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ABSTRACT: A crack with bridging stresses is treated as a superposition o f  
many cracks whose tips are continuously distributed (smeared) along the crack 
line. The solution is reduced to an inteEral equation for the components of 
the applied load associated with crack tips at various locations. This 
equation, which is equivalent to that previously presented by Planas and 
Elices (1986), is then generalized to include: (I) time-dependent nonlinear 
stress-displacement relation for the bridEing stresses (rate-effect), and (2) 
aEin E viscoelastic behavior of the material in the rest of the structure. The 
solution leads to an integro-differential equation, whose method of solution 
by finite differences in space and time is Eiven. The paper presents only the 
mathematical formulation. Numerical studies applied to concrete, rock and 

ceramics are planned. 

INTRODUCTION 

Although the f in i t e  e lement  and boundary element  methods are  powerfu l  and 
genera l  approaches  to f r a c t u r e  problems with nonlinear  and t ime-dependent  
ma te r i a l  p roper t ies ,  the usefulness  of  analyt ica l  or semianaly t ica l  
approaches  cannot be denied. These methods o f f e r  much deeper  insight into the 
mechanics  of  f r a c t u r e  and are  more e f f ic ien t ,  more accura te ,  foo lproof  and 
unlikely to fail .  For this  reason,  Green ' s  funct ion methods or  solutions 
based on dis locat ions  are  widely used. These methods, however,  become too 
d i f f i cu l t  f o r  complex geomet r ies  as well as complex ma te r i a l  laws. 

This paper  will  present  a new semianalyt ical  method based on superposi t ion 
of  exac t  solutions of  l inear  e las t ic  f r a c t u r e  mechanics.  This method, which 
will  t r e a t  the crack as a superposi t ion of  many l inear ly  e las t ic  cracks  whose 
t ips  are  continuously d is t r ibu ted  (smeared) along the crack line, will  
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r e p r e s e n t  an e x t e n s i o n  o f  an i n t e g r a l  equa t i on  p r e s e n t e d  by P lanas  and El ices  
(1986) to  a r b i t r a r y  n o n l i n e a r  and t i m e - d e p e n d e n t  (or  r a t e - d e p e n d e n t )  m a t e r i a l  
behav io r  in t he  c r a c k  b r idg ing  zone,  coupled  w i t h  ag ing  l i n e a r l y  v i s c o e l a s t i c  
behav io r  in t he  r e s t  o f  t he  s t r u c t u r e .  While P lanas  and El ices  used 
a s y m p t o t i c  s e r i e s  expans ions  to  solve  the  a f o r e m e n t i o n e d  i n t e g r a l  equa t ion ,  
we wi l l  d i scuss  so lv ing  th i s  equa t ion  and m o r e  g e n e r a l  i n t e g r o - d i f f e r e n t i a l  
e q u a t i o n s  by f i n i t e  d i f f e r e n c e s ,  a f t e r  p r o p e r l y  t a k i n g  c a r e  of  s t r e s s  
s i n g u l a r i t i e s .  

L I N E A R  ELASTIC FRACTURE MECHANICS RELATIONS FOR A S INGLE CRACK 

The s t r e s s  i n t e n s i t y  f a c t o r  K f o r  a c r a c k  o f  l eng th  s in an  e l a s t i c  

s t r u c t u r e  may  g e n e r a l l y  be e x p r e s s e d  in t he  f o r m  (e.g. Broek,  1986) 

K = P k(~) / b VrL (1) 

w h e r e  P = app l ied  load, L = l eng th  o f  t he  c r a c k  l i gamen t ,  b = s t r u c t u r e  

th ickness ,  and k(@) = nondimens iona l  f u n c t i o n  of  ~ = s / L  w h e r e  s = c o o r d i n a t e  

o f  t he  c r a c k  t ip  (Fig. 1). We wil l  cons ide r  only mode I (opening mode) 

f r a c t u r e ,  a l t hough  the  p r e s e n t  method  could equa l ly  wel l  be app l ied  to  mode 

II o r  III ( shear)  f r a c t u r e .  The t o a d - p o i n t  d i sp l acemen t  u may  g e n e r a l l y  be 

c a l c u l a t e d  as  (e.g.  Ba~ant  and Cedolin,  1990) u = CoP + P~(@)/E'b o r  

u = P X(~) / E 'b  (2) 
w i t h  

X(19) = gO + 0(~) , 0(19) = 2 20 [ k(19') d19' (31 

w h e r e  CO = C o E ' b '  CO = compl i ance  when t h e r e  is no c rack ;  X(19) is a 

nond imens iona l  f u n c t i o n  (which can  a lso  be ob ta ined  by LEFM, f o r  examp le  by 

op t imum f i t t i n g  o f  f i n i t e  e l emen t  r e su l t s ) ;  and E' = E = Young ' s  modulus ,  f o r  

the  case  o f  p lane  s t r e s s ,  o r  E'  = E / ( l - v )  2, f o r  t he  case  of  p lane  s t r a i n .  Fo r  

a c r a c k  w i t h  t he  t i p  a t  s, the  l i nea r  e l a s t i c  f r a c t u r e  m e c h a n i c s  (LEFM) 

so lu t ions  f o r  t he  no rma l  s t r e s s  ~ a c r o s s  the  c r a c k  p lane  and the  c r a c k  

opening d i s p l a c e m e n t  v have  the  g e n e r a l  f o rm:  

f o r  )) < ~ -< i: ~ = P S(~,19) / Lb (4) 

f o r  0 -< ~ -< 19: v = P V(~,19) / E 'b  (5) 

w h e r e  t h e  f o l l o w i n g  a p p r o x i m a t i o n s  can  be used f o r  s u f f i c i e n t l y  smal l  

1~-191: 

S(~,~) = k(19) / q2~(~  - 17) (6) 

v ( ~ , n )  = k(~) aVVT~ ¢ 19 - ~ (7) 

(Fig.I) .  When ]~-7)[ is not  smal l ,  one has  ( fo r  ~<I) t he  a s y m p t o t i c  expans ions :  

S(~,19) = [b 0 + bl()))(~-7)) + b2(19)(~-~)2 + . . . ]  k(19) / v' ~ - 19 (8) 

V(~,7)) = [c o + el(n}())- ~) + c2(19)(19-~)2 + ...1 k(19) v' 19 - ~ (9) 

w h e r e  b 0 = I/2~2-~, c O = 8V~-?-~; bi(19), ci(19), b2(19) . . . .  a r e  nond imens iona l  

smooth  con t inuous  f u n c t i o n s  which  can be d e t e r m i n e d  f r o m  LEFM, f o r  examp le  by 

op t imum f i t t i n g  of  f i n i t e  e l emen t  r e s u l t s  w i th  Eqs. 8 and 9. 
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Fig. 2 Superposit ion of s t ress  and displacement f ie lds  of several  cracks of 

d i f f e r en t  lengths. 
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SUPERPOSITION OF THE FIELDS OF SMEARED CRACK TIPS  

Now we tu rn  a t ten t ion  to nonlinear f r a c t u r e  mechanics of  a line crack with 

a nonlinear  f r a c t u r e  process  zone of nonzero length. However, the solid 

outside the crack line is s t i l l  assumed to be e las t ic ,  and nonl inear i ty  

a r i ses  only f rom the re la t ion  between the crack br idging s t r e s s  ~ and the 

crack opening displacements  v (the width of  opened crack is 2v). The opening 

prof i le  v(x) of  such a crack can be obtained as a sum of the opening prof i les  

of many LEFM cracks  of s t r e s s  intensi ty f a c to r s  dK(s) = k(~)dP(s) /bv~ where  

@=s/L; the t ips  of these  cracks,  of  coordinates  s, are  continuously 

d is t r ibu ted  (smeared)  along the crack line (x is the crack length 

coordinate);  see Fig. 2. The s t r e s s  f ie lds  of  all  these LEFM cracks  as well 

as the corresponding loads must also be superposed. 

Let P(s) = p(@)bL be the load corresponding to one LEFM crack whose crack 

t ip has the coordinate  s = ~L; p(~) represen t s  the density of the loads with 

respec t  to the re la t ive  crack t ip coordinate  ~ = s /L .  The load corresponding 

to the crack t ips  located within an inf in i tes imal  segment ds with a cen ter  at  

coordinate  s is dP = bLp(@)d~ (keep in mind tha t  all the  load components dP 

are  applied at  the same point as the actual  applied load P). By 

superposi t ion,  
~(~) = J'~ S(~,@) p(@) d@ (10) 

I V(~,~) p(~} d@ (ii) v(~) = (L/E ' )  S E 

To sa t i s fy  equil ibrium, the sum of all the load components dP corresponding 

to all the segments  ds must be equal to the applied load P, i.e. 
I 

P = b L J'O P(~) d~ (12) 

The load-point  displacement  corresponding to the crack t ips  located within 

segment ds cen tered  at  s is du = X(@)p(~)L/E'. Superposit ion of  all  these 

displacement  contr ibut ions  (which all occur at  the load applicat ion point) 

yields 
I 

u = (L/E ' )  J'o X(~)) P(~) d~ (13) 

Eqs. 10-12 are  equivalent  to those presented  by Planas and Elices (1986, 

1987; see Eqs. 11-13 in the i r  1986 paper). 

GENERALIZATION TO ARBITRARY NONLINEAR TIME-DEPENDENT FRACTURE LAW 

We introduce the nondimensional bridging s t r e s ses  and opening 

displacements:  
P 

= ¢ / f t  ' ~ = 2v f t  / GF (14) 

where  f t  -- tens i le  s t reng th  of  the mater ia l ,  and Gf = f r a c t u r e  energy of  the 

2 / E' where Kif= f r a c t u r e  toughness}; Fig. 3. We will  ma te r i a l  (Gf = Kif  

consider  a r a t h e r  genera l  s t r ess -d i sp lacement  law fo r  the f r a c t u r e  process 
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zone wr i t ten  in the form: 

v = F ( o ' , v ) ~  + O(o ' ,v )  (IS)  

where the superior  dots denote part ia l  derivatives with respect  to time t, 

and F, 0 are  given nondimensional functions charac ter iz ing  the material• 

Function ~ describes the ra te  e f fec t  on f rac ture ,  and function F the 

instantaneous nonlinear response. Eq. IS applies only to virgin loading of  

the crack. For unloading or  reloading we replace F(~,~) by O, i.e. 

~= 0 (~,~') (16)  

Before s t ress  q fo r  the f i r s t  t ime reaches the s t rength  limit f t '  

v = 0 (17) 

Substitution of  Eqs. 10-11 into Eq. 15 now yields 

1 V(g,R) IS(n,t) dn = r [~(g, t ) ,  ~(E,t) l  f,~-I 4 S(gm) 15(~,t) d~ (2Lf t /E 'G  f) T( 

+ O[~(~,t), ~(~,t)l (18) 

This represents  a singular in tegro-di f ferent ia l  equation. If  ~ > 0 and if 

0r(~) and v(~) are  known, then the unknown function 15(~,t) may be solved f rom 

this equation. But ¢(~) and v(~) are  unknown, and so Eqs. 18, 13, 10 and 11 

are  coupled. If  ~ = 0 while ~(~) and v(~) are  known and fi(t) is prescribed, 

funct ion lb(~,t) may be solved f rom Eqs. 18 and 13; and if P(t) is prescribed, 

then f rom Eqs. 18 and 12. 

METHOD OF SOLUTION BY F I N I T E  DIFFERENCES 

Time t is subdivided by discrete t imes t (rffil,2 .... ) into small steps At= 
r 

t r -  t r_  1. The spatial  coordinate ~ is subdivided by ~i (iffil,2 .... N+I) into N 

small intervals h~ ffi 1/N ffi ~i+1 - ~i (Fig. 4). The second-order  f ini te  

d i f ference approximation of  Eq. 18 at interval center  point ~i = ~i + h~/2  and 

midstep t = t r  = t r  - At/2 ,  represent ing the expression fo r  At O(~i,t), is: 

N 3/2  
2L Z V(~ i ,~ : )  ^ 2L ~ k(~i  2 

j = i+1  % + t o  ( "pi+l - -  

[ i-1 ^ k ( ~ i )  ^ ] 
F* 6~ Z + ~ V2 A~ ( i= l  .... N) (19) 

jffil s ( ~ i ' ~ J )  a p j  V ~  APi 

^ 

where F* = F, ~i ffi ~i + A~/2, Api ffi (APi + APi+I)/2 and l 0 = E 'Gf / f t2 •  Also 

N+I L 
- -  z c j  x ( ~ j )  i ffi a u  ( 2 0 )  
E' j ffil A p  

c. a re  the coeff ic ients  of  the numerical integrat ion formula  chosen to 1 
evaluate the integral  in F-4. 13, and subscripts  i, j r e f e r  to the discrete  

coordinates.  In deriving Eq.19, the integral  in Eq. 18 in the near - t ip  
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i n t e rva l s  has  been eva lua ted  as  fol lows:  

~ i  ( ~ i -  ii )-t/2 dTl = ~ - ~ ,  J'~i+I ( ~ -  ~i ) ~  d~] =_2 { _ ~ ) 3 / 2  

¢i ~i 3 
If  au is  given, Eqs. 19 and 20 r e p r e s e n t  a sys tem of  N+I equat ions  fo r  N+I 

unknowns &PI' &P2 . . . .  &PN+I" Af t e r  solving the equat ions,  the  load increment  

accord ing  of  Eq. 12 is 

N 
Ap = b L a~ Z cj (2t) j=l a p j  

Note t h a t  i f  the  f i n i t e  d i f f e rence  approx ima t ions  were  cen te red  a t  ~i r a t h e r  

than  a t  in te rva l  cen te r  points ,  t he re  would be N+I equat ions  f o r  N unknowns, 

and the equat ion sys tem would be insoluble.  

Because funct ion  F depends on the  unknowns, i t e r a t i o n s  in each t ime s tep  

must  be used. In the  f i r s t  i t e ra t ion ,  F = is taken  as  the  value of  F 

ca l cu la t ed  f rom the  f ina l  values of  ~ and v f rom the preceding  t ime step.  In 

the  subsequent  i t e r a t ions ,  F = is taken  as  the  value of  F ca lcu la t ed  f rom the 

mids tep  values  of  ~ and v obta ined  in the  preceding  i t e ra t ion .  

The sys tem of  N+I equat ions  in F_x[. 19 may be concisely r e w r i t t e n  as  

N+I N+I 
2L 

I: ~t. = F* ~: ~ i j  ( i = 1 , 2  . . . .  N)  (22)  ~o j=i sJ &pJ j= l  apj 
where  ~ . .  and ~I.. a r e  coef f i c ien t  m a t r i c e s  which must  be gene ra t ed  on the 

i j  U 
bas is  of  Eq. 19, and a re  independent  of  Apj and of  F °. 

GENERALIZATION TO AGING VISCOELASTIC MATERIAL 

For  m a t e r i a l s  such as  concre te ,  t he re  is not  only a r a t e  e f f e c t  in the  

f r a c t u r e  p rocess  zone, but  also s ign i f i can t  c reep  in the  en t i r e  s t ruc tu re ,  

Assuming the  s t r e s s e s  outs ide  the  f r a c t u r e  process  zone to  be in the  l inear  

v i scoe las t ic  range,  we may consider  the  s t r e s s - s t r a i n  r e l a t i on  fo r  concre te  

to  be of  the  form:  

t c(t) = B ~0 J(t,t') d~(t') (23) 

where  ~ and ~ a r e  6xl  column ma t r i ce s  of  s t r e s s  and s t r a i n  components ,  B is a 

cons tan t  6x6 m a t r i x  implementing the  condi t ions of  i so t ropy,  and J ( t , t ' )  is 

the  compliance funct ion  r ep re sen t ing  the s t r a i n  a t  age t caused  by a un iax ia l  

s t r e s s  appl ied  a t  age t ' .  Considering t ime s tep  &t r = t r - t r _  I and 

app rox ima t ing  the  h i s to ry  in teg ra l  in F-xl. 23 by a f in i t e  sum, one can obta in  

the  quas ie l a s t i c  incrementa l  s t r e s s - s t r a i n  re la t ion :  



350 Z.P. BAZANT 

approximat ing  the his tory  in tegra l  in Eq. 23 by a f in i t e  sum, one can obtain 

the quas ie las t ic  incremental  s t r e s s - s t r a i n  re la t ion:  

Ac = B [ (6~ /E")  + AC" ] (24) 
~ r  ~ ~ r  ~ r  

where  
B r-1 

Ac" - ~ E C A~ (25) 
~r E" q=l r ,q  ~q 

Here C are  coe f f i c i en t s  which can be deduced f rom the f in i t e  sum 
r ,q  

approximat ion  to the in tegra l  in Eq. 23 (see Eq. 2.33, p.116, Ba~ant, Ed., 

1988). It may now be noted tha t  the e las t ic  s t r e s s - s t r a i n  re la t ion  ~ = B ~ /  

E may be t r ans fo rmed  into Eq. 24 by replacing 1/E' with the ma t r ix  

d i f f e rence  opera tor :  
r -1  

1 + E C ( . . . )  (26)  E---l("')r = E-~ ( ' " ) r  r,q r 
q=l 

Making now this  replacement  in Eq. 22, we obtain the fol lowing equation 

where  

N+I ( (xij FJ  / g i j )  Apj,r E + - -  = H. 
j = l  E" L l 

( i=l,2, . . .N) (27) 

N+I 
H. = - Z ct.. A~). (28) 

1 j = l  IJ j , r  

and r - i  

= E Cr, q Apj,q (29) Awj, r q=l 

Together  wi th  Eq. 20, Eq. 27 represen t s  a system of N+I l inear  a lgebra ic  

equat ions fo r  N+I unknowns Apj, r (j=l .... N+I). Solving in each t ime step this  

equation system, one can obtain, s tep by step, the load his tory  f rom the 

prescr ibed  values of the load-point  displacement increments .  Alternat ively,  

i f  the load increments  are  prescr ibed,  the system of equat ions fo r  each t ime 

step must be enlarged by Eq. 20. 

G E N E R A L I Z A T I O N  FOR M U L T I A X I A L  BEHAVIOR I N  FRACTURE PROCESS ZONE 

The preceding formula t ion  t ac i t ly  presumed uniaxial  s t r e s s -d i sp lacement  

re la t ion  fo r  the f r a c t u r e  process  zone. Since this  zone is t r e a t ed  as a line 

crack with br idging s t resses ,  mul t iax ia l  s t r e s ses  in f a c t  do not ex is t  in 

this  zone. In rea l i ty ,  however,  the f r a c t u r e  process  zone has some f in i te  

width, in which case it is conceivable that ,  fo r  example,  the normal s t ress  

in the d i rec t ion  paral le l  to the crack may influence the response. Such 
x 

behavior might  produce volume di la tancy in the f r a c t u r e  process  zone, which 

could fo r  example be the driving fo rce  of axial  sp l i t t ing  cracks  produced by 
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uniaxial  compression. The present  formula t ion  can be also extended to model 

such behavior  i f  funct ions  F and ~ (Eq. 13) a re  made to depend also on ~ or 
x 

. 
x 

CONCLUSION 

The formula t ion  presented makes i t  possible to obtain accura te  solution to 
f r a c t u r e  problems with ra te -dependence  of f r a c t u r e  and v iscoe las t ic i ty  of  the 
mater ia l ,  coupled with nonlinear behavior due to bridging s t r e s ses  in the 
f r a c t u r e  process  zone (e.g. Mazars and Ba~ant, eds., 1988). However, this  
fo rmula t ion  s t i l l  remains  to be tes ted  and ver i f ied  by numerical  experience.  
This will  be the next  phase of  research.  
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