STABLE STATES AND PATHS OF STRUCTURES
WITH PLASTICITY OR DAMAGE

By Zdenék P. Bazant,' Fellow, ASCE

ABSTRACT: Stability conditions for irreversible structural systems are formulated
on the basis of the second law of thermodynamics. It is found that distinction must
be made between stable equilibrium states and stable equilibrium paths. An equi-
librium state is stable if any admissible deviation from it leads to a decrease of
the internal entropy of the structure. Among all the equilibrium paths emanating
from a bifurcation point, the stable path is that which maximizes the increment of
internal entropy. These criteria are expressed in terms of the second-order incre-
mental work, and distinction between load control and displacement control is made.
Shanley’s perfect elastoplastic column is analyzed as an example. It is found that
the undeflected states of the column are stable up to the reduced modulus load.
However, the undeflected stable states above the tangent modulus load are not
reachable by a continuous loading process. The stable path is such that the de-
flection becomes nonzero as soon as the tangent modulus load is exceeded. Uni-
axial strain-softening must localize right after the peak stress state even though the
limit of stable homogeneous strain states occurs only later at a finite descending
slope. The results indicate a need to include checks for path stability in inelastic
finite element programs, especially those for damage with strain-softening.

INTRODUCTION

Although the conditions of uniqueness and bifurcation of the equilibrium
path of an elastoplastic structure have been studied extensively (Bruhns and
Mielniczuk 1977; Bruhns 1984; Hill 1959, 1961, 1962; Hutchinson 1974;
Mréz 1966; Shanley 1947; Tvergaard 1985), no basic principles and methods
seem to exist for stability of equilibrium states and paths, except for a few
special solutions (e.g., Bazant 1976, 1977, 1985, 1986). The principle of
minimum potential energy, unfortunately, does not apply to inelastic struc-
tures. As we will see, static stability analysis can nevertheless be accom-
plished on the basis of the second law of thermodynamics. We will show it
first for the classical problem of buckling of an elastoplastic column. Based
on a report by BaZant (1987), we will then formulate general criteria of
stable state and stable path, and finally we will consider some broader im-
plications, especially for softening structures.

SHANLEY’S ELASTOPLASTIC COLUMN

For the sake of simplicity, let us study the idealized perfect column con-
sidered in the epoch-making paper by Shanley (1947); see Fig. 1(b—d). The
column is hinged and geometrically perfect. It consists of two rigid bars of
lengths 1/2, which are connected by a very short elastoplastic link (point
hinge) of length 2 <<C [ and width %, having an ideal I-beam cross section
of area A. The lateral deflection and the axial displacement at the load point
(positive if shortening) are denoted as g, and ¢,, respectively.
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FIG. 1. Shanley’s Elastoplastic Column

Initially the column is perfectly straight and is_ }0a_ded by an axial centric
load P (positive if compressive). The initial equilibrium qnder load P = P,
at zero lateral deflection is disturbed by increasing the axial load to P = P,
+ 8f, and applying a small lateral load &f;. This causes in the flanges of the
elasto-plastic link the strains 8¢, = —80 — 3g,/h and de, = 56 — §q2/h (on
the concave and convex sides, respectively); 88 = 28¢,/l = rotation of the
rigid bars, assumed to be small. ‘

The incremental moduli for loading and unloading are denoted as E, and
E, [Fig. 1(a)]; E, is called the tangential modulus. Always E, < E, (excgpt
when the material is elastic, in which case E, = E,). E, is a given function
of the initial uniform stress ¢ = o, = g, = —P/A. It is convenient to express
the moduli at the concave and convex faces as E; = nE, and E; = méE, and
define the nondimensional displacements X = 3¢/l and Y = 3q,/2h. The
force variables associated by work are fxy = [8f; and fy = 2hdf,. Baspd on
the foregoing expressions for strains, one may then .obt'am fpr buckling to
the right (X > 0) the following loading-unloading criteria [Fig. 1(o)]:

for Y > X (loading only): £ =1, M=l (1a)
for —X = Y < X (loading-unloading): £ = §&,, n=1............ (1b)
for Y < —X (unloading only): & =1, M=& (1¢)

where £, = E,/E,. Based on the incremental stresses o0, = E13€1 ancli'802
= E,d¢, at the concave and convex faces, the moment anfi axial conditions
of equilibrium at the midspan lead, for buckling to the right, to the equa-
tions:

0fi | _ 1+ €= 2P/nPy, 1= g]{x} .................... @)
{2h8f2} B Z“P’l[ 1-¢ 1+ &l

i ich P, = E,Ah/l = Shanley’s tangent modulus load for mpdulus E,
tr];a\;:nt 1985, 1986; B/ruhns and Mielniczuk 1977, Bruhng 1984; Cha]e§ 1974).
If 85, = O (P = constant), then the only nonzero solution of Eq. 2 is Py =
2¢,P/(E, + 1) = P,. P, represents the reduced modulus load of Engesser
and von Karmdn (see e.g., Chajes 1974; Chen and Atsuta 1976; Chen an_d
Lui 1987; Johnston 1976; Timoshenko and Gere 1961), at which there is

neutral equilibrium [Fig. 2(a)]. For a straight segment of the ¢ — € diagram,
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FIG. 2. Bifurcations of Equilibrium Paths

E, P, and P, are constant. When E, depends on o (curved o — € diagram),
P, and P, depend on o, = —P/A through E(ay).

Because the inequalities in Eq. 1 offer several alternatives, Eq. 2 for 3f
= 0 permits more than one equilibrium path. One path, called the primary
path or path 1 (Fig. 2), is characterized by zero deflection and £ = m = 1;

l
xM =0, ¥P= 2P,; YO 3)

For P, — P,, however, X" is arbitrary since the matrix of Eq. 2 becomes
singular (but X < Y because £ = 1). Another path, called the secondary
path or path 2 (Fig. 2), is characterized by positive deflection (at f; = 0),
m = 1 and § > 1. For this path Eqs. 2 and 3 yield

_ &l Y, 8P = P lAEP — 2G5, + DPo ye @)
41— 2P, h (&, + DP, — 2P,
* P

H

X(2) =

The superscripts (1) and (2) refer to paths 1 and 2. Path 2 according to Eq.
4 is possible only if £ > 1, and £ > 1 is possible only if P, = P,. Since
the solutions in Eqs. 3 and 4 exist for each point P, = P, [solid curves in
Fig. 2(a)], the main path for P = P, represents a continuous sequence of
bifurcation points. The first bifurcation occurs at Py = P,, as shown by Shan-
ley [Fig. 2(a)]. Note that for P, = P, we have Y?/X® = 1, i.e. the sec-
ondary path starts along the boundary of the loading-only sector in the (X,Y)
plane.

To analyze stability, we calculate the second-order incremental work &°W
of small equilibrium forces &f; and 8f, on arbitrary small incremental dis-
placements 3q; and 8g,. We have W = 1/2(8f,3q, + 8£,0¢,), and substi-
tution of Eq. 2 provides:

P.Im & + 1P,
FWX,Y) = — - (- Di|P? =X
WX, Y) P {[(E + 1Y - (- DX|I* + 45(1 2P )X} %)

The absolute value |X| is introduced here in order to make Eq. 5 valid for
buckling to both right and left.

Eq. 5 can alternatively also be derived as W = 3°W, + W, in which
W, = (1/2)(30,9¢; + d0,0¢;) hA/2 = second-order work of stresses, and
W, = —P,Al, with Al = I(1 — cos 0) = I(30)*/2 = 2IX*> = second-order
axial displacement at the load point. Note that W, = (1/2XG, X* + 2G, XY
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= G,Y? where G; = geometric stiffness matrix; and Gy, = —4Pyl, G, =
G22 = 0.

Eq. 5 applies in general if both the axial load and the column length can
change during the incremental deformation. Under a displacement-controlled
mode of loading, we have 8q, = O during buckling, and then W = 1/2
8f8q,, i.e. (for Y = 0):

2 2 2 2P, 2
W = [0 Wlyeeone = OWX) =Pl E+ 1 ——|X° ... ... ... 6)
ne,
On the other hand, under a load-controlled mode of loading (8f, = 0):
4¢ 2P,
W = [0"Wlpcons = O W(X) = ,1( - —)x2 ................. 7
[5'W]s X) =P E+1 P, 9

To identify the stable path, we will also need the work 8°W done along
the equilibrium paths (for f; = 0). For path 2, W® = 1/28f9345. Sub-
stituting Eq. 4 we get, in terms of ¥,

@ _ 2§uPl - (gu + 1)P02
€ + DP, — 2P,

W'

and in terms of df,

Gt DR 2P
26,P,— &, — 1 2P

For 2path 1, WY = 1/28fV8q" = 2P,I¥? in terms of Y, or 3¥W" =

K*8f5/2P,! in terms of &f,, according to Eq. 3. The work difference is found
to be, when Y is the same,

sw® — gy = Lo P& Z DR (10)

- 1)
(1 & U )P, - P,
48,

and when &f, is the same,
(Po — P&, — DI
2P, — Py)(E, + DPI

SZW(Z)

Y £ T ()]

FwY — WP = — Y £ 7 an

GENERAL CRITERION FOR STABILITY OF STATE

The state of the structure is characterized by displacements ¢, (k = 1, 2,

.., n). The total energy and Helmholtz free energy of the structure are
definedas U =W + Q, F = U — TS where dW = P-dq = work of loads
P,, ..., P, (applied forces), q = (qi, ..., g,) = vector of load-point dis-
placements, P = (P,, ..., P,), T = absolute temperature (assumed to be
uniform), dQ = heat that flows into the structure from the outside, and S
= entropy of the structure, which is defined as dS = (dQ/T) + dS,, where
dS;, = internal entropy of the structure. From these relations, one can verify
that

dF =Pdq —SdT — TdS;,. .. ..o e 12)



AU =P-dq + TdS — TdSim ..o (13)

Considering isothermal (d7 = 0) and isentropic (dS = 0) infinitesimal
equilibrium deformations (which must be path-independent in the small), we
have, according to Eqs. 12 and 13,

dF = frdq, AU = f5-@Q . ... (14)

where f;, f are the vectors of associated forces (reactions) that depend on
q according to isothermal or isentropic material properties; f; = (f;, ...,
S £s = (fi, ..., f)s. These forces must be distinguished from the applied
loads which follow their own law (e.g. gravity) that is independent of the
response of the structure.
" Because of the principle of conservation of energy,

8F=fa,:8edV, U = jcs:ﬁedV .............................. (15)
v \ 4

where V = volume of the body, € = strain tensor increment, o, oy =
current stress tensors calculated from the history of € on the basis of iso-
thermal or isentropic material properties. In the case of geometric nonline-
arity or buckling phenomena, only certain types of stress and strain tensors,
known from finite-strain continuum mechanics, can be used for o and € in
order to ensure equivalence of the work of stresses (Eq. 15) to the work of
reaction forces (Eq. 14) (see, e.g., Hill 1958, 1962; Maier 1971).

If the problem is geometrically linear, the equivalence of Egs. 14 and 15
also follows from the principle of virtual work (Maier 1971; Maier and Drucker
1973) because o is in equilibrium with £ and € is compatible with q. Note
that the term 74dS;, does not belong in Egs. 14 and 15 because f; and f; as
well as o and o must be evaluated to include both reversible and irre-
versible responses (see Eqs. 19 and 20 where K; and C; include plastic
stiffness). Because dS;, = 0 in Eqs. 14 and 15, we have dS = dQ/T, and
so the isentropic (dS = 0) and adiabatic (dT = 0) material properties are
equivalent for the determination of f; and oy.

It is convenient to introduce the Helmholtz free energy % and the total
energy AU of the structure-load system; ¥ = F — Wand U = U — W. For
an elastic structure, ¥ and U reduce to the potential energy. But for an
inelastic structure they do not represent potentials in the mathematical sense
since they are irreversible, path-dependent variables. According to Egs. 12—
15 we obtain

d@=—SdT—TdS,,.=J0,:dedV—P-dq=fT~dq—P-dq ......... (16)
12

d°u=TdS~TdS,-,,=fos:deW—P~dq=fs-dq—P-dq ........... (17)
v

Consider now a change from the initial equilibrium state q° to a neigh-
boring state q° + 3q. Since inelastic response must be path-independent in
the small, we may introduce Taylor series expansion of function f(q). As-
suming tgle applied loads P to be constant (dead loads) we thus obtain

‘lj+5qj
A% = . 2 [f? + Ejﬁk(qk —gd [Continued)
i k

9
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+ = D [l — 4G — @) + ...]dqj — D PAG (18)
k

m

N | =

where f7, fii fiim + ... are the initial values of the equilibrium forces and
their partial derivatives with respect to q, and g,. Because the initial state
is an equilibrium state, we have f % = P, which means that the first-order
work term 3W = X,P;8q; cancels out.

Let us now assume that f;, are nonzero. Consider that the change of the
structure state is isothermal (dT" = 0). Then, after integrating Eq. 18 up to
second-order terms in 3¢, and setting X, fﬁkqu = 3f; = equilibrium force
changes, we obtain

1 1 1
AF = —TAS,, = ESf-Sq => 5 8fidg = > >, 5 Kuw)rda;bg, = W (19)
i i k

where K, (v)r is the tangential stiffness matrix associated with q, evaluated
on the basis of isothermal material properties (dT = 0). This matrix depends
in general on the direction vector v of the displacements 8q, as illustrated
by Eq. 2 in which the values of £ and m depend on the ratio Y/X.

From the principle of conservation of energy it further follows that

1 1
AF = —TAS,, = EBGT:SedV + W, = f > de:Cr:dedV + 8'W, ... (20)

v \4

Here C; = tensor of isothermal tangential moduli of the material, which

depends on whether the material loads or unloads; W, = £2(1/2)8¢,G..84,;

and G,,, = geometric stiffness matrix, which depends (linearly) on the initial

stress ag (or P,) but is independent of C;,. In absence of geometrically non-

linear effects (G; = 0), Eq. 20 also follows from the principle of virtual

work, since 8f is in equilibrium with 8¢ and 8e is compatible with 8q.
Similarly, for isentropic deformations (dS = 0):

1 1 1
AY = —TAS,, = ; of-dq = , 5 ofdg = D >, EKjk(v)Sququ =W (1)
j J k

1 1
AY = —TAS,, = f > d05:dedV + 8'W, = f 5 de:Cy:8edV + W, .... (22)
v .

v
Here K;(v)s and Cs must be evaluated on the basis of adiabatic (equivalent
to isentropic) material properties.

According to the second law of thermodynamics, the changes for which
AS;, > 0 will occur and those for which AS,, < 0 cannot occur. Therefore,
the structure is stable (i.e. remains in its initial state) if AS,, < O for all
possible 8¢, or all possible 3f,. The structure is unstable if AS,, > 0 for some
8q, or some &f,. This criterion, whose essence for fluids was stated already
by Gibbs, is the fundamental criterion of stability of the state of any system,
including structures, whether reversible (elastic) or irreversible (inelastic).
According to Egs. 19-22, this criterion may also be stated as follows:

The structure is stable if the second-order work given by Eqs. 19-20 (for
dT = 0) or Egs. 20 and 21 (for dS = 0) is positive for all possible 8¢, (or
all possible 8f,), in other words, if it is positive definite. The structure is
unstable if this second-order work is negative for some dg; (or some df).
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The case when the second-order work is zero for some 8¢, (or some &f;)
represents the critical state, defined as the limit of stable states. Whether the
critical state is stable or unstable can be decided only on the basis of the
higher-order terms of the Taylor series expansion in Eq. 18, which furnishes
higher-order terms to be added to Eqs. 19-22.

If the loads P are variable, higher-order terms involving P need to be
added to Eq. 18, and consequently also to Eqs. 19-22. The stability criterion
AS;, < 0 remains valid whether loads P are conservative or nonconservative,
but it of course cannot detect dynamic instabilities such as flutter.

The special case of the foregoing criterion of stability of equilibrium states
for plastic materials and for boundary conditions of fixed displacements was
presented, without thermodynamic derivation, by Hill (1958).

STABLE EQuILIBRIUM STATES OF ELASTOPLASTIC COLUMN

According to Eq. 19 or 21, the condition of stability is that the expressions
in Eq. 5 (for load control) or Eq. 6 (for displacement control) must be pos-
itive for all possible X and Y (i.e., positive definite). From this we conclude
that under load control Shanley’s column is stable if P, < PZ and unstable
if P, > PL where

2¢,
PL =P = ¢ Py (23)
£+ 1

Under displacement control, the column is stable if P, < P2 and unstable
if P, > P2 where

—1)?
pg=§"+1p,=<1+(§“——l>P,>P, ......................... (24)
2 4¢,

For elastic columns, by contrast, P, = PZ. The physical reason for P2,
to be higher than PZ, is that lateral deflection of an elastoplastic column at
constant P is accompanied by axial displacement (Eq. 4). Note that P2 is
the Py-value for which Eq. 2 with 8, = ¥ = 0 has a nonzero solution (at
8f, # 0), while P’ is the P,-value for which Eq. 2 with 8f, = &f = 0 (P
= constant) has a nonzero solution.

The main aspects of the present stability problem can be illustrated by the
surfaces in Fig. 3. This figure shows (for E, = 3E)) three-dimensional views
of the surfaces of 8°W or TAS,, = —3W given by Eq. 5 as functions of X
and Y. The equilibrium state is characterized by 88°W/aX = 0 and 08°W/
dY = 0, and accordingly, all the surfaces shown have zero slopes at the
origin, for any direction.

Eq. 5, which can be written as W = X 1/2 K, 3q;dq;, appears to be a
quadratic form but is not, because £ and m depend on 8q,/8q,. The surfaces
in Fig. 3 consist of quadratic portions separated by the lines X = *Y at
which £ or m changes discontinuously. These are lines of curvature discon-
tinuity. Therefore, in contrast to the potential energy surfaces for elastic
stability problems (Thompson 1982), the present surfaces are not smooth.
They are nevertheless continuous. They also have continuous slopes, be-
cause the gradient represents the equilibrium forces (f; = W /dq,). The cur-
vatures, however, must be discontinuous because they represent the incre-
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FIG. 3. Surfaces of Internal Entropy Increment AS,, = ~5°W/T for Shanley’s Col-
umn at Various Load Levels
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?entall; s)tiffnesses of the structure, which change discontinuously (e.g. from
;o k).

Note that the surfaces of 8’'W describe path-independent behavior only for
those paths for which the path direction at all points of the path belongs to
the same sector of v-directions in the q-space. For other paths, there is path-
dependence.

The stack of the surfaces for Py/P, = 1, 1.25, 1.5 (crit.), 1.75 shows how
these surfaces evolve as the load is increased. The limit of stable states (P,
= 1.5P, = P,) is manifested on these surfaces by the existence of a hori-
zontal path emanating from the origin O (lines B or B’ in the figures). In-
stability is characterized by the existence of a path for which 8°W descends
(or —8*W rises) while moving away from the origin. Absence of any such
path ensures stability. Note that for Po/P, = 1.25 a portion of the surface
in tI:lig. 3 for Y > |X| is a hyperbolic paraboloid, even though the state is
stable.

GeNERAL CRITERIA OF STABLE EQuILIBRIUM PATH

It has often been alleged that the critical load of elastoplastic columns is
between P, and P;, and P, has sometimes been called the critical load. As
we now see from Eqs. 23 and 24, P, is not the critical load but merely the
lowest bifurcation load. Doesn’t this conflict with Shanley’s proposition that
columns should be designed for the tangent modulus load P,? Why should
per}f)ec; columns start to deflect at P, rather than remaining straight up to P

To answer these questions, we note that an equilibrium path represents a
series of infinitesimal deviations from equilibrium and its restorations.
Therefore, we consider, for an arbitrary structure, a small loading step along
the equilibrium path a (@ = 1 or 2) which starts at the bifurcation state A
(at which the applied load is Py, and X = 0) and ends at another state C on
path o [Fig. 2(b)]. We decompose this step into two substeps, the first one
) away ‘from the initial equilibrium state A and ending at some intermediate
nonequilibrium state B, and the second one (II) foward a new equilibrium
state, ending on one of the equilibrium paths at state C; see Fig. 2(b). (This
decomposition was introduced in BaZant (1985), which presented a special
case of the analysis that follows.) The displacements or forces which are
controlled are denoted as g, f,.. For our column, only one displacement or
lgad is controlled, namely g, or f,, i.e. m = 2. If g, is controlled, we con-
sider 3g,, to be changed in the first substep [Fig. 2(b), left] while f,, are kept
constant, which of course destroys equilibrium; 3¢g,, are kept constant during
the second substep in which 3f,, are allowed to change so as to regain equi-
librium. If f,, are controlled, we consider 3f,, to be changed in the first sub-
step [Fig. 2(b), right] while g,, are frozen (constant), which destroys equi-
librium; 8f,, are kept constant during the second substep in which 8¢, are
allowed to change so as to restore equilibrium.

First consider displacement control (i.e., dq, prescribed) and isothermal
conditions (dI" = 0). Then 3q,, are the same for all the paths a but the
equilibrium force increments 8f,,’ are different. According to Eq. 15, the
increment of Helmholtz free energy of the structure over the entire step is,
up to second-order terms, AF = 3(fo, + 1/2 8f)8q,, = AF, + AF. Here
AF, = X %89, = increment of F over the first substep, which is the same
for both paths a = 1, 2, and AF{ = 2 1/2 8f%3q,, = 8°'W™ = increment
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of F in the second substep in which g, are constant, while the forces f,
change by 8% to find new equilibrium on path a; 8W is the second-order
work along path a. (For our column, there is only one term in the sum, m
=2, ie AF® = 1/2 8f$8q,.) According to Eq. 12 with dT = 0, we have
for the second substep (in which 3q = 0) AF{’ = —TAS,,. The second law
of thermodynamics indicates that the structure will approach the e(%uilibrium
state for which AS,, is maximized (Guggenheim 1959), i.e. AF & is mini-

mized. Hence, the path o which actually occurs is that for which

—TAS, = ¥W® = % BB = >, DO %Kf,,";)aqmaqj =min......... (25)

m m ()
(if g, is controlled). K& is the tangential stiffness matrix for path a, which
must be based on isothermal incremental material properties.

Second consider displacement control (8¢,, prescribed) and isentropic con-
ditions (dS = 0). According to Eq. 15, the increment of the total energy of
the structure over the entire step is, up to the second-order terms, AU =
S(fe + 1/2 8f58q, = AU, + AU . Here AU, = 2 f58q,,, which is the
same for both paths a, and AU = I 1/2 8fdg,, = W™ = increment
of U in the second substep in which g, are constant while f,, change by
3 to find new equilibrium on path . According to Eq. 13 with dS = 0,
we have for the second substep (in which 8q = 0) AU = —TAS,,. The
second law of thermodynamics indicates that on approach to equilibrium
AU must be minimized (Guggenheim 1959). Hence, the path which occurs
is again determined by Eq. 25, in which however K} must be based on
isentropic (adiabatic) rather than isothermal material properties.

Third, consider load control and isothermal conditions. The proper ther-
modynamic function is now Gibbs’ free energy, which is defined as G = F
— P-q. From Eq. 12 one obtains

dG = —q-df — SAT — TdSy ..o vrvnn.. BT 6)

Here q - df represents the complementary work. In terms of equilibrium dis-
placements g, calculated from isothermal incremental material properties,
we have (according to Eq. 26 for dT = dS,, = 0) dG = —q, - df. Accordingly
we have, for both substeps combined, AG = —2(g,, + 1/2 8¢5)8f,, = AG;
+ AGy. Here AG; = —Z ¢,f,, = increment of G over the first substep,
which is the same for both paths a = 1, 2, and AG{Y = —Z 1/2 8f8qn
= —§5W* = increment of G over the second substep in which f,, are con-
stant while g,, are allowed to change so as to restore equilibrium by reaching
path a; 8?W® is the second-order complementary work along path a. (For
our column, there is only one term in the sum, m = 2, i.e. AFp = —1/2
8f8q,.) According to Eq. 26 with dT = 0, we have for the second substep
(in which 8f = 0) AG{® = —TAS,,. Based on the second law of thermo-
dynamics, the approach to new equilibrium must maximize AS,,, i.e. min-
imize AG$’ (Guggenheim 1959). Hence, the path o which actually occurs

is that for which
_ 1 1
TAS,, = ¥W® = >, 5 30 = D D, EDE,‘;-)Bf,,,Sﬁ =max........... Q7
m m [C)]

@f f,, is controlled). DY is the tangential compliance matrix for path o, which
must be based on isothermal material properties. Note that, in contrast to
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Eq. 25, the path label (o) now appears with 8¢, rather than 3f,,.

Fourth, consider load control and isentropic conditions (dS = 0)'7 The proper
thermodynamic function is now the enthalpy, which is defined as H = U —
P-q. From Eq. 13 one obtains

dH = —q-df + TdS — TdSy . .......oieeeiieeianenn (28)

In terms of equilibrium displacements gs calculated from isentropic (adi-
abatic) incremental material properties we have (according to Eq. 28 for dS
= dS,, = 0) dH = —q;- df. Thus, for both substeps combined, AH = —3(q
+ 1/2 8¢™)8f, = AH, + AHy. Here AH, = —Z q,3f, = increment of en-
thalpy P(I )over the first substep, which is the same for both paths o = 1, 2
and AHYY = =3 1/2 3 8q, = —8'W™ = increment of H over the second
substep in which f,, are constant while g,, are allowed to change so as to
restore equilibrium. According to Eq. 28 with dS = 0, we have for the
second substep (in which af = 0) ® = —TAS,,. In view of the second
law(:x )the approach to new equilibrium must maximize AS,,, i.e. minimize
AH}, . Hence, the path which occurs is again that indicated by Eq. 27, in
which however D’ must be based on isentropic rather than isothermal ma-
terial properties.
Eq. 20 further shows that, along path «,

1 1
82W(u) - — §f@ = - (@), g (o) 1
,,.E 5 Sf i G J:,Z o0 3€'VdV + mE mE EquGk,,,Sq,,, ...... 29)

where 30, 3€” = stress and strain tensor increments along path a; and
G = geometric stiffness matrix. For W, a similar expression gene:,rally
does not exist because matrix G,, may be (and often is) singular. But in
absence of nonlinear geometric effects (G, = 0), '

- 1 1
82w(u) — - 8.5 () __ ~ (). & (a)
mE > 110G m 2 3 :8e™dV ... 30)

In 'ﬁ.nite element element programs, the sums of 3f,,8q,, are usually more
efficient to calculate than the volume integrals.

It ma}(lu)alsg happen that some displacements, ¢ (i = 1,...m), and some
loads, f; (j = m + 1, ..., n), are controlled. For such mixed control
Legendre transformation may then be used to introduce a semi-complemen:
tary thermodynamic function, Z = F — X, f{*¢,. Then, for isothermal -
ditions, e ’ con
dZ = —SdT + TdS,, + S,fdq; — Z,q™df . ...................... (31)

A procedure similar to that which led to Eq. 25 (see Baz
. azant 19
shows that the stable path is that for which a “ 5% then

o)

1 1
T (o _ o
TAS,, E.- 5 3f:5¢\ Ej ESf,‘- 8, = AX .. 32)

among all thp paths (o). The same result is obtained for isentropic conditions
using the mixed thermodynamic function Z = U — ,f\%g,.

ANALYSIS OF STABLE EQuILIBRIUM PATH

_Inspecting Eqs. 10 and 11 for Shanley’s column, we now find that under
displacement control (same Y) we always have AW® < AW® if p, > P
&
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and under load control (same 3f;), we always have AW® > AW® if P, >
P,. This means that, for Py > P,, path 2 must occur and is, therefore, stable,
while path 1 cannot occur and is, therefore, unstable. So the column must
deflect for P, > P,. Shanley’s load P, represents the maximum load of an
undeflected column which can be achieved in a continuous loading process,
provided E, varies continuously.

What is then the meaning of the stable states of a perfect column for P,
> P,? They can be reached if temporary restraints are placed at the sides of
the column to prevent it from buckling. The load may then be raised up to
some value P, > P,. If Py < PP at axial displacement control, or if Py, <
PL at axial load control, this column will not deflect when the lateral re-
straint is removed (provided that the column is perfect, of course). So the
column is stable at such a load because the initial state does not change.
Deflection occurs only if the load is increased further. If E, decreases dis-
continuously (e.g. if the 8- diagram is bilinear or if the temperature sud-
denly increases), an undeflected equilibrium state P, > P, can be reached
even without lateral restraints.

The equilibrium paths leading away from the origin are marked in Fig. 3
as 1, 2 and 2'. In the plots of AW, the structure follows the path that de-
scends steeper with respect to Y (and less steeply for the plots of —AW).
The limit of stability of the main path is characterized by the fact that points
1 and 2 (of equal Y) are at equal altitude (Fig. 3). This happens on the
surfaces for Po/P, = 1. Instability of the main path is characterized by the
fact that point 2 in the plots of —52W lies at a higher altitude than point 1
(and a lower altitude for the plots of 8°W). (Note also that the states on the
main path 01 in Fig. 3 cannot be called metastable because for Py, > P, it
is not possible to move from point 1 to point 2.)

The static structural stability studies in the literature, even those conducted
in the most general sense of catastrophy theory (e.g., Thompson 1982), have
so far been confined to elastic structures which possess a potential. For in-
elastic structures, we have two crucial differences: (1) While the surface of
the elastic potential is always smooth, the surface of AW is unsmooth, ex-
hibiting lines of curvature discontinuity; and (2) while the elastic potential
surface is path-independent, the surface of AW applies only to the radial
outward paths (i.e., Y/X = constant) and some paths close to them.

As we have seen, the irreversible systems have two striking properties:

1. The first bifurcation point on the equilibrium path of an inelastic structure
does not have to represent the limit of stability, i.e., the states on all the branches
emanating from the bifurcation point can be stable (which cannot occur in elas-
ticity).

2" Yet at the same time, the stable states on one branch beyond the first bi-
furcation point cannot be reached by a continuous loading process.

The basic cause for this behavior lies in the irreversibility of inelastic de-
formation. As illustrated for Shanley’s column, after bifurcation at point 1
in Figs. 2(c) and (d), a subsequent prescribed increment of either axial load
P or axial displacement g, can occur along two distinct equilibrium paths
leading to points 2 and 3 (actually, if buckling to the left is also considered,
there is also a third path T3’ but it need not be analyzed since it is symmetric
to path 13). This is similar to elastic bifurcation. However, contrary to elas-

tic bifurcation, the structure cannot move along path 23, not even in a non-
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equilibrium (dynamic) manner, and cannot reach at point 3 the same values
of g, g, and P. The cause is the irreversibility (path-dependence) of plastic
strain, which prohibits reaching the same values of g;, g,, P as those reached
along path 12. -

An elastic structure, though, can move along path 23 in a nonequilibrium
manner, and it does reach at point 3 the same g,, g, and P values as does
path T2. This is dictated by path-independence of elastic deformation. If the
structure were elastic (reversible, path-independent) then admissibility of path
23 would cause the potential energy at point 2 to be non-positive definite.
For an inelastic structure, on the other hand, the state (q,,4,,P) at point 3
[Figs. 2(c) and 2(d)] cannot manifest itself in the incremental work expres-
sion at point 2 since path 2 is kinematically inadmissible. It is for this reason
that point 2 in Figs. 2(c) and 2(d) can be stable for inelastic structures but
never for elastic structures.

For the same reason, point 2, even if it is infinitely close to point 1, can
be a bifurcation state itself, permitting as the subsequent equilibrium paths
both path 24 and path 25 in Figs. 2(c) and 2(d). Bifurcation states infinitely
close to each other, occupying a continuous path (such as 124), are impos-
sible for elastic structures (reversible systems).

The foregoing results force us to broaden the general concept of stability
by distinguishing between: (1) A stable equilibrium stzate; and (2) a stable
equilibrium path.

The stable path is that which (1) Consists entirely of stable states; and (2)
maximizes AS; compared to all other parts. So it is a narrower concept than
a stable state.

For elastic (reversible) structures, both concepts are equivalent, and so this
distinction does not exist. For irreversible systems, however, an equilibrium
state can be stable while the equilibrium path on which it lies may be un-
stable. This stable state cannot, in reality, be reached. For such systems,
examination of stable states is obviously insufficient.

Note also that stability of the state is decided on the basis of deviations
away from equilibrium, while stability of the path is decided on the basis
of approaches toward equilibrium.

The concept of a stable path does not quite fit the general definition of
stability of solutions, as stated in the dynamic definition of stability in the
sense of Poincaré and Liapunov (Leipholz 1970; Ziegler 1968). If an infi-
nitely small disturbance (such as lateral load f;) is introduced at the first
bifurcation point [point 1 or 2 of Figs. 2(c) and 2(d)], it does not change
path 124 to path 13 or 125; rather it excludes path 124 from the paths
124, 13, 125 which are possible in absence of any disturbance. Thus, in-
stability of a path is not manifested by the creation of a second, distinct
path, as a consequence of an infinitely small disturbance. It is manifested
by the opposite, namely by the exclusion of one or two possible paths.

CRITERION OF PATH BIFURCATION

Consider now an arbitrary structure with an n-dimensional column matrix
of displacements, q = (q,...,g,). Let L be the loading-only sector, U the
adjacent loading-unloading sectors, and K*, K" the corresponding K. If there
are two paths under load control, then K*8q"” = 3f and KY3q® = f where
df is given. The direction v" of 33’ always lies in sector L. Prior to the first
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bifurcation, the direction v® of 8q® lies outside the corresponding sector U
for all possible sectors U, i.c., no path 2 exists. After the first bifurcation,
v lies within the corresponding sector U at least for one U, and then path
2 exists.

Suppose now that the tangential material properties vary continuously along
the loading path. Then the direction ¥® should also vary continuously. So,
at first bifurcation, the direction ¥® must coincide with the boundary of
sector L (as illustrated by Shanley’s column). But then we must have not
only K“8q® = 3f but also K*3q® = 3f. Subtracting this from K*8q" = 5f
we get K'(8q® — 8q"’) = 0 where 3q® # 8q"". Consequently, the first
bifurcation is indicated by singularity of matrix K*, i.e., by the fact that det
K" = 0, or that the smallest eigenvalue \, of matrix K* vanishes. This is
the well-known condition of Hill (1961, 1962), and the solid corresponding
to matrix K* for which multiple solutions exist is called the linear compar-
ison solid. If, however, the tangential material properties change along the
loading path discontinuously, then the first bifurcation occurs when the value
of N, jumps from positive to negative, without K* ever becoming singular.

The eigenvector g* of the singular matrix K” at the first bifurcation can
lie either inside or outside sector L. If q* lies inside L, then there exists
path 2 such that K"3q”® = 0 where 8q” ~ q*. This means that there is
neutral equilibrium, which represents the limit point instability (or snap-
through). If q* lies outside sector L (which is the case for Shanley’s col-
umn), then 8q® cannot coincide with q* but must lie at the boundary of
sector L; then K*8q® = &f where 8f is nonzero. This means that the sec-
ondary path at the first bifurcation occurs at increasing load, which repre-
sents the Shanley-type bifurcation.

If matrix K" has a negative eigenvalue \,, we have (K* — \Dg* = 0
where I = unit matrix. It follows that 8W ~ q* K'q = q*'\]Iq = X\,
q*T g* < 0. But this does not imply instability of state if the associated
eigenvector q* lies outside L (which has been ignored in some recent pa-
pers). However, the existence of negative A, means that a bifurcation point
must have been passed and that the state might not lie on a stable path.

If one displacement, say dq,, is controlled and 8, = ... = §f,_, = 0,
one may take the foregoing case of load control for which K" is singular at
the first bifurcation point, and then scale &, and 8¢, by a common factor
so as to make 8q, for both paths mutually equal. Since such a scaling does
not change the eigenvalues of K", the condition det K = 0 also characterizes
the first bifurcation point under displacement control (provided the tangential
properties vary continuously).

IMPERFECTIONS AND SYMMETRY

The fact that real columns must start to deflect at P, can be independently
proven by analyzing the effect of imperfections. The simplest case of im-
perfect behavior of Shanley’s column can be obtained by assuming that (1)
The axial load P is raised up to the value P = P, = P, while f; = 0; (2)
then a certain small lateral load f;, representing the imperfection, is applied
at constant P; and (3) then the axial load P is raised further while keeping
/i constant. For this loading, and for the case that £ = £, = constant during
deflection (bilinear stress-strain diagram) and m = 1, Egs. 2 and 3 yield
(after elimination of Y) the solution:
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P& — Dh — Efll(gu + 1) + 4P&q,

P = ———— e 33
@) & — Dh + 26 + Day 33

The curves P(q,) are plotted for various values of the imperfection force in
Fig. 2(a) as the dashed curves. It may now be easily checked that the limit
of the curve P(q,) for fi = 0 is Shanley’s equilibrium deflection curve of
perfect column 1 which begins at load P,. Since the deflection curve of an
imperfect column converges to the stable path (i.e. path 2) rather than to
some unstable path, and since extremely small lateral disturbing loads are
inevitable, the column must start to deflect at P = P,, same as we concluded
it from our analysis of stability. Similar conclusions have been reached be-
fore on the basis of numerical solutions for various other types of imper-
fections and other types of columns.

The bifurcations that we have illustrated correspond to a breakdown of
symmetry. The perfect column has the symmetric choice of deflecting either
left or right, but once it has deflected to the right it no longer has the choice
of deflecting to the left, i.e., its symmetry has broken down. Structures with-
out symmetry do not exhibit equilibrium path bifurcations. This is for ex-
ample the case of our column if it is perturbed by a lateral load (Eq. 29).
Symmetry of any system can be eliminated by introducing suitable imper-
fections. Does this render the preceding stability analysis useless? Hardly.
Imperfect systems are in general harder to solve than the perfect (symmetric)
systems, especially since in principle all the possible imperfections have to
be considered. (In Eq. 33 we considered only one type of imperfection.)

LOCALIZATION OF SOFTENING DAMAGE

Path bifurcations frequently occur in structures which are destabilized by
material softening (or damage, fracture). Consider a uniaxially loaded (ten-
sioned or compressed) specimen of length L = 2h. The value of axial dis-
placement u is controlled {Fig. 4(a)] and stress o is the response. The ma-
terial is assumed to follow the stress-strain curve 012345 for loading and
curves such as 16, 27, 38, 49 for unloading [Fig. 4(b)]. For the post-peak
strain values, there always exists a multiplicity of solutions. The strain € can
either increase uniformly or localize, increasing in one segment of length A
(loading) and decreasing in another segment of length L — h = h (unloading)
in such a manner that stress o in both segments remains the same [Fig. 4(a)].

We will assume that, due to material inhomogeneities, the strain cannot
localize into a segment shorter than h where length £ is a material constant.
Fig. 4(c) shows various possible equilibrium paths of o versus average strain
€ = u/2h. Path 1234 is the main path (a = 1) for which the strain is uniform,
i.e., € = & After the peak point, there exist infinitely many possible bifur-
cation points, such as point 2 [Fig. 3(c)}, at which the strain localization
begins. The response curves for localizations with unloadings which begin
at various points may be constructed by averaging the horizontal distances
¢ and d or e and f as shown in Figs. 4(b) and ().

The condition of stable equilibrium of the specimen, which was derived
in Bazant (1976; see also BaZant 1985, 1986) and coincides with the general
stability condition AW > 0 derived here, indicates the limit of stable equi-
librium states to be the snapback point. On the path 01234 correspondin’
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FIG. 4. Blfurcations of Equilibrium Path in Strain-Softening Uniaxial Test Spec-
imen

to uniform strain, it is the point 3. The states of uniform strain on the seg-
ment 123 are stable, despite strain-softening (BaZant 1976, 1977). The limit
of stable states (point 3), however, is not the first bifurcation point on the
main path. Rather it is the peak point 1. This is similar to the situation for
Shanley’s column [see the bifurcations in Fig. 2(a)]. The limit of stable
states, i.e., the snapback point, is obviously analogous to the reduced mod-
ulus load. Does the peak stress point (point 1) correspond to Shanley’s tan-
gent modulus load? Does the stable path bifurcate at this point?

The answer is yes. This can be proven by considering the second-order
work for prescribed Au, which is represented by the areas AW and AW®
cross-hatched in Fig. 4(d). Their values are negative, and the smaller one
corresponds to the stable path, as we have shown. Since AW® < AW, we
must conclude that the stable path bifurcates right at the peak stress point.
The specimen, in a continuous loading, must therefore follow path
01ABCD in Fig. 4(c), and not the path 013E. The stable states on the seg-
ment 123 are not reachable by a continuous loading process. (They would
be reachable, though, if the specimen were temporarily forced to deform
uniformly, e.g., by first gluing it to a stiff parallel steel plate, then moving
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FIG. 5. Surfaces of 5°W for Strain-Softening Uniaxial Specimen (X, = 3u/L, X, =
dv/L)

the specimen ends and finally dissolving the glue while the ends are kept
fixed; the specimen would then remain stable in a state such as point 2.)
To sum up, the thermodynamic criterion of stable path implies that lo-
calization of strain begins right after the peak point and the strain always
remains localized to the shortest possible segment allowed by the nonlocal
characteristics of the material.
The second-order work for the specimen in Fig. 4 is obtained as

1 | m
W = EE,,[; e C 8v)2] ............................. (34)

inwhich§ =1fordv =0,§ = —kford >0, = 1fordu < dv, =
—k for du > dv;, k = —E,/E,; u, v = axial displacements at the end and at
th_e interface of segments & and L — h. The surfaces of 8°W are plotted in
Fig. 5for L/h = 4, and k = 1/6, 1/3, and 2/3, representing stable, critical
and unstable states if v is controlled; 1, 2, 3, 4 label the paths, and the lines
of curvature discontinuity are shown dashed. All the foregoing conclusions
can be derived from these surfaces. Note that for stability of state at con-
trolled displacement only positive definiteness of the cross section ¥ = 0
matters, while for stability of path at controlled displacement the positive
definiteness of the entire surface of 3°W matters.

' Independently of thermodynamics, our result can also be proven by con-
sidering imperfections. Suppose that, for example, a specimen at peak stress
state [point 1 in Fig. 4(c)] is subjected, at constant u, to a very small dis-
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turbing axial load 8f applied at the interface between the segments h in Fig.
4(a). This causes one segment to strain-soften to point S and the other seg-
ment to unload to point R [Fig. 4(b)]. As a result, the state in Fig. 4(c)
moves from point 1 to point T (not to point U). Now a crucial property is
that for the subsequent loading there is no bifurcation; the segments & can
move in Fig. 4(b) from point S only toward point 2 and from point R only
toward point 6, which means that the state in Fig. 4(c) moves from point T
toward point A and cannot move toward point 2. Since an infinitesimal dis-
turbance 3f is inevitable, the bifurcated path TTA must be followed.

The length of the localization zone can in reality have any value between
max h = L and min A = [ where [ is a material constant proportional to
characteristic length. For an arbitrary h/L ratio [Fig. 4(e)], the horizontal
coordinates of the response curve of o versus u/L represent a weighted av-
erage of distances ¢ and d of Fig. 4(a). As the ratio is varied, the response
paths can occupy a continuous fan of directions as shown in Fig. 4(f). So
there are infinitely many paths emanating from each bifurcation point, among
which the extreme ones correspond to A = [ and h = L, and there is a
continuous sequence of such bifurcation points. Still, however, the states on
all these postbifurcation paths can be stable. This is the case, e.g., for points
1 and 2 in Fig. 4(f).

The limits of stable states have recently been determined for flexural soft-
ening in beams or frames (BaZant et al. 1987). Bifurcation of the stable path
may again occur earlier than these limits.

Multiplicity of response paths that consist entirely of stable states no doubt
exists in inelastic finite element systems with damage or softening (BaZant
1976, 1977, 1985, 1986) but often goes undetected. An example was pub-
lished (BaZant 1985, 1986) where various alternatives to the growth of a
strain-softening (cracking) zone permitted two different equilibrium paths of
load versus displacement. Step-by-step loading with iterations in each step
produced as output only one of these paths (unless the system was forced
by a suitable small disturbance to follow the other path). Yet the path that
the finite element program produced as output turned out to be impossible
in reality since another undetected path was subsequently found to minimize
the increments of the Helmholtz free energy (or maximize the values of in-
ternal entropy). In spite of this fact, the computations which led to the in-
correct path appeared to be stable, the iterations converged well.

Obviously, without actually checking for path stability, the inelastic finite
element analysis as currently practiced can be deceptive. It does not nec-
essarily yield the correct response path and may miss the stable one. Further
research on numerical implementation of the present criteria is needed.

STRUCTURE WITH SINGLE LoAD

Determination of the stable path is simple when there is only one applied
load, f, or one controlled displacement, g. Noting that the second-order work
(1/2)3f3q is represented by the cross-hatched triangles in Figs. 4 or 6, or
that W = (1/2)Kdq?, W = 1/2 df*/K where K = df/dq, we have the
following theorem: If the initial state is stable, the stable path is that for
which the slope K, i.e., the tangential stiffness is minimum.

Examples proving this simple theorem are shown in Fig. 6. The solid
arrows (with the triangles of W or 8°W) denote the stable paths, and the
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dashed arrows the unstable paths. For the states 3, 4, 7 no path is stable
because these states are unstable (as revealed by snapback).

IDENTIFICATION OF SOFTENING STRESS-STRAIN RELATIONS
FROM TESTS

The §train localization due to strain-softening complicates experimental
evaluatlpn _of constitutive relations. Previous works have generally assumed
the strain in small test specimens to remain uniform even after the peak
stress. However, this can be assumed only for small specimens Whosepsize
1s roughly equal to the characteristic length [ of the material.

To simplify the material identification and avoid complicated finite ele-
ment gnalysis of the test specimen, one may assume the post-peak specimen
behavior to be approximately equivalent to a series coupling of a loadin
Zone of volume fraction f which undergoes uniform strain-softening and aﬁ
unloading zone of volume fraction 1 — f, which undergoes unloading. The
observed.(measured) mean strain is € = fe + (1 — f)e, where € = true .post-
peak strain in the loading (softening) zone while €, = strain in the unloading
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zone, which follows the unloading branch from the peak stress point (Fig.
7). From this,

1'+(1 1>" (35)
€e=—¢ o € e
f f

For tensile specimens, one may assume that f = 1/L; however, for specimens
that exhibit post-peak softening in compression, shear or other complex modes,
the series coupling assumption is questionable and the choice of f is more
problematic (since its value might be substantially larger than {/L). It should
be noted that ideas similar to Eq. 35 have been advanced by M. Ortiz (sem-
inar at Northwestern University on February 26, 1988).

CONCLUSIONS

1. An equilibrium state of an inelastic structure is stable if no deviation from
this state can lead to an increase of internal entropy of the structure. It follows
that an equilibrium state is stable if the second-order work is positive for every
kinematically admissible deviation from the equilibrium state, and unstable if it
is negative for some deviation.

2. While stability of a state is decided by considering deviations away from
equilibrium, stability of a path is decided by considering approaches toward
equilibrium.

3. Among all the equilibrium paths emanating from a bifurcation point, the
internal entropy of the structure is maximized for the stable path. It follows that,
among all the equilibrium paths, the stable path is that which consists of stable
states and either minimizes the second-order work along the path if the displace-
ments are controlled, or maximizes it if the loads are controlled, as compared
to all other equilibrium paths.

4. The undeflected states of Shanley’s perfect elastoplastic column are stable
up to the reduced modulus load P, if the axial load is controlled, and up to an
even higher load if the displacements are controlled. However, the stable un-
deflected states for loads P above the tangent modulus load P, are not reachable
in a continuous loading process, except when E, decreases discontinuously. The
stable equilibrium path is such that the deflection becomes nonzero as soon as
P exceeds P,.

5. If there is only a single load, the stable path is that for which the tangential
stiffness is minimum, provided the initial state is stable.

6. Strain localization in strain-softening uniaxially stressed specimens must
begin right after the peak stress state.
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