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Recent studies of path stability in inelastic bifurcation problems 
have shown that, even if the specimen is stable, strain softening in 
uniaxial tests must localize right after the peak stress state into 
the smallest length permitted by the material, which is approximately 
equal to the characteristic length of nonlocal continuum. Without 
knowing this length, the uni~xial stress-strain relation cannot be 
identified from uniaxial test data. The post-peak stress-strain 
relation is analyzed on the basis of a series coupling h}~othe~es. 
Van Mier's uniaxial compression test results for specimens of dif- 
ferent lengths show this hypothesis to be valid. 

Introduction 

Identification of the stress-strain relation from tests of specimens 
whose load-deflection diagram exhibits post-peak softening is not an easy 
problem, and considerable debate has recently arisen on this subject. Strain 
softening causes bifurcation of the equilibrium response path, such that a 
state of uniform strain is no longer the only equilibrium solution. There 
exists another response path in which strain softening localizes into a cer- 
tain zone within the specimen while the rest of the specimen undergoes un- 
loading. Normally, the localized response path is the stable pa=h, i.e., the 
path which must actually occur CI,2]. A general three-dimensional analysis 
of such localizations is a difficult problem; however for many practical 
situations one can assume a series coupling model for whick tbe analysis is 
relatively easy. 

In the series coupling model, one assumes that the zone of continued 
loading Cstrain softening) is coupled in series to the zone of unloading 
CFig. la), such that the forces carried 5y 5oth zones are equal and their 
deformations are superimposed. The load~eformation curve in Fig. ib on the 
left characterizes the softening zone alone, the curve in the middle of Fig. 
ib characterizes the unloading path from the peak stress point, and the curve 
on the right characterizes the response of the entire specimen. Thermo- 
dynamic analysis showed (1,2) that localization of strain softening in the 
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Series coupling model for the effect of structure size on the post- 
peak load-deformation diagram. 
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Fig. 2 Optimum fit of van Mier's uniaxial compression test results for 
specimens of different sizes by a series-coupling model with 
localized strain-softening zone. 
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series coupling model must begin right at the peak-stress state. The purpose 
of this paper is to show some implications of the series coupling model and 
check its validity. 

Analysis of Unlaxial Tests Based on Series Couplin$ Hypothesis 

In experiments, we are interested to find the actual strain, ¢, in the 
strain-softenlng region, but we measure only the overall mean strain, ~, on 
the basis of the displacements. Suppose the measurements are made on two 
specimens of the same cross section but different lengths L I and L 2. For the 
same chosen stress value ~, the corresponding post-peak mean strains are 
~i(9) and ~2(o). According to the series coupling hypothesis, the compati- 
bility conditions are 

%E(O) + (e I -£)Cu(O ) = el~l(~), £~(O) + (e 2- £)~u(O) = L2~2(O ) (i) 

where E(o) is the true strain at stress q inside the strain-softening zone 
(Fig. ib left), which we want to find; e u is the strain outside the strain- 
softening region in which the material unloads along an unloading branch 
emanating from the peak stress point (Fig. ib middle); and £ - length of the 
strain-localization zone, which approximately coincides with the character- 
istic length of the material (5) and may therefore be considered constant and 
the same for any specimen length not less than £. 

For any given o, Eqs. 1 could be regarded as a system of two linear 
equations for two unknowns X = £ and Y = ZEro). Unfortunately, thougk, the 
matrix of this equation system is singular, i.e., the determinant is zero. 
Consequently it is impossible to determine £ from these test results. The 
value of £ must be found by some other suitable type of test. A rather 
simple test which yields £ was presented in Ref. 5. 

If % is known, strain £ may be solved from one of Eqs. i. For specimens 
of length L. we get 

1 

e(o) = ~[ei~i(o ) - (L i- £)Cu(O )]. (2) 

If the series coupling model were exact and the material exhibited no 
random scatter, Eq. 2 would have to yield the same result for any specimen 
length L i. Since this is not so, one must take an average of the values ob- 
tained for different length L i (i = l,...,n), i.e. 

n 
1 1 - 

~(°) =~ X ~i' ~i • = ~[LiciCo) - (L i- £)eu(q)J. (3) 
l = 1 

One can also calculate the unbiased estimate of the corresponding coefficient 
of variation: 

n 

Obtaining E(o) for various stress levels o = o k (k = 1,2,...,N), one may get 
the overall coefficient of variation 

N 

k=l 

If tests with slgnificantly different sizes L i are available, these equa- 
tions may be used to check whether the series coupling model is valid. If it 
is, and if % is known, then Eq. 3 may be used to obtain the strain-softening 
constitutive relation. The series coupling model may be assumed to be valid 
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if the coefficient of variation, ~, is not significantly larger than the co~ 

efficient of variation that is inevitably observed in tests of many identical 
concrete specimens. The latter is typically 5 to 10%. 

ConseQuences of van Mier's Data and Discussion 

At present there exist various test data (for both uniaxial tension and 

uniaxial compression) to which the foregoing equations could be applied. We 
choose the recent compression test results of van Mier (3,4), which were ob- 
tained under very carefully controlled conditions and include a sufficient 
range of sizes. These results are shown as the data points in Fig. 2. The 
specimens have the same cross section and lengths L I = 5 cm, L 2 = i0 cm and 
L 3 = 20 cm. 

To fit the data it has been assumed that ~ = 5 cm, which is a value that 
roughly agrees with the results of Ref. 5 (note, however, that any value of 
between 0 and 5 cm would yield the same optimum fits). The optimum fits that 

correspond to the expression ~l(O)L:=~e(o) + (L.- %)e (o) according to Eq. 2 
• ~ . l . U 

are shown as the solld curves, and the unloadzng dlagram assumed for the cal- 
culation is shown as the dashed line. 

Fig. 2 also shows the response curve which would be theoretically pre- 
dicted for L 4 = 40 cm. This curve reverses its downward slope from negative 
to positive, which means that such a specimen could not be tested because it 
would exhibit snapback instability even if the loading frame were infinitely 
stiff. (The other curves shown would indicate snapback instability only if 
the stiffness of the loading frame were less than Li-times the magnitude of 
the maximum downward slope of the o C~ i) diagram; however, the stiffness of 
the testing frame can have no effect on the o(~) diagram obtained, provided 
the series coupling hypothesis is valid.) 

Now an important observation from Fig. 2 is that the data fit is very 
close. In fact, the overall coefficient of variation (Eq. 5) is only ~ = 
3.7%, which is surprisingly low. So the series coupling model is verified by 
these tests very well. 

Instead of measuring specimens of various lengths, it is also possible 
to test only one very long test specimen and take measurements on various 
gage lengths, L i (6). However, one must be sure that no strain-softening 
takes place outside any of the gage lengths. This is not easy to achieve. 

During the i960's and 1970's, many attempts were made to measure the so- 
called "complete" stress-strain curve in compression or tension (see, e.g,, 
the review in Ref. 7). Although stiff loading frames were used to prevent 
instability, it is virtually certain that localization must have occurred in 
these tests. The frame stiffness controls stability of equilibrium but has no 
effect on the onset of stable localization (1,2). These old data could now be 
reevaluated to obtain the correct e~o) diagram, but an estimate for Z for the 
concrete used would have to be made first. 

As an extreme case of the present analysis, one might consider that 
+ 0, in which case e + ~ but v = Ze = finite. Eq. 2 then yields the diagram 

of stress vs. opening displacement v for a line crack model Csuch as Hiller- 

borg's); v(~) = Z~(o) = Li~i(o) - (L i - Z)eu(O ). Eqs. 3-5 may be adapted 
similarly. 

The present method can be also applied to shear deformations in direct 
shear tests or torsional tests of hollow cylinders. As Fig. ic illustrates, 
the series coupling model may again be applied. 

Before closing, it must be admitted that a uniaxial analysis of localiza- 
tion in tension or compression (as well as shear) is too crude a simplifica- 
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tion in general. Triaxial action may cause the effective value of Z to depend 
on the cross section size and shape, especially in compression. Compression 
softening is associated with volume expansion of the material due to axial 
splitting microcracks and cracks, or dilatant slip on an inclined shear band, 
or both in combination. A general realistic model must therefore be triaxial. 
But then the analysis is inevitably much more complicated than the present 
one; see, e.g., an elegant and rigorous recent study by Ortiz (8). 

Van Mier's data nevertheless confirm the simple uniaxial series coupling 
model to be adequate with respect to the effect of specimen length. A more 
general but still simple model might be a combination of series and parallel 
coupling (9). Such a model might be necessary when both the length and width 
of the specimen are varied. 

Conclusions 

i. Van Mier's test data (3,4) indicate that series coupling is an 
acceptable hypothesis for the effect of specimen length on the post-peak 
diagram of stress vs. mean strain. This further justifies the use of the 
series coupling model in stability analysis of post-peak softening of uni- 
axially loaded specimens or structural elements. 

2. The uniaxial stress-strain relation for strain softening can be 
identified from uniaxial tests only if the characteristic length of the 
material is determined by other means 65). 
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