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Abstract-The classic localization instability analysis for strain-softening materials is expanded to 
dynamic solutions. The nonlocal continuum with local strain, which ensures proper convergence of finite 
element calculations and physically realistic solutions, is adopted in its simplified form, the nonlocal 
damage model. The dynamic response of a one-dimensional bar initially in a uniform strain-softening 
equilibrium state is calculated by finite elements. The stability limit of the bar subjected to a small initial 
disturbance is computed from the time evolution of the energy dissipation due to damage. The limits found 
for various lengths of bar are very close to static analytic calculations and exhibit the correct size effect 
when bars of increasing length are considered. 

INTRODUCTION 

Since the idea of nonlocal damage was first proposed 
for strain-softening materials, it has been demon- 
strated that the energy dissipation cannot localize 
into a region of vanishing size and that, likewise, 
static strain localization instability does not permit 
localization of strains to a Dirac delta function. This 
result could not be achieved by either stress-displace- 
ment constitutive laws [I] or the usual local stress- 
strain constitutive relations [2]. The conditions for 
static localization instability were formulated and the 
influence of various parameters on static localization 
solutions was studied. 

In the numerical examples presented here, we 
explore the dynamic response of the continuum with 
nonlocal damage, which was already to some extent 
discussed in the original presentation of the model [3]. 
The stability limits for dynamic problems are numer- 
ically obtained by finite element analysis and com- 
pared to the static localization instability result, 
which may be regarded as a limiting case of the 
present dynamic calculations. 

NONLOCAL MODEL 

The nonlocal continuum is a continuum in which 
some state variables are defined by spatial averaging. 
One constitutive model which is suited for this pur- 
pose is the continuum damage theory. In our one- 
dimensional analysis we choose the simplest model in 
which ‘damage is represented by a scalar parameter 
which affects the secant stiffness of the material. For 
the present study, this simplified formulation is ac- 
ceptable. However the extension of this analysis to 
two or three dimensions would require a more real- 
istic, anisotropic, damage model. For example in the 
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context of the continuum damage model proposed by 
Lade&e [4], and applied to concrete by Mazars and 
Pijaudier-Cabot [5] such a generalization could be 
easily made. 

The nonlocal damage model is obtained by re- 
placing the local damage w, by a nonlocal damage 
scalar denoted R in the constitutive equations. 
Presented by Pijaudier-Cabot and Baiant [3] and 
extended later to the concept of nonlocal continuum 
with local strain [6], the model may be summarized as 
follows. 

The one dimensional stress-strain relations are: 

u =(l -R)a’, 

u’= EE, (1) 

where a and 6 are the macroscopic stress and strain, 
e’ refers to the true stress in the damaged materials 
defined, e.g., by Lemaitre and Chaboche[7] and E 
is the Young’s modulus of the undamaged material. 
From thermodynamic considerations[g the energy 
dissipation rate due to damage 

d = Yh, 

where Y is called the damage 

Y = $EE~. 

is expressed as 

(2) 

energy release rate; 

(3) 

Inspired by the local damage models [5], we assume 
the nonlocal damage to be defined as a function of 
the average damage energy release rate P, i.e. 
h = f(Y), in which 

Y(x)=1 s V,(x) Y 

a(s - x)Y(.s) ds, 

V,(x)= s a(s -x)ds, 
V 

(4) 
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tl is a given weighting function and V,(x) is called the 
representative volume. A function f(P), integrated 
from experimental data by Zaborski [8], is used in the 
computations. Along with the loading criterion, this 
relation is defined as: 

IfF(F)=O and P(P)=0 then h=cj (5) 

IfF(y)<O or if F(P)=0 and 

P(y)<0 then h=O, 

where 

1 1 
dj=l- 

I 1+&P-Y,)” ’ 

b, n, Y, are empirical constants, n > 1, Y, = damage 
threshold and F( p ) = empirical loading function, 
taken as 

F(F) = y -K(Y). (7) 

K( P ) is the hardening-softening parameter whose 
initial value is Y, and afterwards K (p ) represents the 
largest value of the average damage energy release 
rate p reached up to the current time. 

In one dimension, the representative volume V,(x) 
reduces to the characteristic length 1. We use a 
uniform weighting function: 

a=1 if SE[X-_/2,x+1/2] 

otherwise a = 0. 

The average of Y(x) becomes: 

Y(x)=; _isiC2(S)ds. 
I 

(8) 
X 112 

At the boundary, the domain of length 1 centered 
at point x protrudes outside the bar. This protruding 
part is deleted from the averaging domain and y is 
computed from the remaining part of the representa- 
tive volume. 

As already demonstrated, this model serves as an 
effective localization limiter and yields physically 
realistic solutions with finite energy dissipation at 
failure and no spurious mesh sensitivity [6,9]. 

DYNAMIC RESPONSE AND ITS STABILITY 

In a preceding study [6] a uniaxially stressed bar 
loaded through a spring was considered as a typical 
problem which reveals the salient characteristics of 
the nonlocal damage. We now analyze the same bar 
dynamically, and we will particularly examine 
stability of the dynamic response. The analysis of 
the stability of equilibrium of the bar carried out 
by B&ant [lo], B&ant et al.[ll] and B&ant and 
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Zubelewicz 1121, and thermodynamically reexamined 
by Ottosen [13], may be regarded as a limiting case of 
dynamic stability analysis in which the inertial forces 
are neglected. In static analysis, the location of the 
softening zone within the bar is in fact non-unique 
(and is in reality determined by the statistical vari- 
ability of the material properties causing one zone to 
be weaker than another). By contrast, due to inertial 
forces, this non-uniqueness may be expected to disap- 
pear in the dynamic setting. 

We consider a bar of length L which is initially in 
equilibrium under uniformly distributed axial stress 
cr,, and strain c,, that is in the softening range. Begin- 
ning with time t = 0, the end points of the bar (X = 0, 
x = L) are forced to displace outwards at a constant 
velocity c during a short time interval 6t, after which 
the displacement at the end points remains constant. 
In the case of elastic behavior this would produce 
during 6t a step wave of strain with magnitude 
c = c/v, where v = elastic wave speed. The response. 
however, is very different since the initial strain is in 
the strain-softening range. In a local strain-softening 
material, the disturbance caused at the boundary 
would not propagate, and a strain-softening increase 
of strain would remain limited to the end points. 
similar to the solution of Baiant and Belytschko [14] 
as well as the phenomenon of deformation trapping 
analyzed by Wu and Freund [15]. For the present 
nonlocal approach, the disturbance must nevertheless 
be expected to spread at least over a finite distance 
into the bar. This question has been analyzed numeri- 
cally by finite elements with the principal objective of 
determining the conditions of stability of the dynamic 
response. The response is considered stable if very 
small boundary velocities cause a very small change 
in the state of the bar, and unstable if they cause a 
finite change in the state of the bar, as measured in 
terms of displacements, dissipated energy, strains or 
damage. 

The bar is subdivided into N finite elements and 
the explicit step-by-step time integration procedure, 
of the same type as used and described in [I 61. 
is used. The material data are selected from the 
experimental results [8]. As shown in Fig. I. the 
relationship of stress versus mean-strain is quite 

(I = E(l-0)~ 

Strain 

Fig. 1. Stress versus mean-strain curve in tension. 
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realistic for concrete or cement paste in 
tension; elastic modulus E = 32,000 MPa, damage 
threshold Y, = 8540 x lO-‘j MPa, softening para- 
meters b = 9.7 x 103, n = 1, mass density 
p = 0.25 x 10ms kg/mm3. The bar length L ranges 
from 51 to 301, where for convenience the character- 
istic length of the material is I= 1 mm. The time step 
is At = 0.8 x 10e6 set, and the number of elements, 
N, is 75. The magnitude of the imposed boundary 
velocity v is chosen such that it initially causes the 
strain L,, to increase by 0.01% of eo. 

Figure 2 shows the evolution of the axial displace- 
ment pi at the point x = L/4 for a bar of length L = 51 
and for various magnitudes of the initial uniform 
strain .Q, all of them being in the strain-softening 
range. We see from the figure that for initial strain 
values Q < 2.6 x lo-’ the histories of displacement as 
well as strain remain bounded and the strain in- 
crements never exceed O.OOOlc,, despite the fact that 
the initial strain c,, is in the softening range. For 
G = 2.8 x IOw3, by contrast, the displacement u at 
x = L/4 increases monotonically at increasing slope, 
and a rapid strain decrease in the middle of the rod 
by over OSC,, is also observed [Fig. 2(b)]. This type of 
response is obviously unstable. At the bar ends, 
failure occurs. 

The critical state, which is indicated by the 
aforementioned calculated strain histories to lie be- 
tween L@= 2.6 x IOe3 and Q = 2.8 x tO-3, can be 
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Fig. 2. Variation of ~is~~_~ (a) and strain profife (b) 
of a bar subjected to a small dynamic perturbation of an 

initial strain-softening equilibrium state. 

in which n refers to the element number (n = 1, 2, 3, 
4 , . . . N), and subscripts r, r + I refer to the begin- 
ning and the end of the tth time-step. The increment 
of the dissipated energy density is one-half of the 
bracketed expression in eqn (9). It is also represented 
by the cross-hatched area between the unloading 
stress-strain diagrams from points reached at time r, 
and tr+l on the softening stress-strain diagram, as 
illustrated in Fig. 3(b). 

The evolution of the dissipated energy has been 
calculated for the bar and is plotted in Fig. 3(a). We 
SW that for co< 2.5 x low3 the energy remains 
bounded and would obviously be infinitely small if 
the initial ~st~rban~ was i~fi~tely small, while for 
fo > 2.6 x iOe3, the dissipated energy reaches large 
values and grows with an increasing slope. In this 
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Fig. 3. Evolution of the dissipated energy consumed for a 
bar loaded in the softening range and subjected to a small 
disturbance (a); influence of the initial state on the rate of 

energy dissipation (b). 

more sensitively detected in the evolution of the 
energy dissipated due to strain-softening. Energy 
represents a suitable measure of the overall response 
of the bar. 

Using the same formula as in [ 161, we may calculate 
the dissipated energy W from the expression 

+(efI,feN,,+,N”,,,, -G,.,)L (9) 
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case, of course, the energy increase is bounded by the 
value of the energy required to break all the material 
included in a zone of length approximately 1 located 
at each end of the rod; for this case it appears that 
no matter how small the initial disturbance is, finite 
energy dissipation is achieved, which is an unstable 
situation. SO the limit of dynamic stability lies be- 
tween t = 2.5 x 10m3 and 2.65 x 10m3. Closer bounds 
for the stability limit could be obtained by solving 
further cases and using a finer subdivision of time and 
of the rod. 

It is further useful to consider the time rate I&’ of 
the energy dissipated in the bar. We plot the time rate 
for the final time from Fig. 3(a), i.e. for the time of 
400 time-steps. Figure 3(b) shows the plot of @ 
versus the initial strain Q. The critical strain cy lies 
at the point where the rising curve branches from the 
horizontal line. From the shape of the curve, this 
appears to occur betwen t0 = 2.5 x lO-3 and 
2.55 x 10e3, for a bar of length t = 51. For the 
purpose of further comparisons, we arbitrarily fix the 
critical state as the point at which the final energy 
dissipation reaches 0.01 W,, W,, being the energy 
dissipated at the initial state of uniform strain. 

Next the foregoing calculation procedure is re- 
peated for various bar lengths L in order to determine 
the effect of the bar length on the stability limit. The 
results are plotted in Fig. 4, in which we also compare 
the static stability limits obtained by static 
analysis [6], as well as the stability limit obtained by 
an approximate local analysis with a prescribed size 
h of the softening zone, as originally presented [IO]. 
Note that the curve of dynamic stability limit shown 
in Fig. 4 is obtained for simultaneous strain local- 
ization at both ends of the bar. 

The localization of strain near the ends of the bar 
is a typical feature of this problem [lo, 17, 181. The 
localization zone cannot propagate away from the 
ends because the existence of a strain-softening initial 
state precludes wave propagation. Nevertheless, the 
solution clearly shows that strain-softening damage 
spreads into a boundary region (in multidimensional 
situations it would be a boundary layer), the size of 
which is approximately equal to the characteristic 
length of the material 1. A similar result has already 
been obtained with dynamic computations for a 
clamped bar [3]. 

From the comparison between the dynamic and 
static stability limits presented in Fig. 4, we note that 
the case where the localization does not reach the bar 
ends, i.e. is contained within the interior of the bar, 
constitutes a lower bound for dynamic stability limit. 

If the bar is very long compared to 1, however, the 
fact that the averaging domain protrudes beyond the 
boundary has a lesser influence. The difference be- 
tween the localization in the interior of a very long 
bar and near its ends becomes small and eventually 
negligible, particularly in terms of the dissipated 
work W [eqn (9)]. Therefore, the two static stability 
limits converge together as L/I is increased. They also 

- -- Dynamic stability limit 

- Static stability hut 

Localizaticm at bar ends 
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Fig. 4. Comparison of the dynamic and static stability 
limits 

approach the strain corresponding to the peak-stress. 
The overall dynamic response is in this case similar 
to the response of one-half of the bar taken alone. 

It may be noted from the calculation that the static 
stability limits for localization near the bar ends 
represent an upper bound approximation for the 
dynamic stability limits. In static loading, of course, 
the strain and damage profiles corresponding to the 
localization at bar ends cannot in reality develop 
because the localization in the interior of the bar 
develops earlier, i.e. at a smaller strain tO. 

One practical consequence is that, in the test of a 
specimen, failure should not occur, under static load- 
ing, near the loading grips but should take place in 
the interior of the specimen, provided the strain 
distribution is uniform. This appears to be confirmed 
by the experience with direct tensile tests of concrete 
which, if properly performed, normally exhibit failure 
by a crack away from the grips. It is unclear. how- 
ever, whether this might possibly be caused by the 
lateral restraint of the specimen at the grips. 

CONCLUSIONS 

1. The dynamic stability limit of a one- 
dimensional bar has been calculated by applying a 
small disturbance at the boundary of a bar in a 
strain-softening equilibrium state. The nonlocal dam- 
age model, a simplified version of nonlocal con- 
tinuum with local strain, is used in the analysis to 
avoid spurious strain localization into regions of zero 
volume. We find that the applied disturbance pene- 
trates a finite distance into the bar, although it 
remains localized at the boundaries. 

2. The stability limit is better estimated by ana- 
lyzing the variation of energy consumed by damage 
once the disturbance has been applied. For different 
bar lengths, this limit was calculated in terms of 
critical values of damage or critical mean-tangential 
modulus on the strain-softening stress-strain re- 
lations. As the length of the bar increases, the size of 
the localization zone becomes negligible and in- 
stability occurs closer to the peak-stress. 
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3. The dynamic stability condition appears to be 8. A. Zaborski, An isotropic damage. model for concrete 

rather close to the static limits evaluated analytically (in French). Internal Report No. 55, Laboratoire de 

from the nonlocal formulations or simplified local 
M&anique et Technologie, ENSET, Cachan, France 
IIORC) 

model in which the size of the localization zone is “-““I’ 

specified in advance. The same size-effect on the 
9. Z. P. Baiant, F. B. Lin and G. Pijaudier-Cabot, Yield 

limit degradation: nonlocal continuum with local 
stability limit is observed. strains. Preprints, Int. Conf. on Computational Plas- 

ticity, held in Barcelona (Edited by E. Onate, R. Owen 
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