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Abstract -Strain-iocalimtion instabilities due to strain-softening which result from distributed 
damage such (IS cracking in heterogeneous brittle materials are analyzed. Attention is restricted to 
the stability problem of equilibrium states. This problem is not equivalent to bifurcation of the 
equilibrium path. which may occur before stability of Lquilibrium is lost. The continuum is local 
but is enhunccd by the localization limiter used in the crack hand model. consisting of a lower 
bound on the minimum dimension of the strain-localization region. which is regarded as a material 
property. Presented arc derivations of the critical state conditions for localizttion of initially uniform 
strain into ellipsoidal domains within an infinite continuum and into a planar band within a layer 
of linitc thickness. Thcsc dcrivnlions arc simpler than the previous Bahnt’s dcrivalions of the 
gcncral stability conditions for thcsc Iocalizations. A numerical paramctcr study of the critical states 
is made for a broad range of mat&al properties as well as various initial slrcss statcs and rclativc 
sixs of the strain-softening region. The material is dcscribcd by Druckcr Pragcr plasticity with 
strain-roftcning that is rauscd hy yield limit degradation. Tlls Ilattcr the ellipsoidal domain, or the 
Iargcr the six of tbc holy (Iaycr thickness). thc_smallcr is found to be the strain-softening slope 
magnitude at which the critical state is rcarhcd. A softening Druckcr Pragcr material is found to 
bc stahlc against plauar-hand localibations in inlinitc continuum for a certain range of softening 
material paranictcrs. 

INTKOIXKTION 

Distributed damage such as cracking or void growth can bc macroscopically described as 

strain-softening, ;I behavior in which the stress dcclincs at increasing strain, or mot-c precisely 

the matrix of incremental clastic moduli ccascs to be positive definite. Strain-softening 

causes the strain as well as the energy dissipation to localize. This localization represents a 

stability problem. 

For one-dimensional localization that describes the tcnsilc or comprcssivc failure of a 

uniaxially stressed bar as well as the devclopmcnt of a planar localization band (c.g. crack 

band) in infmitc space, the stability conditions in terms of the strain-softening properties 

of the material were derived in a 1974 report and a follow-up paper by Ba%ant (1976). From 

this stability analysis it transpired that, in the usual local continuum, the strain as well as 

the energy dissipation localize into a region of zero volume. This implies the structure to 

fail with a zero cncrgy dissipation and the failure to occur right after the first onset of 

localization. This would indicate every strain-softening state to bc unstable and thercforc 

unobservable. In reality, structures ofcourse fail with a finite cncrgy dissipation and strain- 

softening states in which the cncrgy dissipation is not localized to a zero volume do exist. 

as evidenced e.g. by measurcmcnts of the locations of sound emission sources. 

The simplest rcmcdy that climinatcs this physically unrealistic situation is to impose a 

lower bound on the minimum cross-section dimension of the strain-softening region. This 
ad /WC measure was introduced by BiGant (1976) in the finite element crack band model. 

and was subsequently developed first for sudden softening (Baiant and Cedolin. 1979, 

1980) and later for gradual softening (Baiant. 19%. -). Batant and Oh, 1983). The last version 

has been shown to bc in good agrccmcnt with all the basic concrete fracture data, and to 

exhibit the correct size effect. which is transitional between the size effect of plastic limit 

analysis and the size effect of linear elastic fracture mechanics. The crack band model has 
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further been refined and implemented in some large finite element codes (de Borst, 1984; 

de Borst and Nauta. 1984, 1985; Darwin. 1985; Baiant. 1986). It will therefore be assumed 

in this study that strain-softening cannot localize into a region whose minimum cross- 

section dimension is less than a certain characteristic length h. which is considered to be a 
material property. 

The strain localization instability was explained and analyzed in 1974 by Baiant (1976) 
for one-dimensional strain-softening in bars of infinite or finite length with rigid or elastic 

supports, as well as for flexural softening in beams; see also Baiant’s (1986) review. 

Rudnicki and Rice (1975) formulated the condition of localization into a planar band in 

an infinite space (see also Rice, 1976). This condition turned out to be identical to the 

conditions of uniqueness and of shear band formation, previously obtained by Hill (1962) 

(see also Mandel. 1966 and Mrhz, 1966). The study of Rudnicki and Rice (1975) was 

focused primarily on localization instabilities caused by geometrically nonlinear effects of 

strain, which they showed to be possible already before the peak of the stress-strain diagram 

(i.e. in the plastic-hardening range). However. some critical states were also obtained for 

negative values of the plastic-hardening modulus, i.e. in the softening range. These studies. 

which were restricted to nonassociated Drucker-Prager plasticity, in some cases enhanced 
with a vertex hardening term, did not consider bodies of finite dimensions for which the 

size of the localization region usually has paramount influence on the critical state. and did 

not generally treat unloading outside the localization band, which is essential for the 

loss of stability in finite bodies. Subscqucntly. Rudnicki (1977) studied localization into 

ellipsoidal regions in a uniformly strcsscd infinite space and showed cxamplcs of such 

instabilities in the hardening as well as softening rcgimc. This study was also limited to 

nonassociatcd Druckcr-Pragcr plasticity (without or with a vcrtcx hardening term). and 

tlcalt only with the crititial state of neutral cquilibriurn while stability was not analy~ctl. 

Rcccntly Rilhllt (1988il. b) formulated in il Closed form the conditions of critical state 

as well as stability for the localization of strain-softening into planar bands or ellipsoidal 

regions. This study included formulation of the stability conditions for strain-softening 

localiz;~til)I~ into ;I planar band that forms within ;I layer of linitc thickness. Thcsc stability 

conditions ;~llowctl for complctcly gcncral mittcrial propcrtios charactcrizcd by arbitrary 

tensors of incrcmcntal motluli for loading and unloading (with gcncral anisotropy), which 

makes it possihlc to dctcrminc the important cf’fcct of the type of constitutivc law on these 

instabilities. The numerical cxamplcs, however, dealt only with the special case of isotropic 

inoremcntal elastic moduli tensors, which is simple to treat but of course not too realistic. 

Our objcctivc will bc to apply thcsc previously derived stability conditions assuming 

more rcnlistic. incrcmcntally anisotropic material propcrtics based on Druckcr-Pragcr pIas- 

ticity (l:ung, 1965; Owen and Hinton, 1980; Chen. 1982). At the same time. we will prcscnt iI 

direct derivation of the conditions of critical state (stability limit) which is considerably 

simpler than the previous derivation of the stability conditions. Compared to the work of 

Rudnicki and Rice (1975) and Rice (1976). the present study as well as the preceding ones 

by BGnt (19883, b) rxtcnds the localization condition to arbitrary constitutivc laws and 

to bodies of finite dimensions for which unloading is important and the body size matters. 

It ncctls to bc emphasized thitt, as in BiGant’s (l988a, b) preceding study, the prcscnt 

study deals only with the critical state of the loss of stability of equilibrium, and not with 

bifurcation of the equilibrium path as the load is increased. The problems of stability loss 
and bifurcation arc not cquivnlcnt. For uniaxially strcsscd bars or planar localization bands, 

the critical state for stability difrers from the state of bifurcation (BaZant. 1988~). More 

datailcd comments on this subject will be made later in this paper. 
To avoid localization of cncrgy dissipation into a region of zero volume. one generally 

needs to introduce the so-called localization limiters (BaZmt and 1987). 
of a lower bound on the size of this region. adopted in this study, is the simplest 

but crudest localization limiter. Limitation of localization in gcncral calls for adopting the 

nonlocal continuum approach (Baiant rf of., 1984; Baiant. 1987). The latest form of this 

approach, which is easily implcmcnted in large finite element codes, is the nonlocal con- 

tinuum with local strain (Baiant and Pijaudier-Cabot. 1987. 1988; Pijaudier-Cabot and 

Ba%ant, 1987; BaLnnt and Lin. 1988). The nonlocal approach. however, does not seem 
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Fig. I. Ellipsoidal plug (inclusion) inserted into infinite elastic solid, and localization of strain into 
an elliptic region. 

amenable to closed-form expressions for the stability conditions and therefore will not be 

pursued here. 

Compared to the general nonlocal formulation, the use of a local continuum with the 
simple imposition of a lower limit on the size of the localization zone, made in the crack 

band model and adopted here, might seem too simplistic. The numerical results obtained 

with this model have nevertheless been found to be rather close to the nonlocal solutions 

(Bafant and Pijaudier-Cabot, I988 ; Pijaudicr-Cabot and Baiant, 1987). This is a supporting 

argument for the present approach. 

CRITICAL STATE CONDITIONS FOR LOCALIZATION INTO ELLIPSOIDS 

First wc consider an ellipsoidal hole (Fig. lb) in an infinite hombgcncous elastic 

continuum charactcrizcd by the elastic moduli matrix D,. We imagine to fit and glue into 

this hole an ellipsoidal plug made of the same material. To fit. the plug must first be 

dcformcd by a uniform strain, so, called the eigenstrain (note that an ellipsoid can be 

transformed to any other ellipsoid by uniform strain). The eigenstrain is then imagined 

unfrozen, which causes the plug with ellipsoidal hole to undergo strain increment a’ in 

order to establish equilibrium with the surrounding infinite continuum. According to the 

celebrated Eshelby’s theorem (Eshelby. 1957; Christensen, 1979; Mura, 1982). the strain 

P.’ in the plug is uniform and is expressed as 

in which S +, are the components of a fourth-rank tensor which depend only on the aspect 

ratios u,/uz, u,/ar of the principal axes of the ellipsoid, as well as on the elastic moduli. 
Eshelby’s coeficicnts S,,),,, aregenerallycalculated aselliptic integrals (Mura, 1982). Always, 
S +,,, = Sjnm = S,,,+ but in general Si/tm # Sk,,,,,. For generally anisotropic material prop 
ertics. the expressions for coefficients S,,, were derived by Kinoshita and Mura (1971) and 
Lin and Mura (1973). 

For convenience we rewrite eqn (I) in a matrix form : 

Z 

S 2211 s2221 SZZJJ I ’ s2212 s222J s2231 

S III I S 1122 SJJJJ ’ ~1312 SJJZJ sJJ31 

L___-c__-1 
2s,2,, 

2s 2311 2s2J22 2s233J 2s2J12 L2s2123 ‘2s2Jll 

- - - - =,,,I 2s3122 =3IJJ 2slllZ 2sJ-t2:: ’ 2S3lJl 

(2) 
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in which so and se are the column matrices of the eigenstrains and the equilibrium strains 

in the ellipsoidal region. These column matrices (with the factors 2) are defined in such a 
manner that u*e is the correct expression for work density ; u = (a, ,, oyz, cr3J, u12. cz3, 

4 = column matrix of stresses (superscript T denotes the transpose of a matrix). For 

isotropic materials, the only nonzero elements of matrix Q of Eshelby’s coefficients are 

those between the dashed lines marked in eqn (2). 

According to Hooke’s law, the stress in the ellipsoidal plug, ue. which is uniform. may 

be expressed as uc = Du(ee-a”). Upon substituting a0 = Q; ‘ee [according to eqn (2)]. we 

obtain 

uc = D,(l-Q;‘)E’ (3) 

in which I = unit 6 x 6 matrix. 

Consider now that an infinite continuum (without any hole) is in an initial equilibrium 

state of uniform initial strain e and uniform initial stress u balanced by loads applied at 

infinity. We seek the condition under which the initial state loses stability in a mode in 

which the strain localizes into an ellipsoidal region (Fig. I) without changing the prescribed 

stresses (or the prescribed displacements) at infinity. If these variations can happen while 

maintaining equilibrium. we have a state of neutral equilibrium which represents the limit 

of stability. i.e. the critical stntc. 

Due to localization. the strain and stress in the infinite continuum outside thcellipsoidnl 

region bccomc nonuniform, while according to Eshclby’s thcorcm the stress and strain 

inside the ellipsoidal region will remain uniform. The strains can bccomc discontinuous 

across the ellipsoidal surface. as shown in Fig. Id. On the other hand. the normal and shear 

strass components acting on this surface must remain continuous in order to maintain 

equilibrium (while the normal stresses parallel to the ellipsoidal surface need not bc con- 

tinuous). If the ellipsoidal region undergoes strain-softening, the outside undergoes unload- 

ing and therefore behaves elastically. According to eqn (3). the stress variations immediately 

outside the ellipsoidal region are sa’ = D,( 1 -Q; ‘) 6ti in which D. must now be interpreted 

as the matrix of elastic moduli for unloading. corresponding to the initial strain e. This 

matrix is positive definite, and it is also isotropic if the material is isotropic. The uniform 

stress variations inside the ellipsoidal region are 6~’ = D, de’, in which D, is the matrix of 

incremental elastic moduli for further loading, corresponding to the initial strain e. This 

matrix is not positive definite if the initial state e is in the strain-softening range, and 

generally it must be assumed to be anisotropic. Equilibrium of the ellipsoidal region with 

its exterior is maintained if 6~’ = 66. From this we obtain the following conditions of 

neutral equilibrium (i.e. critical state) : 

[D,-D,(l-QQ;‘)]&’ = 0. (4) 

It may be noted that for each point of ellipsoidal surface, at which the unit normal is n, 

equilibrium requires only that Su’n = da%. However, due to the fact that this condition 

must hold for various n. it is necessary that 6~’ = 3~‘. 
Equation (4) represents a system of six homogeneous linear algebraic equations for 

the six components of Se”. A nonzero solution, which represents the strain localization 

instability mode, is possible if and only if the determinant of this equation system vanishes, 

i.e. 

Det Z=O, with Z=D,-D,(I-Q;‘). (5) 

This is the same result as obtained previously in Baiant (1988b). in which it was further 

shown that the initial state of uniform strain s in unstable if matrix Z is not positive definite, 

and is stable (with regard to the presently assumed localization mode) if this matrix is 
positive definite. This result was obtained (Baiant, 1988b) by analyzing the sign of the 
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second-order work 6’W needed to produce an equilibrium localization increment. This is 
the work that is done by the interfacial tractions applied on the ellipsoidal surface during 
an equilibrium localization increment. It has been shown that S’ W = 6te’Z6ceV/2 = 
- T(AS),, where (AS),, is the increment of internally produced entropy of the body and 
Y = volume of the ellipsoidal region (see Baiant. 1988~). 

Due to internal friction. damage or other phenomena. matrix D,. and thus also Z, can 
be nonsymmetric. In that case. the states for which Z is singular (det Z = 0) represent only 
the states of neutral equilibrium but not the states at the limit of stability (i.e. limit of 
positive definiteness of Z). Since 2s’ W/Y = S&Z 6s’ = &reTZ &I’ for any BeeTI where Z = 
;(z+ ZT) = symmetric part of matrix Z. the limit of stable states is characterized by the 
singularity of matrix Z (rather than Z). So. in the case of nonsymmetric matrix D,. one 
needs to distinguish between two kinds of critical states : 

(I) the critical state of neutral equilibrium. which is characterized by singularity of 
matrix Z, i.e. eqn (5) (in which case one eigenvalue of Z is zero) ; 

(2) the critical state of stability limit (i.e. limit of positive definiteness of matrix Z). 
which is characterized by singularity of symmetric matrix 2. i.e. det Z = 0 (in 
which case the smallest eigenvalue of Z is zero). 

The second condition is more stringent than the first one. as numerical calculations 
confirm. However, the numerical results in Figs 3-13 which follow show that. for non- 
symmetric D, corresponding to a nonassociatcd Drucker-Prager material, the two critical 
states are in most cases graphically indistinguishable. In those cases where graphical dis- 
tinction is possible. the critical states of neutral equilibrium [eqn (5)] are shown as the 
dashed curves and the critical states of stability limit as the solid curves. 

The special cast of the critical state condition in cqn (5) for associated or nonassociated 
Druckcr-Pragcr plasticity was previously dcrivcd by Rudnicki (1977). 

CRITICAL STATE CONDITIONS FOR LOCALI%ATION INTO PLANAR BAND 

Consider now strain localization into an inlinite planar band of thickness h that forms 
inside an inlinitc layer of thickness f. (L 2 11). WC choose axis _rl to be normal to the 
layer (Fig. 2). The layer is assumed to be initially in equilibrium in a state of uniform 
(homogeneous) strain E,, and stress CT,, (the latin lower-case subscripts refer to Cartesian 
coordinates x,. i = 1.2.3). We imagine the initial equilibrium state to be disturbed by 
infinitesimal displacement variations 6~~ whose gradients SU,,, have the values 6ut, and 
Su)l, inside and outside the band, representing further loading or unloading, respectively. 
These variations are uniform within the band and also outside the band, with discontinuous 
jump across the surface of the band. As the boundary conditions, we consider that the 
surf;lcc points of the layer are fixed during the incremental deformation, i.e. Su, = 0 at the 
surfiices .r z = 0 and _r? = f. of the layer. The stress variations inside the band and outside 
the band arc: 

Fig. 2. Planar localimtion band in a layer. 
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682-z D’iiim dqm = D&m S6.m = D’&il Sq.2 (7) 

in which again D&,, and D&j, represent the incremental elastic moduli for further Ioading 
and for unloading, corresponding to the initial strain sit- In writing eqns (6~(7) we assume 
that a<:, = 6U;. , = 0, G<, = 6& = 0. Without these conditions, there would be a slip 
discontinuity between the inside and outside of the band. 

Compatibility of deformations over the thickness of the layer requires that 
h&f;.2+(L-h) su;.: = 0 (i = 1.2,3). Expressing Stc;., from this equation and taking into 
account the condition of equilibrium at the band surfaces, SO$i = Saii (i = 1.2.3). we 
obtain from eqns (6~-(7~ the folIowing condition of neutrat equilibrium (critical state) : 

This represents a system of three homogeneous finear aIgebraic equations. A nonzero 
solution exists if and only if 

Det 2, =L: 0. with Zij = D:ij, + A D’&jz. 

This critical state condition is again the same as obtained previously by Bairtnt (1988a), 
in which it was also proven (by anaIysis of the second-order work) that the states for which 
the matrix Zi, is not positive definite are unstable, and the states for which it is positive 
definite are stable with regard to focalization into a planar band. A special case of eqn (9) 
is the condition for uniaxiaf or shear focalization instability derived in 1974 by Baiant 
(1976). ..- 

The spcciaf cast of cqn (9) for nonassociatcd Drucker-Prager plasticity without or 
with vcrtcx hardening and for infinite spit= (for which L + co and unioading D” plays no 
rofc) was obtnincd by Rudnicki and Rice (1975) and by Rudnicki (1977). 

RASIC PROPERTIES Op: TCIE CRITICAL STATES 

The critical state conditions in eqns (5) and (9) were discussed in detail by Ba&mt 
(198&r, b). Briefly, according to cqn 15) which refers to an infinite continuum, the critical 
state condition for focalization into an ellipsoidal region is independent of the region’s size, 
and depends only on the aspect ratios u,/u2 and u&r of the ellipsoid. By contrast, according 
to eqn (9). which appfics to a finite body, the critical state condition does depend on the 
size of the localization region, in this case the thickness h of the band. The smaller the 
thickness of the band, the more stringent is the stability condition, i.e. the smaller is the 
magnitude of the strain-softening sfopc (tangent modulus) at which instability occurs. If 
h -r 0 were allowed, instability would always occur no later than at the peak stress point, 
and so strain-softening could never be observed. The fact that it can be observed implies 
that the thickness of the focalization band. h. cannot be considered to be smaller than a 
certain finite length. This length must be considered to be a material property. It is roughly 
equal to the ch;~~ctcristic length I of the matcriaf (BaZant and Pijaudier-Cabot, 1989). 

It is now proper to comment on the diffcrencc from Hill’s (1962) condition of bifur- 
cation of the equilibrium path, D\,,2Sufl.2 = 0. This equation coincides with Rudnicki and 
Rice’s (1975) condition and is obtained from eqn (8) with L/h 3 Q). As a bifurcation 
condition, howcvcr. this equation has been used [in contrast to cqn (8)] for a finite body of 
any size. In that case there is no unfoading in the body, same as for a layer of infinite 
thickness. So the modufi D&, may be assumed to apply everywhere, which means the 
analysis can be made on the basis of a linear elastic body; see Hill’s concept of a linear 
comparison solid. It must be noted, however, that the eigenmode Su,:/ obtained from the 
equation D\iiz 6& = 0 violates the boundary condition of fixed displacements at the layer 
surface. Therefore, neutral equilibrium does not exist in the layer at the bifurcation state, 
and the calculated eigenmode && cannot actually occur as an instability. This means that 
the bifurcation must occur at increasing rather than constant boundary displacements. If 
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the boundary displacement increase is controlled, such a mode of deformation does not 
represent stability loss, whose investiggtion is the objective of the present study. Rather, 
the bifurcation state as well as the states immediately after the bifurcation are stable. 

The Foregoing discussion reflects the Fact that one must distinguish between the con- 
cepts of stable state and stable path, as shown in Baiant’s (1988c) study. It was proven (for 
the special case of uniaxial stress) that after the bifurcation point. which occurs according 
to Hill (1962) or Rudnicki and Rice (1975) at the peak stress state. the strain must begin 
to localize if the material is deformed in an equilibrium manner and if the tangential moduli 
vary continuously as the layer is loaded in a displa~ment~ontrolled fashion. However, it 
was also shown that if a nonlocalized uniform post-peak state is somehow reached, this 
state is stable if eqn (8) is satisfied. Such a state can be reached in an equilibrium loading 
process if the tangential moduli decrease discontinuously during loading (or drop suddenly 
due to heating or other effects). Even For continuously varying moduli, such a state can be 
reached dynamically, or if certain temporary restraints are applied. then also statically. 

According to Baiant’s recent study (not yet published). the aforementioned distinction 
between the stability limit and the bifurcation state exists also for finite ellipsoidal regions. 

The critical state conditions in eqns (5) and (9) were examined in the previous works 
(B&ant. 1988a. b) for the effect of material parameters. Consideration was limited to 
incrementally isotropic tensors Diik,,,. For the ellipsoidal localization regions, it was Found 
that the critical slope c of the stress-strain diagram (~0) at which instability occurs 
decreases in magnitude as the ellipsoid becomes llatter, more elongated in the _rl and x3 
directions, and becomes zero as the ellipsoid approaches an infinite band, i.e. for (I( 4 co, 
us -* 0~. Rather large ratios a,/<~ and az/nr. however, arc needed to make lc;“l small. For 
example. for lcl to bccomc less than about 5% of the unloading slope &,,. the aspect ratios 
cz,/tr: and (I~/o~ need to cxcccd approximately 200. This is a surprisingly large value. 

Such an elongated ellipsoidal region (whose thickness for concrctc may not be less 
than several times the aggrcgatc size) often cannot be accommodated within a finite body 
representing a typical concrete structure. This ellipsoidal region would have to bc contained 
within ii larger region that is sutiicicntly remote from the sutfitcc of the body so that the 
boundary conditions of inlinite space around the ellipsoidal region would be approximately 
applicable. Therefore. real structures should often be stable even for strain-softening slopes 
whose magnitude is much larger than that predicted by the formula For the planar band 
[eyn (9) and also Ba&nt, 19761 using a cham~teristi~ length of the same order of ~gnitude 
as the maximum size of inhomogeneity in the material. 

Equations (5) and (9) can be used to study the inff uence of material parameters on the 
localization instabilities for more realistic constitutive laws. for which the tensor D&, is 
anisotropic. We will do so now For some plastic constitutive models. 

PARAMETER STUDY FOR NONASSOCIATED DRUCKER-PRAGER PLASTICITY 

The plastic stress-strain relations for isotropic materials have the Form : 

ds, = ZG(de,, - de$), da” = 3K(di? -dcp) 00) 

in which G, K = shear and bulk elastic moduli. E“ = ~43 = volumetric strain, e,, = Ed,- 
(f,,ti = deviatoric strains (6, = Kronecker delta), d = ski/3 = volumetric stress, stl = tr,,- 
&,a” = deviatoric stresses, and Ed, e$ = volumetric and deviatoric plastic strains. The 
plastic strain increments are given by the flow rule : 

de; =dL$ 
rl 

(11) 

in which dd is the plastic strain parameter and g is the plastic potential function. According 
to the plasticity theory proposed by Drucker and Prager (see Fung, 1965 : Chen, 1982). the 
loading function and the plastic potential Function are introduced as follows : 
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f(U,K) = r+&ry-K = 0 

g@, K) = r+&Jq-K = 0 

(12) 

(13) 

in which t’ = Ji ’ = (fSiiSij) “’ = stress intensity, Jt = stress deviator, K = plastic hardening 
parameter, and 4, JI = empirical material functions of the volumetric stress. As usual, we 
introduce the notations : 

(14) 

in which H = plastic modulus, which is positive for hardening and negative for softening, 
B’= internal friction coefficient. and /I = dilatancy ratio. The formulation satisfies the 
normality rule ifg 5 f. which means that r/~ = JI (and also @ = /I’). In this case, the material 
is said to be associated. and otherwise nonassociated. H, /II and j?’ completely characterize 
the incremental properties of Drucker-Prager plastic material. Traditionally H has been 
considered positive (which describes plastic hardening, i.e. increase of the yield limit). 
However, allowing it to be negative provides a convenient model for strain-softening, 
describing degradation of the yield limit (a model of this type has been used in nonlocal 
analysis of tunnel cave-in ; see Baiant and Lin, 1988). 

On the basis of eqns (IO)-(14). it can be shown by a well-known procedure that the 
tangential (incremental) moduli are 

. . 

For nonassociated plasticity (8’ # /?) the tangential moduli for loading are nonsymmetric, 
while for associated plasticity (@‘.= a) they are symmetric (with rcspcwt to interchanging ij 
with krrr). The tangential moduli for unloading arc assumed to bc the same as for initial 
elastic IOiKhlg, and So 

Dl;k, = (K_jG)Sij8,,$2GS1S,,. (16) 

Although the material is assumed to be isotropic, the tensor of in~rcmcntal moduli for 
further loading feqn (15)J exhibits stress-induced anisotropy. 

After implementing the Drucker-Prager model in the computer program, it has first 
been chtwked whether the results for the case al/u2 3 co, u,/u2 -+ ix3 agree with the solution 
of Rudnicki and Rice (1975). They do. 

The critical state condition in eqn (5) or (9) depends on the following four non- 
dimensional material parameters 

v, H/G, P, 8’ (17) 

in which Y = Poisson’s ratio. In addition it depends on sij/f, i.e. the ratios of the initial 
deviatoric stresses, and also on nondimensional geometric parameters such as L//r for 
localization in a band, and cr,/u?, uJur for localization in an ellipsoid. it does not depend 
on the elastic modulus E. however, because the division of eqn (5) or (9) by E has no effect 
on its eigenvalues. 

The effect of the aforementioned parameters has been studied numerically. The eigen- 
values of matrix Z in eqn (5) or matrix Z,, in eqn (9) have been calculated on a computer 
for various combinations of the parameters in eqn (17). Using Newton’s iterative method, 
material parameter combinations for which the smallest eigcnvalue vanishes have been 
found. and their plots arc shown in Figs 3-13. The initial stress states considered in these 
diagrams were : uniaxial compression, biaxial compression. pure shear (s12 # 0, other 
s,~ = 0). and uniaxial tension. Poisson’s ratio has been considered as v = 0.18 for all the 
calculations. As mentioned below eqn (5). for a # fl there is a difference between the critical 
state of neutral equilibrium [dct Z = 0, eqn (5)] and the critical state of stability limit (for 
which the symmetric part of matrix 2 is singular). Wherever graphically d~stin~uishablc, 
the former are shown as the dashed curves and the latter as the solid curves. 
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Infinite planar band 
(unirxi8l tension) 

0 
1 10 100 

Uh 

Fig. 3. Etkct of size L/h on critical plastic hardening modulus H for infinite planar band in uniaxial 
Icnsion. 

Figures 3-5 show the effect of the ratio of the layer thickness L to the band thickness 

h on the value of the plastic modulus CI at which the stability limit is reached. The states 

below each curve are stable, the states above it are unstable, and the states on the curve are 

critical. In Figs 3-5 on top wc see the curves for various values of p when j? = p’ (i.e. for 

associated plasticity, for which the normality rule is satisfied). in Figs 3-5 at the bottom 

we set the curves for various values of the internal friction coefftcient 8’ when the dilatancy 

ratio is fixed as B = 1. As might have been expected, the thicker the given layer, the lower 

is the magnitude of the plastic modulus N at which the layer becomes unstable. 

I\ Infinite planar bend 
(pure shear) 

1 10 
Uh 

loo 

Fig. 4. Effect of size on critical N for infinite planar band in pure shear. 
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6 
Infinite planar band 
(biaxial compression) 

1 10 

Uh 

100 

Fig. 5. EtTcct of size on critical Cl for infinite planar band in biaxial compression. 

TO check the limit cuc L/h + I. WC rewrite cqn (8) as [Dbjz+D;,/2(L-h)/h] SU;.~ = 
0. Since the equation D’i;,2 SU;,, = 0 has no nonzcro solution (D$,2 is positive-definite), WC 

conclude that at least some component of D\,,2 must tend to cc to have the posssibility of 

localizttion (nonzero S&). According to cqn (15) this occurs if and only if H-+ -co. 

Thcrcforc, the curves in Figs 3-5 tend to cc as L/h + I. 
hnothcr check on the prcscnt gcncral numerical solution is provided by the special 

case of a band in an infinite space solved by Rudnicki and Rice (1975). which corresponds 

to L/h + a). Indeed, their cqn (I 6) yields numerically the same results as the present solution 

for L/h -, oo and the Druckcr-Prager material. It should be noted that Rudnicki and 

Ellipticcylinder 
(uniaxial tension) 

Fig. 6. Effect of ratio ccl/o2 of ellipsoidal axes on critical H for elliptic cylinders in uniaxial tension. 
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6- Elliptic c@indar 
(uniaxial compression) = 2.0 

(3 

7 

0.0 
0 1 J 

1 10 100 

I I 

1 10 100 

W2 

Fig. 7. Effect of axis ratio on critical H for elliptic cylinders in uniaxial compression. 

Rice considcrcd the band to have arbitrary orientation and used among the critical state 
conditions for all possible orientations of axis x2 the one which is most severe. In the present 
study, on the other hand, the orientation of the band (axis x2) is fixed because the band of 
thickness h must bc parallcl to the surfaces of the layer of given thickness L (except when 
L+o3). 

The asymptotic values of the curves arc interesting. For an in~nitely thick layer (i.e. 
infinite space), the strain localization instability dots not occur at zero plastic modulus 
(H 4 0). as might hnvc been expected, but at a finite negative value of the plastic modulus. 

4 
Elliptic~find~r 
(pureshear~ 

3 p = 6’ = 2.0 

2- 
1.5 

1 1.0 
0.5 _ 0.0 

0 
1 10 100 

2 

1 
p- 1.0 

----_ 
v_ --___ ---__,____ 

0 i -----SW_ 

1 10 100 

Fig. 8. EtTect of axis ratio on critical H for elliptic cylinders in pure shear. 
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01 t J 
1 10 100 

Wa2 

Fig. 9. Etlkct of axis ratio on critical ff for elliptic cylinders in biaxial compression. 

This means that strain-softening according to the Drucker-Ptager plasticity model is stable 
against localization intda planar band even in an infinite space, provided that the plastic 
modulus magnitude does not exceed a certain limit. 

By contrast, in the previous work (Ba?ant, 1988a). which considered only incrementally 
isotropic material properties, the value of the softening modulus E, (which is analogous to 
/I) always approaches zero for an infinitely thick layer. This implies that the strain-softening 
cannot be stable in an infinitely thick layer if the incremental modulus matrix is isotropic. 
Apparently, strain-softening of plasticity type (i.e. degradation of the yield limit) is not as 
destabilizing as some other forms of incremental material properties. 

4 
Prolate spheroid 
(uniaxial tension) 

a,>a,=ao=l _ al 

0’ I I 

1 10 100 

eJaz 

Fig. to. Effect of axis ratio on critical 14 for prolate spheroids in uniaxial tension. 
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5- 
Prolate spheroid 

4- 
(uniaxial compressionl 

B = B’ = 2.0 

p”/ 
1.5 

’ 2w 
1.0 

1’ 0.5 

0 1 0.0 J 
1 10 loo 

01 I J 
1 10 100 

a&t 
Fig. 1 I. Eff‘cct of axis ratio on criticat N for prolate spheroids in wniaxial compression. 

Figures 6-9 show the depcndcncc of the critical plastic modulus on the aspect ratio 

cr,/uz of a strain-softening ellipsoid dcpcncratcd into an inlinitc elliptic cylinder. ix. uj/u2 -, 

a). This limiting cusc is equivitlent to localizntion in an infinite planar band within an 

infinite space. So the asymptotic vc~lucs from Figs 6-9 and Figs 3-5 must coincide. They 

indeed do, which serves us a chuck on the correctness of the culcuhtions. 

Again it might have been expcctcd that for an infinite aspect ratio u,/u2, the critical 

value of H should vanish. Surprisingly, it does not. The preceding comments apply here, 

too. 

Furthermore, it should be noted that generally very high aspect ratios of the ellipsoid 

4- Prolate spheroid 
(pure sheer) 

- 
3- 

‘P.2.0 

9 
T2 1.5 

1.0 
1- 0.5 

0 
0 10 100 

at/a2 

Fig. 12. E&et of axis ratio on critical H for prolate spheroids in pure shear. 
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4 
&date spheroid 
(biaxial compression) 

are needed to reduce the criticnl magnitudes of H near that for locafizntion into a band in 
a layer. This of coumc nxans~ similar to the cm&&on of the previous study (B&ant, 
t988a. b), that the localization stability limits for a planar band arc not well applicable to 
finite bodies rcproscnting typical structures. 

Figures IO-13 show the dcpcndencc of the critical magnitudes of H on the aspect ratio 
for prolate spheroids (a2 = u,). As the aspect ratio tends to inlinity, the prolate spheroid 
approaches an infmite cylinder (a fiber). This is a diffcrcnt limiting case than before* and 
vanishing of the magnitude of J-l is expected. It is also noteworthy that the strain-softening 
in prolate spheroids is much more stable than in ellipticcylindcrs, i.e. thccritical magnitudes 
of H are much larger in Figs IO-13 than in Figs 6-9. 

Thccigenvcctors of matrix 2 or Z,, for the critical states for which the lowest cigcnvaluc 
is zero have been calcutatcd too, For several typical cases. these eigenvectors are shown 
gmphi~ally in Fig. I4 for the volumetric (RenduliC) sections of the loading surface, and at 
bottom right also for the deviatoric cross-section (the values v = 0.18, j?’ = 1 .O and uniaxial 
tension have been assumed in these calculations). In plotting these eigenvectors, it is 
understood that the axes of E” and the deviatoric plastic strain intensity f = (fPPje~)“’ arc 
superimposed on the axes of the volumetric stress and the deviatoric stress intensity. It is 
interesting that in the volumetric cross-section these eigenvectors are always inclined away 
from the normal to the loading function and toward the drviatoric axis, for all the dilatancy 
ratios j?. These eigcnvectors, of course, need not be normal to the loading function even if 
normality (/l’ = /?) is assumed (it is the plastic strain incremental vector which must be 
normal if 8’ = p). 

Based on the general stability conditions for localization of strain-softening into planar 
bands and ellipsoidal domains, the critical valurs of the plastic modulus at stability limit 
are calculated for nonassociated and associated Drucker-Pragcr plasticity. Also presented 
is a direct derivation of the critical state conditions, which is simpler than the previous 
derivation of the stability conditions. It is found that strain-l~alization instabilities of the 



Analysis of stin-hxalization instabilities 1497 

Fig. 14. Eigenvc~tors at the critical states in the volumetric nttd deviatoric scx&nr. 

type considered do not occur for a certain range of material paramctcrs even if strain- 
softening takes place. This is true also far strain-localization into a planar band in an infinite 
continuum, even though previous uniaxial analysis (B&u& 1976) as welt us the multiaxial 
analysis (Ba&mt, 1988a) indicated such situations to be always unstable for certain uther 
constitutive mod&, 
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