Note that in numerical calculations One must be ctrcful to distinguish the first 
instability mode (solid curve in Fig. 3) from the second higher instability modu (the dashed 
curve in Fig. 3(top)). Only the lirst instability mode can Occur in practice. 

Figure 4 shows the stability limits in terms Of spring constant C’, normalized with 
regard (0 the ilnl~~~l~~il~~ bar stilfncss AEJZ. ilIlCi plottcri vs the ratio ~~flo~~din~ to unloading 
moduli. - iY,/r:,,. 

Figures S(a) anti (b) show the ductility of the bar iks ;I function of the rcl;ttivc bar 
Icngth. L/I. fOr various values Of spring constant C relative to the bar still’ncss. The ductilit) 
is dclincd iIS the initial unitbrm strain in the bar at the onset of instability, f:,, and its plot 
is normalized with regard t0 the strain K~, at peak ~trt‘ss. The stress strain dkgrnm used in 
this ~~il~~li;~ti~~n is given in Fig. 5(c). in which the fbm~ukt is alsco written. The results art 
plottcci for two villllL!S Of et from this formula. corresponding to the typical post-prak 
response of low strength concrctc (IV = 2) i\nd medium strcnsth concrctc (IU = 3). The 
unloading modulus E,, is. in these calculi~tions. assumed to br equal to the initial elastic 
modulus E, ix. Et, is constant. This is done in order to make possible a comparison of the 
rcsufts with ;t previous solution based on the local crack band modcl[5] : these calculations 
wcrc iklS0 niarlc fOr I:,, = E = const. Ath~ugh it might have been more rcnlistic to consider 
E,, to be ;t function of+ such that f:,, is bctwccn the secant modulus and the initial clustic 
modulus. 

The dingrams in Figs 5(a) and (b) arc plotted fOr various values Of the spring constant 
C’ rclativc t0 the bar still‘ncss E~,,:ijL. WC see that ductility gcncrally dccrcascs :IS the Icngth 
Of the bar incrcascs. or as the spring stitt’ncss decrcascs. These trends arc well known from 
cxpcriments. 

The results previously Obtiiincd with the local soluticrn bnscd on the critck band model 
arc shown for comparison as the ditshcd lines in Figs 4 and 5. The dnshctl lines in Fig. 5 
wcrc rcportcd in previous work[J]. in which it wits shown that. in the locnl approach. the 
length of the strain-softening sqmcnt. Ir, must bo considcrcd to bc ii matkid property and. 
especially, must nOt hc illlOwed t0 bc arbitrarily small (this conclusion then led to the crack 
hand theory in Rcfs [I, j-71 for local linitc clcmcnt analysis of distributed cracking). 

Although the length /J = I(‘, 0T the strain-softening segment in the local solution pki)-s 
the same role as the characteristic length I or i. in the present non-lOc:\l solution. there is 
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no reason why these two quantities should be exactly equal. Therefore. the length of the 
strain-softening segment (localization segment) in the local solution was considered as 

LV, = I, I where I is the characteristic length in the present non-local theory (I’ = JJ;.~). 
Similarly. the ductility values, i.e. the values of the strain E, at the onset of instability. 

do not have the same meanings in the local and non-local approaches. and so the strain at 
instability for the local solution was considered as /Is,. The values of I and fl were then 

varied so as to minimize the diffrrence between the non-local and local solutions (in the 
least-square sense). Such best agreement is obtained for the present example when x = I .5 
and /_I = I.045 for ta = 2 or fi = I.03 for tar = 3 (Figs S(n) and (b)). It is now worth noting 

that the ditTerences betiveen the local and non-local solutions in Figs 4 and 5(a) and (b) are 
indeed quite small. and that the optimum values of r and /j are not very ditfrrent from I. 
We may thus conclude that the local solution. in which the length of the strain-softening 
segment (localization segment) is considered to be ;1 material property (as is done in the 
blunt crack band theory), yields approximately correct results. A caveat must be added. 
though: this need not hold true for general three-dimensional solutions, in which boundary 
constraints or reinforcement might cnforcc the strain-softening region to be much larger 

than the characteristic length. 

Another problcrn which is one-Jimcnsional and easily amcnablo to an analytical 

solution is the non-local solution for bending. WC consider ;I beam with ;I constant sym- 
metric cross sectional ;Irc;I .-I and ccntroidal moment of inertia / (I:ig. I(g)). .v, z arc the 

axial and transvcrsc coordinates and II' thu transvcrsc dcllcction. WC adopt the Dcrnoulli 
Navicr hypothesis that plant cross sections remain plant and normal to the dcHcction lint 

and that transvcrsc normal strcsscs arc ncgligi blc. The clcllcctions arc assumcd to bc small. 

Introducing the relations C(_u) = ~Y(.Y)c(.v++.Y) ds. a = J?, r = 13. 4: = K:, and Z = ~2:. into 

the integrals M = In-_ tl.4, ~1 = lr: tl.4. over the cross sectional ;Irc’;I :I. and dclining the 

non-local and local bcntling monicnts. Lvc obtain Lhc rclalivns 

/’ 

- Ill = Rti. Ill = Rc. h‘ = I(.“, /c(x) = 5 ~(.Y)K(.\‘f.S) d.s 
-/ ? 

where R = El, I? = l?I. I = J‘z2 d/l ; h: is the non-local curvature, I the characteristic length 

of the non-local medium and T(S) the given weighting function. sa-nc as in eqns (I). 

As ;I particularly simple strain-softening problem. WC will analyze curvature local- 

ization in ;L simply supported beam shown in Fig. I(g). Due to symmetry, the problem is 

equivalent to a cantilcvcr beam of length L. loaded by :I transverse distributed load (1 and 

at the end by ;I transvcrsc concentrated load P. For the purpose of analytical solution, we 
again rcplncc the integral averaging operator in cqns (20) by a dilYcrcntial operator, which 

is obtained by expanding K(s+.Y) into ;I Taylor scrics about point .v’. After truncation of 
higher-order terms. WC thus obtain the approximation 

WC cxpcct strain softening to occur Lvithin a symmetrically locutcd scgmcnt of length Z/I 
(Fig. l(g)). 

The virtual work esprcssiort for the bar may bc ivrittcn ;IS 
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which is similar to cqn (2) (L’ = 1”/74) : q is the transvcrsc distrihutcd load. Subscripts I 
and 2 xc alfixctl to distinguish bctwcxn the segments ot’ Icngth /I and L-t! (Fig. O(b)). 

The virtual work cxprcssion for the cxntikvcr beam may be written as 

Substituting the previous csprcssions for I: and L, and splitting the integrals over scgmcnts 
of’icngths Ir and L-12 (t:ig. 6). WC twy rcwritc this txprcssion as 

Ry two subssyucnt integrations by parts. cqn (12) may bc transformed to 



The condition that eqn (2-I) must be satisfied for any kinematically admissible variation 

ci\~(.~_) yields : 

the following ditferential equations of equilibrium 

.0, = y. 9; = cI : (35) 

the boundary conditions of symmetry at .I- = 0 

Xi, W; = 0. ,fl;,h~, = 0. ,u,wy = 0. .w,h~‘; = 0; (1-7) 

From cqns (26) it is clear th,lt ,ti, and &i2 rcprcscnt the total bending moments in the cross 

scctians of the hcuni. 

According to the particular kinematic conditions of our cxamplc (Fig. I(g)). the 

boundary and intcrfxc conditions from cqns (27).429) rcducc to: 

for .V = 0 

II’, = 0, II,‘, = 0. II,‘: = 0, Al’, = 0 (or )I*‘: = 0) ; (30) 

In view ol’cqn (21). the condition .\/‘, = 0 at .V = 0 is equivalent to u.7 = 0, as stated. 

WC now consider that the beam is initially in ;I stress state which involves strain 

sol’tcning within the central scgmcnt of Icngth /I. We arc intercstcd in the stability of this 

initial state and analyze. thcrcforc. additional dcfommation incrcmcnts. Thus. II’,(X) and 

II.: rcprcscnt small dcllcction incrcmcnts from the initial state. and we assume (1 = 0. 

To make an analytical solution fcasiblc. WC must assume that the bending rigiditics R, 
and R,, in scgmcnts It and f_ - /I arc constant. This would not bc possible if the propcrtics 

ol‘ the lxini wxrc dclincd by stress strain relations. because, in contrast to our previous 

analysis of the bar, the initial distribution of the bending moment is not uniform (Fig. 

I(h)). Thcrcforc. wc xsumc that the beam propcrtios are chnrnctcrizcd by local and non- 

local moment curvature relations which exhibit strain softening. Even though the initial 

balding moment is nonuniform over the beam. \vc asunit that the incrcmcntal bending 

rigidities R, and R,, for further loading and for unloading arc constant within the range of 

initial bending moments in the segments /I and L-/t (Fig. l(i)). 

Strain soltcning may bc cxhibitcd only by the non-local moment curvature relation 

bct\r.ccn .I/ and I?. The local moment curvature relation bctwccn 111 and K (Fig. l(j)) is 

;~ssun~cJ to bc slnstic. with balding rigidity R. Substituting ,\I, = R,H,‘;. ‘11: = R,w’~, 
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M, = Rw’;. m, = Rw: into eqns (75) and then into eqns (26). we obtain the basic differential 

equations of the problem 

The present problem is mathematically equivalent to the previous problem of axial 
defo~ation. Indeed, if we replace 11%” by U. eyns (33) become identical to eqns (9). Thus. 
the general analytical solution is of the same form. except that t~vo more integrations must 
be carried out to obtain II-* from LV”. The general solution of the diKerentinl equations in 
eqns (33) for the softening segment of length /I and the non-softening segment of length 
L-h is 

in which 

This solution involves I6 unknown constants, for which the boundary conditions and the 
interface conditions in eyns (30)~(32) yield I6 linear ;LIgebruic equations. 

CUKVATUKE LOC’ALIZATION INSTAUll.ITY ANI) NUhlEIllC/~L RESULTS 

Based on the forcgoin& formulation, we may now study the conditions under which 
strain-softening behavior in ;I bc:lm becomes unstable. Similar to our previous procedure 
for axial deformations in a bar. we consider that an incremental load is applied ;lt the 
cantilever end (Fig. I(g)), either P = - I or M = - I. Then we soan the range of values of 
IR,I/R, and /r/f,. We choose a series of discrete values of these variables, solve the prohlcm 
for each combination and calculate for the beam end the displacement N*:(L), w+erc an end 
load is considered, or N”,(L) when an end moment is considered. If this value is positive, 
the beam is stable. and if it is negative. the beam is unstable. The smallest value of 1 R,j, R,, 
for which this happens for some value of h is the critical state. 

The numerical results arc shown in Figs 6 and 7 and the bottom of Fig. 3. Figure 
3(bottom) shows the lengthofthccurvaturc localization zoncI]asa function ofthcsoftcning 
bending rigidity. The steeper the softening slope, the longer is the str~~in-softening segment. 
For steep softening slopes. the ratio 7/r/f seems to be almost constant and equal to 0.8. 
Figure 6 shows the deflection curves of the cantilever beam for the applied moment at the 
end (M = - I). The deflection curves are plotted in Fig. 6 for three stifTncss ratios. Note 
that a steeper softening slope causes an increase of the dctlection. The distrib~ltit~I~s of the 
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ratio 01’ Ihc hrod-range nionionl i\/ 10 the 101;1l niiwcnt .\i (I??. 7(Icft)) intlkirc llial the 

dcvi;itioli I’rom lhc locaI solulion (hori/on~al thshcrl lines) incrcascs significantly with the 

softening siopc I<,. 

The wiiic cantilcvcr hcani was st~h~jcctcd aI the free end lo lhe Ir;insvcrsc forcc I’ = - I 
(I:i_c. 7(righL)). In this C;ISC one finds that the plot ol’ the softening /one length /I vs R,,‘R,, 

ih almost identical tvith the previously ohtaincd plo( t;)r .I/ = -. I (I,‘ig. 3( hottorn)). The 

diagrams of dctlcction \l,!I wilhin the short softening scg~wn~ arc also nearly identical. 

l,‘igurc 7 shows the clistribu~ions of broxl-r;ingc bending niomcnl .I/ and broad-range shear 

force I’. Nocc that li)r ;I wry small sd~oning slope. /(,/I(, = - 0.00 I, lhc distribution of ,L/ 

and txpccially I’signilklntly deviak from the local solution (dxhcd lines) for small .Y’. hut 

for Iargcr .V gradually convcrgc to them. 

( I ) The clilTcrcnlial approaimalion o~inibricak non-local continuum permits modcling 

strain-sol‘tcning regions in bars and beams which arc ofa linitc length, and it makes possible 

an exact ~~n;~l~~ical solution. 

(2) The csssntial and nalural boundary conditions are dcrivcd by ;L consistent variational 

proccdurc from the principle of virtual work. 

(3) Similar 10 previous work[4]. the failure due to strain softening is trcatcd as ;I 

stability problem of a continuous structure. 

(4) The previously publishal solution bascrl on ;t local continuum concept and a size 

limitation on the strain-localization Zone yields approximukly the s:;mc results as the 

prcscnt cxxt solulion. This Icnds further juslilication LO the blunt crack band modal for 

distribulcd cracking. 

(5) In the present formul:ltion, fhc length of the softening scgmcnt is not specified in 

advance but is unknown : it may bc dctcrmincd by stability analysis. This Icngth appears 

to bc approximately constant over a broad range ofconditions and approximately the same 

as the width of the strain-softening rcpion (cracking zone) in the aforcmrntioncd previous 

local approach. The cncrgy dissipated due to strain softcniu g seems to be also almost the 

same for thcsc t~vo uppruachcs. 
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