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The latin hypercube sampling method, which represents the most efficient way to determine the 
statistics of the creep and shrinkage response of structures, has previously been developed and used 
under the assumption that the random parameters of the creep and shrinkage prediction model are 
mutually independent. In reality they are correlated. On the basis of existing data, this paper 
establishes, by means of the method of maximum likelihood, the joint multivariate probability 
distribution of the random parameters involved, tests the hypothesis of mutual dependence of 
parameters on the basis of the zZ-distribution, and generalizes the latin hypercube sampling 
method to the case of correlated multinormal random parameters. The generalization is 
accomplished by an orthogonal matrix transformation of the random parameters based on the 
eigenvectors of the inverse of the covariance matrix. This yields a set of new random parameters 
which are uncorrelated (independent) and can be subjected to the ordinary latin hypercube 
sampling, with samples of equal probabilities. Numerical examples of statistical prediction of creep 
and shrinkage effects in structures confirm the practical feasibility of the method and reveal a good 
agreement with the scatter observed in some previous experiments. 

INTRODUCTION 

To estimate the uncertainty of the creep and shrinkage 
effects in structures, the uncertainties of the parameters 
which influence creep and shrinkage must be determined 
first. Although there are many such parameters, eight of 
them appear to be sufficient 3'15. They include the mix 
composition parameters, the strength of concrete, the 
environmental humidity, and several uncertainty factors 
in the shrinkage prediction model. 

To determine the stochastic response characteristics of 
complex and large structures with a large number of 
random parameters, a host of methods have been 
studied1-3.15. Among them, the latin hypercube sampling 
method (a special case of stratified random sampling), 
which was developed by McKay and co-workers 16-19"26, 
is probably most efficient and general. With this method, 
a relatively small number of computer runs of 
deterministic structural creep and shrinkage analyses for 
chosen samples of the parameter values suffices to obtain 
the statistics of the response. This method is more efficient 
than the simple random sampling and is applicable even if 
the number of parameters is quite large. This method has 
been applied to concrete problems in Refs 3 and 13. 

In all of the previous studies with this method, the 
random parameters were assumed to be mutually 
independent. Also, McKay gave his detailed proof of the 
superiority of latin hypercube sampling only for the case 
of independent random variables. 

In reality, however, many of the random parameters 
involved are interrelated with each other. But a dependent 
multivariate analysis would make the probabilistic 
problem very complicated, and obviously through the 
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assumption of independence the form of the joint 
distribution and probability density could be exceedingly 
simplified. On the other hand, sometimes it is impossible 
to establish a functional dependence among these 
parameters because of the lack of experimental evidence. 
These are the reasons why the previous investigators were 
willing to assume random variables to be mutually 
independent. A further reason is that the assumption of 
independence is on the safe side if the degree of correlation 
is unknown. 

The present paper has a twofold purpose: (1) To 
establish and test a joint probability distribution for the 
eight random parameters of the creep and shrinkage 
prediction model, using the available experiment data, 
and (2) to generalize the latin hypercube sampling method 
to the case of correlated multinormal random parameters. 

We will follow the common practice assuming the joint 
multivariate probability distribution to be normal. Then 
we will determine the correlation coefficients of the 
distribution by the method of maximum likelihood. 
Further, we will test the hypothesis of correlation to make 
sure that the variables in the multivariate normal 
distribution obtained cannot be completely independent. 
Finally, after extending the latin hypercube sampling 
method to correlated random parameters, we will present 
numerical examples of various applications to structures 
and comparison with experimental data. 

It should be kept in mind that, even with the present 
generalization, other stochastic aspects of creep will still 
be treated in a simplified form. The environmental 
humidity is in reality a random process in time. Likewise, 
the creep and shrinkage strains are processes with random 
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increments in time. These aspects have been treated 
elsewhere1°'11.zv 

J O I N T  PROBABILITY DISTRIBUTION 

We consider a creep and shrinkage prediction model 
involving a set of N parameters x~ (i= 1,2 . . . . .  N) which 
may be considered as random. For  the BP Model 4-6 we 
have eight random parameters (N = 8). These parameters 
may be assembled into a vector (column matrix) x and are 
defined as 3.15,27: 

xT=(x, ,x2 . . . . .  Xk)=(O1,02, O3, h, f ' ,w/c,g/c,c ) (1) 

Here T denotes a transpose, parameters 0~ reflect the 
uncertainties of the creep and shrinkage model, 01 is for 
shrinkage, 02 for basic creep, and 03 for drying creep; h is 
the relative environmental humidity, f"  is the standard 
cylinder strength of concrete at 28 days, w/c is the 
water-cement ratio, g/c is the gravel-cement ratio (both 
ratios by weights), and c is the cement content of the 
concrete (in kg/m3). The components of vector x are 
continuous one-dimensional random variables which are, 
in general, correlated. We assume these variables to be 
characterized by 

f(xl  . . . . .  Xk) = (270 k/2]C[- 1/2 exp[-0 .5(x  --p)Tc- l(x --p)] 

(2) 
in which p is the mean vector of x; C is the covariance 
matrix of the multinormal population ofx i values which is 
real, symmetric and positive definite. This k-dimensional 
joint probability density function is characterized by k 
mean values [t i, k variances V(xi), and k(k-1)/2 
correlation coefficients C~j. In the special case that all the 
off-diagonal correlation coefficients are zero, i.e. matrix C 
degenerates to a diagonal matrix (C~j=0 for i#j), the 
random variables x~ are mutually uncorrelated, or 
independent. For  the case of multinormal distribution, 
the situations of uncorrelated and independent variables 
are equivalent. 

The mean and variance of each random parameter xl 
can be estimated by using the outcomes of one- 
dimensional sampling tests. For example, we can get the 
sample mean and variance for 01, 02 and 03 by 
comparing the sampling test results with theoretical 
results, without taking other random parameters into 
account. The correlation coefficients, however, have to be 
estimated by multidimensional sampling tests. 

The data in Table 1, which summarizes the basic 
experimental data on creep and shrinkage from Ref. 4, 
may be regarded as the outcomes of multidimensional 
sampling tests to estimate the correlation coefficient 
matrix of the sample. In this table, the definition of 0~ is: 

01= (test result)/(theoretical result) (3) 

The test results may be represented by the measured curve 
(which should be hand-smoothed for reasons explained in 
Ref. 4). The theoretical results are obtained from some 
creep and shrinkage prediction models such as the BP 
Model4-6. 01 represent the time-averaged mean values 
estimated at discrete times, which are suitably chosen as 
uniformly spaced in the log-time scale. Usually one or two 
time points per decade in the log-time scale suffice. The 
definition in equation (3) differs from that in Refs 3-6 and 

15; it has some advantages such as simplicity, as well as 
disadvantages. It is particularly suitable for comparing 
specimens of different types of concrete, e.g. different 
strengths. Compared to basing the statistics on the errors, 
defined as the differences (rather than ratios) between the 
measured and predicted values, one disadvantage of the 
definition in equation (3) is that it overemphasizes the 
errors when the theoretical values are at the small value 
side of the range. 

Before starting the statistical analysis, it is worth 
pointing out that there are two different kinds of random 
deviations for variables h, fj,  w/c, g/c and c. The first one 
results from human choice; for example, in one test we 
may choose w/c = 0.50, g/c = 3.00 and want f" = 5000 psi, 
whilst in another test we may take w/c = 0.4, g/c as 3.4 and 
want f"  =4000 psi. The test data in Table 1 include this 
kind of random deviations. The second is the uncertainty 
or random variability due to imperfect (subjective) 
human control. It can be regarded as a deviation in 
quality. For  example, we choose w/c to be 0.5, but when 
the aggregate is too wet, the real w/c may be 0.55 because 
of the water contained in the aggregate. Obviously the 
first kind of deviation leads to a wider dispersion than the 
second. As a result, the variance of the first kind of 
deviations will be larger than second. Hence it would be 
meaningless to estimate the variances corresponding to 
deviations in quality based on Table 1. 

The correlation coefficient, however, is a different 
probabilistic measure than variance. It is mainly a 
measure of the extent of linear dependence between two 
random variables. So, it appears we may employ a set of 
test data as a sample to estimate the correlation coefficient 
provided that it can cover the relative random variability 
of the variables, as Table 1 does. It may be noted that in 
the case of nonlinear complete dependence between two 
variables, the correlation coefficient fails to be a good 
measure. There are other measures of correlation, such as 
the contingency coefficient 2°, which can be used in the 
case of nonlinear dependence. However, that is beyond 
the scope of this paper. 

Although what we are really concerned with in practice 
are the deviations in quality, no pertinent test data have 
been collected up to now. The data should not only reflect 
deviations in multidimensional correlations between 
pairs of random variables but also represent accurately 
the random variability in quality. Only such kind of data 
can yield both the variances and the correlation 
coefficients. Therefore, this paper will focus only on 
estimation of the correlation coefficient, and leave 
determination of the variances of h, f ' ,  w/c, g/c and c to 
one-dimensional sampling tests. 

Another point to mention is that the validity of our 
estimators and the test of hypothesis which follows is 
affected by the nature of randomness of the sampling. In 
practice, randomness means that the sampling units 
should be drawn independently of one another from a 
homogeneous population. The units must not have 
common characteristics which might induce dependence 
among their vectors. Even though some of the random 
parameters in the existing experimental data are designed 
systematically by the investigators, e.g., h, w/c and so 
forth, still every individual specimen can reasonably be 
considered to have been tested independently. So we can 
suppose that the requirements of independence and 
homogeneity have approximately been met by the 
sampling units in our sample. 
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Table I. Experimental data on creep and shrinkage 

No. ni ~I ~2 ~3 h f'e w/c g/c 

1 
2 
3 
4 
5 
6 
7 
8 
9 
I0 
Ii 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

1.00 0.978 
8.00 0.781 
1.00 0.775 
1.00 0.788 
1.00 0.927 
1.00 0.966 
1.00 0.985 
6 . 0 0  0 , 8 9 0  
1.00 0.857 
1.00 1.013 
6.00 1.025 
ii.0 1.018 
3.00 1.255 
1.00 0.992 
1.00 1.300 
1.00 0.646 
1.00 0.450 
5.00 
4.00 
5.00 
5.00 
5.00 
4.00 
5.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
4.00 
5.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
6.00 
1.00 
3.00 
1.00 
1.00 
3.00 
3.00 
3.00 
1.00 
1.00 

0.822 
1.117 
1.192 
0.772 
1.284 
1.200 
0.761 
1.006 
1.054 
0.880 
0.893 
0.880 
1.363 
0.890 
1.087 

50.0 41.37 0.71 2.70 362.0 
55.0 36 
35.0 36 
50.0 36 
75.0 36 
50.0 17 
70.0 17 
50.0 

.99 0.51 3.37 350.0 

.99 0.49 3.07 350.0 

.99 0.49 3.07 350.0 

.99 0.49 3.07 350.0 

.24 0.59 3.67 

.24 0.59 3.67 
0.50 2.40 472.0 

50.0 50.47 0.43 2.62 404.0 
60.0 42 
20.0 45 
50.0 45 
75.0 45 
55.0 39 
65.0 40 
65.0 28 
65.0 34 

36 
22 
14 
20 

.75 0.43 2.62 404.0 

.16 0.46 2.07 450.0 

.16 0.46 2.07 450.0 

.16 0.46 2.07 450.0 

.I0 0 

.60 0 

.00 0 

.i0 0 

.28 0 

.26 0 

.34 0 

.13 0 

.50 2.48 400.0 

.38 350.0 

.55 334.0 

.55 2.27 336.0 

.49 3.07 350.0 

.58 7.10 

.56 4.42 264.7 

.50 10.4 
34.30 0 
40.00 0 
44.10 0 
35.68 0 
49.40 0 
43.40 0 
30.00 0 
35.90 0 

.56 7.14 

.42 2.59 

.38 2.80 

.41 3.15 

.49 2.98 418.0 

.43 2.62 404.0 

.85 3.81 253.0 

.85 3.81 253.0 
45 
42 
33 

0.785 50.0 36 
0.902 50.0 36 
0.946 75.0 36 
0.861 99.0 36 
1.038 50.0 17 

.20 0.46 2 

.80 0.43 2 

.40 0.70 3 

.30 0.49 3 

.30 0.49 3 

.30 0.49 3 

.30 0.49 3 

.20 0.59 3 

.07 450.0 

.62 404.0 

.06 

.07 350.0 

.07 350.0 

.07 350.0 

.07 350.0 

.67 
1.046 75 
1.047 99 
0.989 65 
0.813 50 
1.046 65 
1.061 65 
1.053 50 
0.879 60 
1.248 20 
1.272 50.0 45 
1.269 70.0 45 
0.890 60.0 26 
0.830 60.0 32 

.0 17.20 0.59 3.67 

.0 17.20 0.59 3.67 

.0 39.04 0.56 4.00 275.0 

.0 41.40 0.71 2.70 362.0 

.0 40.60 0.38 350.0 

.0 42.70 0.55 334.0 

.0 49.40 0.49 2.98 418.0 

.0 45.90 0.43 2.62 404.0 

.0 45.16 0.46 2.07 451.2 
.16 0.46 2.07 451.2 
.16 0.46 2.07 451.2 
.08 0.61 4.47 270.0 
.40 0.50 3.56 350.0 
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Table 1 continued 

I 

No. n° 
l @I @2 @3 h f~ w/e g/c c 

51 1.00 
52 1.00 
53 1.00 
54 1.00 
55 1.00 
56 1.00 
57 1.00 
58 1.00 
59 1.00 
60 1.00 
61 2.00 
62 1.00 
63 1.00 
64 1.00 
65 1.00 
66 1.00 
67 1.00 
68 1.00 
69 1.00 
70 1.00 
71 1.00 
72 1.00 
73 1.00 
74 1.00 
75 1.00 
76 1.00 
77 1.00 
78 1.00 
79 1.00 
80 1.00 
81 1.00 
82 1.00 
83 1.00 
84 1.00 
85 1.00 
86 1.00 
87 1.00 
88 1.00 
89 1.00 
9O 1.00 
91 1.00 
92 1.00 
93 1.00 
94 1.00 
95 1.00 
96 3.00 
97 3.00 
98 1.00 
99 1.00 
I00 1.00 

0.805 
0.794 
0.768 
0.737 
1.105 
0.980 
0.746 
0.850 
0.849 
0.915 
0 .883  
0.897 
0.998 
1.030 
1.028 
1.039 
1.073 
1.109 
0.911 
1.269 
1.231 
1.416 
1.250 
0.703 
0.813 
1.559 
1.328 
0 .680  
0 .996  
0.488 

0.831 
1.049 
0.862 
i.iii 
1.004 
0.822 
0.952 
0.833 
0.781 
1.090 
0.923 
0.913 
1.047 
1.036 
0.943 
0.919 
0.933 
1.003 
1.053 
1.113 

60.0 
60.0 
60.0 
60.0 
60.0 
60.0 
95.0 
95.0 
95.0 
95.0 
50.0 
50.0 
98.0 
90.5 
80.5 
71.0 
53.0 
42.5 
25.2 
0.01 

42.60 
42.20 
38.10 
37.40 
40.96 
41.60 
39.80 
45.30 
45.80 
36.20 
35.90 
43.40 

51.60 
51.60 
51.60 
51.60 
45.00 
45.00 
43.40 
43.40 
33.12 
33.12 
33.12 
33.12 
28 .80  
28 .80  
28 .80  
28 .80  
28 .80  
28 .80  
28 .80  
17 .60  
17 .60  
17 .60  
17 .60  
45.20 
45.20 
23.28 
23.28 
39.00 
39.00 
50.00 

0.35 3.49 
0.45 3.55 
0.58 3.04 
0.40 3.17 
0.45 3.17 
0.43 2.82 
0.48 3.71 
0.49 3.59 
0.47 3.98 
0.52 3.71 
0.85 3.81 
0.43 2.62 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.40 
0.47 2.66 
0.47 2.66 
0.47 2.66 
0.47 2.66 
0.40 3.22 
0.40 3.22 
0.43 2.62 
0.43 2.62 
0.56 2.63 
0.56 2.63 
0.56 2.63 
0.56 2.63 
0.45 4.00 
0.45 4.00 
0.45 4.00 
0.45 4.00 
0.45 4.00 
0.45 4.00 
0.45 4.00 
0.70 3.50 
0.70 3.50 
0.70 3.50 
0.70 3.50 
0.43 2.62 
0.43 2.62 
0.53 3.84 
0.50 3.84 
0.60 
0.60 
0.60 

400.0 
360.0 
400.0 
400.0 
400.0 
450.0 
350.0 
350.0 
362.0 
350.0 
253.0 
404.0 

377.0 
377.0 
404.0 
404.0 

404.0 
314.6 
314.6 
320.0 
320.0 
320.0 
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Table 1 continued 

No. n i ffl ~2 ~3 h f'c w/e g/c c 

i01 1.00 
102 1.00 
103 1.00 
104 1.00 
105 1.00 
106 2.00 
107 2.00 
108 2.00 
109 4.00 
Ii0 4.00 
Iii 5.00 
112 5.00 
113 6.00 
114 6.00 
115 6.00 
116 2.00 
117 2.00 
118 2.00 
119 I 
120 i 
121 i 
122 I 
123 I 
124 i 
125 I 
126 I 
127 i 
128 i 
129 I 
130 I 
131 i 
132 i 
133 i 
134 I 
135 I 
136 I 
137 I 

0.624 
0.864 
0.809 
0.971 
0.965 
1.131 
1.177 
1.030 
1.203 
1.272 
1.391 
1.105 
1.053 
1.044 
0.951 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 0 .983  

50.00 0.60 
50.00 0 
50.00 0 
42.17 0 
42.17 0 
43.60 0 
43.60 0 

320.0 
.60 320.0 
.60 320.0 
.46 2.25 450.0 
.46 2.25 450.0 
.40 3.83 343.0 
.40 3.83 343.0 

43 
40 
40 
40 
40 
45 
45 
45 

1.240 3.00 43 
1.446 28.0 43 
1.347 50.0 43 
0.937 1.00 33 
0.783 3.00 33 
1.025 25.0 33 
1.054 70.0 33 
0.943 1.00 51 
0.961 1.00 51 
0.833 3.00 51 
0.846 4.00 51 
0.819 50.0 51 
0.946 50.0 33 
1.044 50.0 33 
1.223 50.0 33 
1.211 50.0 33 
0.921 0.I0 37 
0.744 1.00 37 
0.725 3.00 37 
0.993 35.0 37 
0.937 50.0 37 

60.0 42 

.60 0.40 3.83 343.0 

.00 0.42 2.95 

.00 0.42 2.95 

.00 0.42 2.95 

.00 0.42 2.95 

.40 0.38 2.61 419.0 

.40 0.38 2.61 419.0 

.40 0.38 2.61 419.0 

.60 0.40 3.83 343.0 

.60 0.40 3.83 343.0 

.60 0.40 3.83 343.0 

.12 0.56 2.63 380.0 

.12 0.56 2.63 380.0 

.12 0.56 2.63 380.0 

.12 0.56 2.63 380.0 

.70 0.47 3.86 332.0 

.70 0.47 3.86 332.0 

.70 0.47 3.86 332.0 

.70 0.47 3.86 332.0 

.70 0.47 3.86 332.0 

.60 0.60 2.39 350.0 

.60 0.60 2.39 350.0 

.60 0.60 2.39 350.0 

.60 0.60 2.39 350.0 

.90 0.50 2.80 400.0 

.90 0.50 2.80 400.0 

.90 0 .50  2 .80  400 .0  

.90 0.50 2.80 400.0 

.90 0.50 2.80 400.0 

.75 0.43 2.62 404.0 

h in t, f '  in megapascals, e in kg/m 3, T in degrees Celsius. 
C 

Now let us write Table 1 as a data matrix: 

X l l  . . . . . .  X l k  X T 

I 
X . . . . . . . . . . .  x [  (4) 

• i 
• i 

XN 1 . . . . . .  XNK x T  

Each row stands for one specimen in the creep and 
shrinkage test and is considered to be a sampling unit 
drawn from one and the same multinormal population, x~ 
is the column vectors in data matrix X. According to the 
method of maximum likelihood, equation (4) represents 
one set of realizations of an 8-dimensional random 
variable governed by the multinormal density function (2) 
with mean vector/~ and nonsingular covariance matrix C. 
So the likelihood of the observations (4) is 

L(p, C)=[(27z)klC[] u/2 exp - ~  ~= 1 (X~--p)Tc-~(X,--p) 

(5) 

The maximum-likelihood estimators of the mean vector 
and the covariance matrix are 

l N 

/~=x =N ~ ~1 xi (6) 

Ni=l  
(7) 

The unbiased estimate of the population covariance 
matrix is 

1 N 

S - N _  1 ~ ( x i - ~ ) ( x i - ~ )  T (S) 
i = 1  

S is often referred to as the sample covariance matrix• The 
matrix of correlation coefficients is 

R = D C D  (9) 

where D is a k x k diagonal matrix whose diagonal 
elements are l / K ;  coefficients cii are the diagonal 
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elements of matrix (7). The correlation coefficients are the 
most important parameters in analyzing correlations 
among random variables. 

Before calculating the correlation coefficients, there are 
certain questions to discuss. In the data table, there are 
some test data where each of the eight random 
components coincides with that for another specimen. In 
such a case we simply consider the specimen to be a 
repeated sampling unit. The numbers in column 2 of 
Table 1 indicate the repeat times of every sampling unit. 
Because of these repetitive sampling units, the size of our 
sample is not the total number of the rows of Table I. 
Rather, it is the sum of all the numbers, n~, in column 2 of 
Table 1. Hence, the estimates (6), (7) become 

_ 1 g ,  
L (10) /*=x=~/=l  nixi 

I m 

~; = U,~l n'(x~-/0(x~-/*)~ (11) 

where m 
N =  ~ n i (12) 

i = 1  

In vector (13) the first three elements are the mean 
values of Oi; we can see that they are close to 1.0 (if the 
prediction model were perfect, they would have to be 1.0). 
In (14), the first three diagonal elements are the variances 
of Oi. They are much smaller than those indicated in 
Ref. 1. We can confirm that the BP formulae agree quite 
well with test data and can predict deformations of creep 
and shrinkage quite accurately in the time average sense. 

In matrix (15), the correlation is said to be positive 
when rij>O and negative when rz~<0. A positive 
correlation means that the variables x i and xj increase 
simultaneously, while a negative correlation means that if 
x~ decreases then xi increases. For example, the value' 
r65 = --0.45 means that the strength f"  decreases with an 
increasing ratio w/c. 

We also see that none of the absolute values of the 
off-diagonal elements in matrix (15) is equal to 1 or even 
close to 1. This means that the variables in vector (1) are 
nonlinearly correlated. This is one reason why we adopt 
the latin hypercube sampling. This type of sampling 
approach can, in general, better capture the nonlinear 
correlation of random parameters. 

In Table 1 one can notice many blanks. There are two 
reasons for these blanks. One is that the data were not 
reported (e.g., the blanks in the columns g/c, c, f ' ) .  
Another is that some random parameters are uncorre- 
lated; for example, the first 17 rows in Table 1 correspond 
to the shrinkage experiments for which parameters ~2, ~3 
are irrelevant since they characterize creep. The sample 
mean (10) can be calculated ignoring the blanks. For 
estimator I~, however, we have to consider their effect. To 
eliminate any effect of these blanks on the estimator of C, 
the best way is to fill the blanks with sample mean ~. From 
(11), we can see that this will cause the blanks to have no 
contributions to I~, which is just what we want. 

Using the method just described, we can obtain the 
following mean vector and correlation coefficient matrix 
of the sample: 

TEST OF HYPOTHESIS  

Now we have obtained the estimate for the correlation 
coefficient matrix. But it is possible that all the correlation 
coefficients of the population may be equal to zero. This 
can happen if we misjudge the properties of the normal 
population for only one sample (Table 1). If this happens, 
our following analysis, based upon the sample correlation 
coefficient matrix, would be in vain or even misleading. 
Therefore it is prudent to carry out a test of the hypothesis 

R = I  (16)  

where I is the unit matrix. 

~T = ~r  = (0.944, 1.051, 1.0004, 0.498, 38.29, 0.491,3.3,379.78) (13) 

~= 

0.0046 0.0 0.0 -0 .00024 0.086 -0.00067 -0 .008 0.8 

0.0 0.022 0.0 0.0 - 0 . 3 6  0.0004 -0.0023 -0 .4 4  

0.0 0.0 0.01 -0 .065  0.054 -0 .002  -0 .005  0.68 

-0 .00024 0.0 -0 .065  260.5 - 19.7 0.062 0.79 -47 .7  

0.086 -0 .36  0.054 - 19.7 73.8 -0 .36  -6 .41  152.3 

-0.00067 0.0004 -0 .002  0.062 -0 .36  0.009 0.023 - 1.83 

-0 .008  -0 .0023 -0 .005  0.79 -6 .41  0.023 1.95 -21 .7  

0.8 -0 .44  0.68 -47 .7  152.3 -1 .83  -21 .7  2095 

(14) 

f¢= 

1.0 0.0 0.0 --0.00022 0.15 -0 .11 -0 .085  0.26 

0.0 1.0 0.0 0.0 -0 .28  0.028 -0 .011 -0 .065  

0.0 0.0 1.0 - 0 . 04  0.062 - 0 . 2  -0 .035 0.15 

-0 .00022 0.0 -0 .04  1.0 -0 .14  0.041 0.035 -0 .065  

0.15 -0 .28  0.062 -0 .14  1.0 -0 .45  -0 .53  0.39 

-0 .11  0.028 - 0 . 2  0.041 -0 .45  1.0 0.18 -0 .42  

-0 .085  -0.011 -0 .035  0.035 -0 .53  0.18 1.0 -0 .3 4  

0.26 -0 .065  0.15 -0 .065  0.39 -0 .42  -0 .3 4  1.0 

(15) 
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A statement equivalent to (16) is that C is a diagonal 
matrix. The opposite hypothesis is 

R ~ I  (17) 

This hypothesis means that in the correlation coefficient 
matrix at least one off-diagonal element is nonzero, that is 
to say, the test is one of complete independence as 
opposed to some dependence among the random 
variables because we have assumed the variates to be 
multinormal. 

We use the generalized likelihood-ratio criterion 2~ to 
test the hypothesis. The likelihood of the random sample 
is given by (5). When the estimates/~, R of the mean vector 
and the population correlation matrix are inserted into 
the likelihood, its maximized value becomes 

L(~) = L(~, ¢)  

_- (2~)-Nk/21C I-N/2 exp - ~  i:  1 (Xi-~)T(~- 

=(2~Z)-Nk/21C I N/2e-Nk/2 (18) 

The parameter space f~ of the distribution is that region of 
the k(k + 3)/2-dimensional Euclidean space in which the 
components of/~ are finite and those of C constitute a 
symmetric positive definite matrix. The subspace co 
corresponding to the null hypothesis (16) is the 
2k-dimensional region of f~ for which 

- 3c~ < fil < co ") 

0 < C 2 < ~  for all i 

C~j = 0 for i Cj 

(19) 

The likelihood of the sample in the subspace has the same 
form as matrix (5). Only the correlation matrix of the 
sample is a diagonal matrix, i.e., 

L(~) = L(~, e )  = (2~z) ~/2 C e kN,2 
i 

(20) 

The test statistic is 

i(~l N/2 L(6~) 
= - N/2-1RI N/2 (21) 

The difference of the dimensionalities of ~ and o9 is 
k(k-1)/2, and we can use the large-sample chi-squared 
distribution 

Z 2 = - ( N - 1  2k 6 5 )  lnlR I (22) 

From (14) we can calculate IRI = 0.3129. Then we have 

Z2 2 = 287.5 >Z,ak~k- 11 (241 

SO we should accept hypothesis (17) for any test level. This 
means that our hypothesis about the correlations among 
random variables is correct. 

EQUAL PROBABILITY SAMPLING M E T H O D  

Now that the joint probability density function has been 
established, we can analyze the stochastic creep and 
shrinkage effects in structures. We want to calculate the 
probabilistic characteristics of structural responses, such 
as the mean values and variances of stresses and 
deflections, from the input joint probability distribution 
of the random parameters. Our goal is to obtain the most 
efficient estimators, with as small a number of computer 
runs as possible, that is, with as small a size of the sample 
as possible. The basic criterion for estimators means that 
the smaller the variance of the estimator, the better the 
estimator will be 9'23 25 McKay has proven that for the 
latin hypercube sampling some estimators, such as the 
distribution functions and the mean values, have much 
smaller variances than those obtained by simple random 
sampling for the same number of computer runs, provided 
that the following conditions are met: 

1. The random parameters are mutually independent. 
2. Every sampling unit has equal probability content, 

that is, the method is an equal probability sampling 
method. 

3. The structural responses are monotonic with respect 
to each component random parameter (i.e. of the 
input random vector). 

These conditions can be met for independent 
parameters easily. So many investigators used the latin 
hypercube sampling to solve problems of independent 
variables in recent years. But for multidimensional 
dependent variables it is difficult to use an equal 
probability sampling method because sometimes it is 
impossible to develop a successful subspace partition 
procedure which assures every sampling unit to have the 
same probability content within a multidimensional 
population. 

In the general case of an unequal probability sampling 
method, the mean and the variance of the structural 
response may be estimated as 

L YJP, (25) 
Wn j= 1 i 

1 n 

=21 p,(y_ j= 
(26) 

to obtain a decision rule for accepting or rejecting the 
independence hypothesis at a specified significance level. 
For a test of level c~ we should accept the hypothesis (16) if 

,2 2 (23) Z < ~ot,~k(k- 1) 

and accept the alternative (17) otherwise. We choose ~ to 
be the upper 100-percentage point of the chi-squared 
distribution with k ( k -  1)/2 degrees of freedom. 

where 

IV.= L P.J (27) 
) -1  

Yj is the structural response (such as the maximum 
50-year deflection) calculated in thejth computer run; IV, 
is the probability content of the entire sample; and P,j is 
defined as the probability content of the sampling unit u j, 
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P,,~ = f,, f ( x t  . . . . .  Xk) d x 1  • • • dXk 
J 

(28) 

where uj means the integration is to be made over the 
subspace corresponding to the sampling unit uj. In the 
special case of independent random variables, one has 
f (x t  . . . . .  Xk) = f ( x l ) . . .  f(Xk) and then (28) becomes 

P.,= f~  f (Xl)dX "" f . ,  f(Xk)dX (29) 

where f(xi)  is the one-dimensional probability density 
function. An interval partition procedure can be easily 
developed to give every interval ofx~ the same probability 
content. Then equations (25)-(27) simplify to the 
well-known forms: 

~=1 L YJ (30) 
n j = l  

G~=- (g~- V)~ (31) 
J 

Wn=n -k+t ( 3 2 )  

McKay t6-19 has obtained analytical results on the 
efficiency of the mean estimator (30). In a similar manner, 
analysis of the general case can show that the variance of 
the estimator (25) obtained by latin hypercube sampling 
will also be better than that of the estimators obtained by 
simple random sampling, provided that conditions 2 and 
3 hold. But if only condition 3 holds, the estimators of the 
latin hypercube sampling will be probably less efficient 
than those obtained by simple random sampling. Hence 
equal probability sampling is necessary, and a method to 
obtain such samples must be developed for dependent 
variables if the benefits of latin hypercube sampling 
should materialize. 

Fortunately, if the joint probability distribution is 
multinormal, a linear orthogonal transformation of 
random variables can be employed to obtain an equal 
probability procedure. In fact, the normal density is 
proportional to e to the power of ( x~ -~ ) rC- t ( x i - ~ ) ,  
which is a quadratic form in which C-  ~ is a symmetric, 
positive definite and real square matrix. So there exists an 
orthogonal matrix P such that 

p r  C-  tp = I (33) 

1200  

1000  

8 0 0  

6 0 0  

r.n 400  

2 0 0  

% 

Fig. I. 

. . . .  Independent / /  ~ % 
- -  Dupendant / ~ 

I I I 
1 2 3 4 

LO¢( t - t o ) IN DAYS 
Shrinkage stress in a restrained bar 

since, for orthogonal matrix, p r  = p -  1. Matrix P consists 
of all the eigenvectors of matrix C -1. The linear 
transformation from random vector X to random vector 
Z may be written as Z = P - t ( X - # ) ,  and the inverse 
transformation is X = PZ + p. Since xi = ~_.~= t PuZj + #~, 
we see that Ox~/Ozj---P u. Hence, the Jacobian of the 
transformation is given by J=[P[.  But the relation 
[I[ = 1 = [P- 1C- t P[ = [P21IC- 1[ implies that [P[ = 1 ~ 1[, 
since [C-I I >0  (C - t  is positive definite). Thus it follows 
that 

p.~ = f [(2rOklCi]- 1/2 
d U~ 

x e x p [ - ½ ( X -  I u ) T c  - t ( X -  ~/ ) ' ]  dx t . . .  dx k 

= f s  (2x)-k/2 e x p [ - ½ Z r P r C  - tPZ] dz t . . .  dz k 
J 

 ,  xpI4;lZ ldZl d ,  
f s  (' 1 2 2 1 e-~'~/2dz t ' ' "  | ~ e - Z ' /  dz k (34) 

= ~ J s~k x/27r 

U j = U n  ... U i k (35) 

Sj = Six ... Sjk (36) 

Here Sj is the subspace corresponding to thejth sampling 
unit Zj in the standard normal space; Sji is the interval of 
the ith component of Z j; U~ is the subspace corresponding 
to thejth sampling unit Xj in the initial sample space; and 
Uji is the interval of the ith component of X~. 

Comparing equation (34) with (29), we see that 
equation (34) is equivalent to the case of independence 
and every component of Z is a random variable in the 
standard normal space. Hence we can first easily 
introduce the ordinary equal probability latin hypercube 
sampling with vector Z. After a set of simple interval 
partitions S = (S t . . . . .  S t . . . . .  S,) has been determined, the 
linear transformation can be used to transform S back to 
the initial sample space, i.e. S ~ U =  (Ut . . . . .  Uj . . . . .  U,) 
where n is the size of the sample (e.g., the number of all 
computer runs). This guarantees every U s to possess the 
same probability content. So the estimators obtained in 
this way are assured to be more efficient than those of the 
simple random sampling. 

In the special case that every component of vector X is 
independent of the others, C will degenerate into a 
diagonal matrix, and so will matrix P. Hence the above 
method will remain valid for this special case. 

NUMERICAL EXAMPLES 

Let us now illustrate the equal probability latin hypercube 
sampling combined with our orthogonal transformation 
method by analyzing some practical structural problems 
with multinormal correlated random variables. The first 
two examples which we solve are sketched in Figs 1-2; 
they are the same as those solved by the equal probability 
latin hypercube sampling with independent random 
variables in a previous paper 3. Since that paper explained 
in detail the method of structural creep analysis, we do not 
need to explain it here again. Further examples to be 
solved are sketched in Figs 3-12, which also compare the 
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curves calculated by the present method with the data 
points from the tests of L'Hermite et al.~4, Keeton~2, and 
Mossiossian and Gamble 22. 

In Figs 1-12, the solid curves show the responses of the 
structure or the specimen calculated by the present 
method, and the dashed curves show for comparison the 
responses calculated previously 4 by the latin hypercube 
sampling with independent random parameters. The top 
and bottom curves represent ~'(t)+ a(t) and ~-(t)-~(t), 
respectively; Y'(t) is the mean response at age t estimated 
by equation (25) and a(t) is the standard deviation of the 
response at age t estimated by equation (26). 

The probabilistic analysis of these examples with 
dependent random parameters uses the correlation 
coefficient matrix of multinormal distribution as given by 
equation (15). The expected values and the coefficients of 
variation of the 8 random parameters involved 
(equation (1)), as well as other data and parameters for 
the BP modeP '7,8 used, are listed in Tables 2 and 3. The 
mean values for ~ are in these tables simply taken as 1, 
because from (13) we can see that they are rather close to 
1. The coefficients of variation for ~ are calculated 
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according to our results in equations (13) and (14). The 
coefficients of variation for h, f ' ,  w/c, g/c and c are not 
selected on the basis of precise statistical analysis, but 
merely on the basis of experience and intuitive judgement. 
The number of computer runs, equal to the number of 
sampling intervals, is n =  16 for all the cases. 

Figures 1-12 indicate a good agreement of the data 
with the curves obtained by our latin hypercube sampling 
method with dependent random parameters. The 
standard deviations obtained with the present method are 

generally smaller, that is to say, the present method gives 
more accurate results. On the other hand, the results of 
the previous calculations with independent random 
parameters 3, which are simpler, are generally on the safe 
side. 

By comparing the predicted curves with the test data in 
Figs 3 12, we can also see that the present method 
realistically simulates the random variability observed in 
experiments. 

C O M M E N T S  O N  A SIMPLIFIED ALTERNATIVE 
APPROACH TO CORRELATION 

Among some of the parameters of the creep and shrinkage 
prediction model, there exist some approximate deter- 
ministic relations. For example, the strength, f~=x s ,  is 
known to be approximately related to parameter w/c = x 6, 
i.e. 

X 5 ~-- f(x6) (37) 

where f(x6)---- [(W/C)--0.513300 psi. In another current 
investigation at Northwestern University by Ba~ant and 
Jung-Koo Kim, this aspect is being handled by replacing 
equation (37) with 

f ' = x s f ( x 6 )  (38) 
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Table 2. Mean values and coeJficients of  variation used in Fig. 1 Fig. 12 

Fig 41 42 43 h f'c w/e g/c e 

1 m 1 1 1 0.65 45.2 0.46 2.07 450.0 

v 0.07 0.14 0.I0 0.20 0.i0 0.i0 0.i0 0.I0 

2 m 1 

v 0.07 

3 m 1 

v 0.07 

4 m 1 

v 0.07 

m i 
5 

v 0.07 

6 m 1 

v 0.07 

7 m i 

v 0.07 

8 m I 

v 0.07 

9 m 1 

v 0.07 

i i 0.70 54.0 0.40 3.50 350.0 

0.14 0.I0 0.20 0.i0 0.i0 0.i0 0.i0 

1 1 0.50 45.2 0.46 2.07 450.0 

0.14 0.I0 0.40 0.I0 0.i0 0.i0 0.I0 

i i 0.50 45.2 0.46 2.07 450.0 

0.14 0.i0 0.40 0.i0 0.I0 0.i0 0.I0 

1 1 0.50 45.2 0.46 2.07 450.0 

0.14 0.I0 0.40 0.i0 0.i0 0.I0 0.i0 

1 1 1.0 36.3 0.49 3.07 350.0 

0.14 0.I0 0.I0 0.i0 0.I0 0.i0 0.i0 

i I 1.0 

0.14 0.i0 0.I0 

36.3 

0.i0 

0.49 3.07 350.0 

0.I0 0.I0 0.I0 

i I 1.0 

0.14 0.i0 0.i0 

36.3 

0.I0 

0.49 3.07 350.0 

0.i0 0.I0 0.I0 

I i 1.0 49.4 0.49 2.98 418.0 

0.14 0.I0 0.I0 0.i0 0.I0 0.I0 0.i0 

i0 m 1 1 1 0.50 45.2 0.46 2.07 451.0 

v 0.07 0.14 0.i0 0.40 0.i0 0.i0 0.I0 0.i0 

II m i i I 0.50 45.2 0.46 2.07 451.0 

v 0.07 0.14 0.i0 0.40 0.I0 0.I0 0.I0 0.i0 

12 m 1 1 1 0.50 45.2 0.46 2.07 451.0 

v 0.07 0.14 0.i0 0.40 0.I0 0.I0 0.i0 0.i0 

m = mean value; v = coefficient of variation. 

i.e., the strength is no longer considered as one of the 
primary random parameters but is treated as a function of 
other random parameters. Parameter  x 5 models the 
uncertainty in function f(x6). 

In using equation (38) it is assumed that all the 
parameters can be treated as independent random 

variables. The ordinary latin hypercube sampling is then 
applied to determine the statistics of the structural 
response. 

This alternative approach has some disadvantages as 
well as advantages. The advantage is of course simplicity. 
The second advantage is that one can exploit a known, 
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Table 3. Parameters used in Fig. 1-Fig. 12 

Fig. T A I Ks s/e t' t o D 

i 
2 
3 
4 
5 
6 
7 
8 
9 

i0 
ii 
12 

23 1.0 
20 1.0 
23 0.93 
23 0.93 
23 0.93 
23 1.00 
23 1.00 
23 1.00 
21 0.93 
24 0.93 
24 0.93 
24 0.93 

1.25 
1.25 
1.15 
1.15 
1.15 
1.25 
1.25 
1.25 
1.55 
1.15 
1.15 
1.15 

.66 8 50 

. O0 8 200 

.66 8 38.1 

.66 8 50.8 

.66 8 76.2 

.75 7 31.1 

.75 90 31.1 

.75 730 31.1 

.35 4 60.8 

.66 8 38.1 

.66 8 50.8 

.66 8 76.2 

approximate functional relationship, which can be 
nonlinear, while the present method can capture only the 
linear aspects of the interdependence of random 
parameters. The third advantage is that equation (38) 
reflects the fact that, at least in the strict physical sense of 
cause and effect, the w/c ratio influences the strength but 
not vice versa, i.e. the strength cannot be said to influence 
the water-cement ratio of the concrete mix (the w/c ratio 
is chosen by the designer so as to obtain approximately 
the desired strength, which is not the same). 

The disadvantage of equation (38) is that it introduces 
as a deterministic function f(x6) a relation whose form 
may be highly uncertain. One could certainly concoct a 
dozen other formulas which would agree with the existing 
data on the relation between f ' ,  w/c and c equally well. 
Moreover, f"  is no doubt at least slightly dependent on 
other parameters, too, e.g., on h and g/c, which can of 
course be reflected in the correlation matrix for the 
present method. The structure of the error can also differ 
from that in equation (38). For instance, the error could 
be additive instead of multiplicative, i.e. 

f~ = f ( x 6 )  + X 5 (39) 

or both, 

f "  = x s f ( x 6 )  + X 9 (40) 

or such as 

log f"  = x5[log f(x6) + Xg] (41) 

or  

% ~  = x5 f~6) ' [ ' -  X 9 (42) 

To take into account a possible correlation of f" to 
other parameters, e.g., x s, one could consider a more 
general relationship f / =  x 5 = f ( x  6, Xs) where f is again a 
deterministic function, and introduce the randomness by 
replacing this relation with f~=Xsf(X6, X8). This 
formulation, however, would imply x 6 and x 8 to be 
mutually independent. In reality they may be correlated, 
as our solution shows, and so such an approach would be 
imperfect too. 

To sum up, the present method circumvents the errors 
and uncertainties of a relationship, such as f '=f(x6) ,  

which is approximate and incomplete. Extensive 
statistical experiments would be needed to decide which 
approach is better justified. 

CONCLUSIONS 

1. The random parameters of concrete creep and 
shrinkage prediction models are not mutually indepen- 
dent as generally assumed in the previous investigations. 
The sample correlation coefficients can be estimated on 
the basis of the available data. They can characterize the 
linear aspect of the correlations among these random 
parameters. To describe the uncertainties of structural 
effects of creep and shrinkage more accurately, the 
random parameters involved should be treated as 
multidimensional correlated random variables. 

2. Test of the hypothesis of correlation based on the 
g2-distribution confirms that the correlated parameters 
cannot be mutually independent. 

3. An orthogonal matrix transformation of the random 
variables yields linear combinations of the random 
parameters which are mutually independent, under the 
hypothesis of multinormal distribution. This transform- 
ation makes it possible to determine samples of equal 
probabilities, which permits generalization of the latin 
hypercube method to multinormal correlated parameters. 
The estimators obtained with this method are assured to 
be better than those of simple random sampling. 

4. The present method can reflect the general experi- 
mentally observed tendencies of response scatter quite 
well. 

5. Numerical examples demonstrate that the method can 
be applied in practical design problems of concrete 
structures. Same as the original latin hypercube sampling 
method with uncorrelated parameters, the present 
method reduces the problem of determining the statistics 
of creep and shrinkage effects in structures to a number of 
deterministic computer calculations of the structural 
responses for various sets (samples) of model parameters. 
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