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ABSTRACT 
The paper presents a new theory for the basic creep of concrete which 
takes aging into account in a manner which is better justified physi- 
cally, better agrees with test results, and is more efficient computa- 
tionally. The aging is treated as a consequence of volume growth of 
the load-bearing solidified matter (hydrated cement) whose properties 
are nonaging and are described by a Kelvin chain with age-independent 
moduli and viscosities. The thermodynamic restrictions on the aging 
creep law are satisfied, and the condition of nondivergence of creep 
curves is met. There are only four free material parameters, and they 
can be identified from the given test data by linear regression. De- 
viations from the principle of superposition are also correctly mod- 
eled by the theory. Good agreement with typical test data an creep 
and creep recovery is demonstrated. 

Introduction 

The phenomenon of aging, which is caused by cement hydration and probably 
also by gradual formation of bonds akin to polymerization, causes major com- 
plications for the modeling of concrete creep. The moduli and viscosities of 
spring-dashpot rheologic models depend on time, which complicates not only 
structural creep analysis but also their identification from test data. 
Thermodynamic restrictions are difficult to formulate and are found to be 
partially violated for those models for which they can be checked. The ex- 
isting models which describe well the short-time creep violate the condition 
of nondivergence, causing that nonmonotonic recovery may be obtained from the 
principle of superposition. Deviations from the principle of superposition 
such as the adaptation nonlinearity are difficult to describe with the 
existing models. 

The intent of this paper is to circumvent these problems by advancing a 
new theory whose basic mathematical form was proposed in Ref. 1 and was brief- 
ly summarized at a recent conference (2). A much more detailed presentation 
of the theory is given in Ref. 3. 
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Volume Fraction Gr@wth as a Measure of Aging 

The new theory rests on the idea that the agir~g aspect of cc~crete creep 
is due to growth of the volume fraction v(t) of the load-bearing solidified 
matter (i.e. hydrated cement), the properties of which are age-independent. 
Thermodynamic analysis is generally impossible for systems of substances 
whose properties vary with age. As known from chemical thermodynamics, time- 
dependence of any system's properties must be treated as a consequence of a 
time-varying composition of the system, which is in our case characterized by 
v(t). 

In the most simple form, it may be assumed that the volume, v, of hy- 
drated cement grow=by deposition of layers of solidified matter as shown in 
Fig. 1 (4). Let Cg(V,t) be the stress at time t in the layer which solidified 
when the total volume of the solidified matter was v. Now an essential point 
is that, at the moment it solidifies, the layer (dv) must be stress-free, i.e. 
Og[V(t),t] = 0. It follows that the nonaging viscoelastic stress-strain rela- 
tion for the layer which solidified at time r is (4) 

v(t ) _ v(r ) = it ~(t - t')~ [v(r),dt'] <I) 
• T g 

in which Og[V(r),dt'] = 0 for t' < r; e v = viscoelastic strain due to solidi- 
fied matter (hydrated cement) and ~(t-t') = microscopic creep compliance 
function of the solidified matter, representing the strain at age t caused 
by a unit microstress applied at age T. 

Since v(t) is the only variable which introduces aging, a discrepancy 
might seem to exist due to the fact that the change of creep curves with age 
t' is known to be strong up to very high ages exceeding i0 years while the 
volume increase of hydrated cement terminates at the age of about 1 month. 
However, one must realize that further bonds continue to form even in the 
hydrated cement, as evidenced by the phenomenon of polymerization of tri- 
calcium silicate. What matters for our purpose is the effective load-bearing 
volume in which the solidified matter has enough bonds to be sufficiently 
stiff, while the matter in the remaining volume, which has few bonds and is 
soft, must be discounted. The salient property is that the new bonds can be 
assumed to be stress-free at the time they form, and so this phenomenon can 
be included in Eq. 1 corresponding to Fig. l(v = load-bearing part of volume). 

Now an important point is that the layer dv(t') must be stress-free at 
the moment it solidifies, i.e. Og[V(r),T] = 0. Using this fact, along with 
Eq° 1 and the condition of equillbrium with the macroscopic applied stress o, 
f~ Jg[V(r),t]dv(T)=~(t), BaZant (4) showed that Og can be eliminated from 
these equations, yielding a macroscopic stress-strain relation of the form: 

~v(t ) _ F[o(t)] 
- ~--7~y--i(t), i(t) = f~ $(t - t')da(t') (e) 

in which $(t- t') = ~(t- t')/$t. A generalization for nonlinear behavior is 
introduced by inserting function F(o). y(t) can be regarded as the visco- 
elastic microstrain. 

The assumption that the material must solidify in a stress-free state, 
~[v(~),~] = 0, is applicable only to solidification at a solid-solution in- 
terface, as shown in Fig. i. Conceivably, the solidification process could 
also take place at a solid-solid interface, in which case we could have a 
pressure across the interface, known as the crystal growth pressure. Con- 
sideration of such phenomena, however, is not germane to the age-dependence 
of creep. Anyhow it would require a model that is more complex than the 
simple parallel coupling of elements dv(t') in Fig. i. 
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V 
Analysis of test data has indicated that, in addition to g , concrete 

creep includes another component, Ef, called flow, which is also affected by 
aging but is purely viscous (Fig. i) rather than ~enerally viscoelastic. It 
is described by an equation similar to Eq. 2 in which ~(t- t') is replaced by 
?(t- t') = (t- t')/n0 where nO = effective viscosity of the hydrated cement; 
therefore f~ #(t- t')do(t') = o(t)/n0 and, in analogy tQ mq. 2, we have 

sf(t) - F[o(t)] o(t). (3) 
v(t) 

Constitutive Relation for Creep 

The total strain of concrete may be expressed as 

o c ~0 c v f 
e = ~-0 + + , e = e + ~ (4) 

where e f = total creep strain, e 0 = shrinkage or thermal expansion, and E 0 = 
instantaneous elastic modulus. Similarly to the previously justified double 
power law (5,6,7,8), modulus E 0 is considered to represent the asymptotic 
elastic modulus for extremely fast (instantaneous) loading. This definition 
makes it possible to consider E 0 to be constant. The conventional static 
modulus, which depends on age, is then obtained as the inverse of the compli- 
ance function value for loading duration t -t' = 0.001 to 0.i day, which in- 
cludes the rapid initial creep. One might question that E 0 is considered to 
be independent of the age, t' However, as justified previously for the 
double power law (5,6,7,8), the effect of age on E(t) seems to be adequately 
included in the rapid initial creep contribution to the conventional elastic 

modulus. 

The empirical functions in Eqs. 2 -3 are introduced in the form 

~(t - t') = q2 Zn(l + ~n), ~ = (t - t')/k 0 (5) 

n (t)-i = q4 t-I (6) 

v(t) -I = (X0/t) m + ~ (7) 

i + s e ~(t) (8) 
S = F[o(t)] 1 - u ' f ' 

C 

where q2, q4, ~, n, m, ~0 = empirical constants, and u = s I0 = damage, which 
is negligible for s < 0.7. Note that Eq. 6 implies '~(t -t') = q4 Zn(t/t'). 

Expressing the total strain rate for £0 = 0 according to Eqs. 2 -4, and 
integrating, one finds that for a constant stress ~ applied at age t', 

>(t)o = J(t,t',c) = ql + q2 F(~)Q(t't') + q~F(c)Zn[l~ + (L_~)t- t' n] + q~%n ~, 

(9) 
in which ql .... 'q4 = empirical constants, ql = I/E0' q3 =aq2' and 

Q(t,t ) f~, (~)m n(T-t') n-I 
' = dT. (i0) 

n t)n 
~0 + (~ - t 

J(t,t',o) is the secant compliance function at constant stress ~, and the 
functions multiplying q2, q3 and q% represent the nondimensionalized forms of 
the aging viscoelastic compliance, the nonaging viscoelastic compliance and 
the viscous (flow) compliance, respectively. 

=_~xperience with data fitting indicated that three material constants may 
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be fixed for all concretes: 

n = 0.i, m = 0.5, 10 = i day. (ii) 

Thus there remain only four unknown material parameters, ql, q2, q3 and q~, to 
be determined from the test data for a given concrete. 

It is an advantage of the present formulation that the compliance in- 
volves all the unknown material parameters linearly. This makes it possible 
to determine all the unknown material parameters by linear regression. 

The integral in Eq. i0 cannot be expressed in a closed form, but it can 
easily be evaluated and tabulated numerically; see Fig. 2. An approximate 
closed-form expression for n = 0.i, m = 0.5 and l 0 : i day has been found: 

Q ( t , t ' )  ~ Qf 
[ Q f ~ r ] - l l r  

, . ~y_ ] (12) 

with Z = t '-m ~n[l * (t - t') n] (13) 

in which 

log Qf = -[0.1120 + 0.4308 log t' + 0.0019 (log t')2], ~ [ 

(14) 

f r 1.7 t '0"12 = + 8 

see Fig. 2; t and t' must be in days and log = log1^, ~n = ~n . Q~ represents 
t tU e 

the final asymptotic values for t = t -" ~. The error of the formula for Q_ 
is within + 0.09% of Qf and the coefflcient of variatlon of errors is~ 0.01%. 

The error in Q is within -+ 0.5% of Q and the coefficient of variation of 
the errors is 0.2%. 

It may be checked that for t-t' << t', Eq. 9 approaches asymptotically 
the double power law. For t- t' >> t', the asymptotic form of Eq. 9 is a 
logarithmic law of the form ¢ = A I £n t + A2(t'). 

Another important advantageous property is that, according to Eq. 9, the 
condition 

~2J(t't'W) > 0 (15) 
~t ~t' - 

is always satisfied. This means that the creep curves for various ages at 
loading never diverge, according to Eq. 9. A further implication is that the 
creep recovery curves obtained by using the principle of superposition de- 
crease always monotonically. 

By virtue of introducing the nonlinearity in terms of the strain rate, 
rather than the strain, and describing the instantaneous strain as linearly 
elastic, the deviations from the principle of superposition accumulate with 
the load d~ration. This agrees with test data (9,10) and makes it possible to 
obtain a reduction of creep recovery compared to the prediction from the 
@rinciple of superposition. Making function F dependent only on the current 
stress o(t') is a considerable simplification. However, the resulting non- 
linearity of strain ¢ with respect to a does depend on the past stress history, 
not just on the current stress. 

It is interesting to note that the present formulation represents a com- 
promise between the double power law (7,8) and the improved Dischinger model 
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used by CEB (Ii). The double power law, which describes well the short-time 
creep of concrete loaded at a young age and also both the short-time and long- 
time creeps of concrete loaded at an old age, is the limit case of the terms 
with q2 and q3. The Dischinger model, which describes well the long-time 
creep of concrete loaded at a young age, is characterized by a flow term of 
the type ~[t) - $(t'), which is here identical to the term with q4 if one sets 
@(t) = £n t. The term with q3 is similar to the delayed elastic term in the 
improved Dischinger model, due to the fact that it is a nonaging function of 
(t-t'); however, unlike delayed elasticity, the term with q3 has no final 
asymptotic value. The term with q2 is lacking from the improved Dischinger 
models, but it is found that this term cannot be omitted if the typical test 
results should be matched closely. 

Rate-Type Approximation and Numerical Integration 

The main practical advantage of the present formulation is that it can be 
reduced to a rate-type creep law based on a rheologic model with nonaging 
properties. To obtain this formulation, the viscoelastic microstrain 7(t) 
[Eq. 2) may be represented by a Kelvin chain (Fig. i) with age-independent 
elastic moduli E and viscosities ~ . This leads to the relations: 

N 

n ~ + E y~ = o, Y = ~=i ~ Y"~ (16) 

which represent first-order linear differential equations for strain 7u of the 
~-th Kelvin unit. An age-dependent Kelvin chain, by contrast, would lead to 
second-order differential equations for 7~ (6,5,7). Integration of Eq. 16 for 
the case of constant stress ~ applied at age t' yields: 

N i -(t-t')/:~), n~ 
y(t) = o 7 [i - e r =- (17) 

~ E 
~=i ~ 

where T, are called the retardation times. For constant stress ~, the present 
model y~elds y(t) = c~(t- t') = cq2 Zn(l + n). Therefore, the following ap- 

proximation is required: 

N -~/T~) 
Zn(l + ~n) = ~ A (i - e . (18) 

~=I 

If A~ is determined, then E~ = I/(q 2 AZ). It appears that a rather accurate ap- 
proximation of %n(l + {n) within the range T2 ~ ~ ~ 0.i ~N is possible with 
the choice r~ = 10Z-2T2 for ~ e 2 and r I = i0- r 2 • Coefficients A.~ for this 
approximation may be obtained by the method of leas= squares. However, an 
explicit approximate formula has been found: 

A = b T m(~) (19) 

in which m(~) - n/(l + cz~z), c - 0.146 n -°'I, b - i.i n(l-n 3) for > - 
2 N-l, b. - 1.5 n 1"=s, and b I, z are given b~ Table i. The error of the 
approximation in Eq. 17 for m - 0.5 and n - 0.I has, within the range ~= ~ f 
0.i r N, the maximum of only 0.7%. Within the range 0.25 ~= ~ ( ~ 0.25 IN' the 
maximum error is 1.15%, and the coefficient of variation of the errors ~s 0.46% 

Owing to the fact that the foregoing method always yields nonnegati~e ED 
and ~, the thermodynamic restrictions are satisfied. In similarity to pre- 
vious rate-type models, the effect of temperature on the creep rate can be in- 
troduced in Eq. 15 by replacing ~p = E~p with Eprpf(T) where f(T) depends on 
temperature according to the activation energy theory, Furthermore, variation 
of temperature requires that v(t) be replaced with v(t e) where t e is the 
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equivalent hydration period (5-7). 

To permit structural creep analysis with increasing time steps At which 
can become much larger than the shortest retardation time, an exponential al- 
gorithm must be used (12,7,5). The incremental stress-strain relations are 
obtained by integrating Eq. 15 exactly under the assumption that G(t) varies 
linearly from t i to ti+ 1 . This yields: 

e -&y~ + (i - e -&y~) + 40 (20) 

where Ay~ = At/r~ and I~ = [i - e-&Y~)/~yu= and subscripts i and i+l refer 
to times t i and ti+ I. Eq. 19 leads to the stress-strain relation 
Ay = (Ao/D) + by" in which 

1 ~ l-lp Ay,, N ~_~i 
= m ' = ~ ( - y~i ) (i - e -&y~) (21) 

~=I ~ ~=i 

and Ay~ = &t/T~, l~ = [i - e-~Y~)/Ay~; subscript i refers to time t i. It 
may be noted that Eqs. 20-21 are a special case of the equations of the ex- 
ponential algorithm for an aging Kelvin chain (12) and are equivalent to those 
presented for a nonaging Kelvin chain by Taylor, Pister and Goudreau C13), and 
by Zienklewicz and Watson (14); but an important difference is that here these 
equations apply to the microstrain y(t) rather than the total strain E(t). For 
E~t), one obtains the quasielastic stress-strain relation 

Aa = E"(Ae - A~") (22) 

in which 

1 1 F (~i+~) 
E '--7 = ql + D vi+ ~ (23) 

Iv: '+~ qu &t) + AC0. (24) Ac" = F(ai+~2) + 

Subscript i+½ refers to time ti+~2 = t o + [(t i - t0)(ti+ 1 - t0)] ½, where t O = 
time of first loading. 

Eq. 22 reduces the solution of any creep problem to a sequence of elastic 
solutions with initial strains. Due to nonlinearity, iterations of each time 
step are needed to achieve good accuracy. 

Verification by Test Data 

The present formulation has been compared in Ref. 3 to numerous test data 
from the literature. Some of the typical comparisons are shown in Fig. 3 and 
Fig. 4. The fit of these data is certainly satisfactory, both for the tests 
at constant stress (Fig. 3) and at step-wlse stress histories (Fig. 4). The 
dashed lines in Fig. 4 represent predictions according to the principle of 
superposition, which are obviously worse. For further comparisons with test 
data, see Ref. 3. 

Conclusions 

i. The solidification theory for basic creep makes it possible to avoid 
using an aging Maxwell or Kelvin chain model in creep structural analysis. 
Rather, the analysis can be based on a Kelvin chain which has age-lndependent 
elastic modull and viscosities and describes creep microstraln. 

2. The description of creep with elastic deformation involves only four 
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Fig. 3 - Comparison with Laboratory Test Data for Canyon Ferry Dam 
Concrete (Hanson, 19531 Hanson and Harboe, 1958). 

free material parameters which can be determined from the given test data by 
linear regression. 

3. The creep curves for different ages at loading never exhibit diver- 
gence. The predicted creep recovery is always monotonic. The fits of test 
data are excellent, and better than with previous models. 

4. Deviations from the principle of superposition in the service stress 
range are represented correctly, in agreement with test data. 

5. The model is justified by simplified micromechanics analysis of the 
solidification process of portland cement, in which aging is obtained as a 
consequence of the growth of volume of a nonaging solid (its load-bearing part). 

6. For short load durations, the model is asymptotically equivalent to 
the double power law, and for long load durations to the logarithmic law. 
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T~ble 1. - Optimum Parameters for  D i r i c h l e t  Ser ies Expansion 

. . . . . . . .  i 
n I0.0! 0.03 0.05 0.07 0.09 O.t l  .0.13 0.15 0.17 0.19 0.2I 0.23 0.25 0 .Z70.Z9 0.31 0:33 0.35 

Iz~-i 10~6,4 0~6~2 0~587 0~,3 ,0 . ,9 ,  0.,07 0.529 0.552 0.574 0.59, 0.610 0.62~ 0.63= 0.6=1 0.6,3 0.~1 0.~35 0.6Z,, 
0.039 0.355 0.6210.B60 1.080 1.288 I.~B6 1.677 1.860 2.03? Z.207 2.3ZZ 2.531 2.683~ 
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Appendix - Parameter Prediction 

When no test data are available for the given concrete, parameters q~, q~, 
qR' q4 may be approximately predicted from the following formulas obtaine~ by ~ 
s~atistical analysis of numerous test data from the literature: 

= )3.5 (25) 
ql 12.5 (w/c 

q2 = -22.8 + 2.5 ~n [(w/c)5(a/c)f'l'5]c (26) 

q3 = 16000[(w/c)4(a/c)f'0"4]-0"8c (27) 

q4 = 0.000082 (w/c) (a/s)f'c (28) 

in which ql .... qAare in psi -I f~ = 28 day cylindrical compression strength in 
pso (I psi ~= 689~ Pa), w/c = wa~er cement ratio of the mix, a/c = aggregate 
cement ratio, s/c = sand-cement ratio (all by weight), and sand is defined as 
the aggregate less than 4.7mm in size (sieve No. 4). 


