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ABSTRACT: A crack with bridging stresses is treated as a superposition of
many cracks whose tips are continuously distributed (smeared) along the crack
line. The solution is reduced to an integral equation for the components of
the applied load associated with crack tips at various locations. This
equation, which is equivalent to that previously presented by Planas and
Elices (1986), is then generalized to include: (1) time-dependent nonlinear
stress-displacement relation for the bridging stresses (rate-effect), and (2)
aging viscoelastic behavior of the material in the rest of the structure. The
solution leads to an integro-differential equation, whose method of solution
by finite differences in space and time is given. The paper presents only the
mathematical formulation. Numerical studies applied to concrete, rock and
ceramics are planned.

INTRODUCTION

Although the finite element and boundary element methods are powerful and
general approaches to fracture problems with nonlinear and time-dependent
material properties, the usefulness of analytical or semianalytical
approaches cannot be denied. These methods offer much deeper insight into the
mechanics of fracture and are more efficient, more accurate, foolproof and
unlikely to fail. For this reason, Green’s function methods or solutions
based on dislocations are widely used. These methods, however, become too
difficult for complex geometries as well as complex material laws.

This paper will present a new semianalytical method based on superposition
of exact solutions of linear elastic fracture mechanics. This method, which
will treat the crack as a superposition of many linearly elastic cracks whose
tips are continuously distributed (smeared) along the crack line, will
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represent an extension of an integral equation presented by Planas and Elices
(1986) to arbitrary nonlinear and time-dependent (or rate-dependent) material
behavior in the crack bridging zone, coupled with aging linearly viscoelastic
behavior in the rest of the structure. While Planas and Elices used
asymptotic series expansions to solve the aforementioned integral equation,
we will discuss solving this equation and more general integro-differential
equations by finite differences, after properly taking care of stress
singularities.
LINEAR ELASTIC FRACTURE MECHANICS RELATIONS FOR A SINGLE CRACK

The stress intensity factor K for a crack of length s in an elastic
structure may generally be expressed in the form (e.g. Broek, 1986)

K=Pk(n /bvL (§9]
where P = applied load, L = length of the crack ligament, b = structure
thickness, and k(n) = nondimensional function of n = s/l. where s = coordinate
of the crack tip (Fig. 1). We will consider only mode I (opening mode)
fracture, although the present method could equally well be applied to mode
II or III (shear) fracture. The load-point displacement u may generally be

calculated as (e.g. BaZant and Cedolin, 1990) u = COP + Py(n)/E’b or

u="Pux(n) /ED (2)

with _ o 2
x(n) = Co * vin) , yin) = 2 J‘O [ k(») 17 do’ (3)
where 50 = COE’b, CO = compliance when there is no crack; x(n) is a
nondimensional function (which can also be obtained by LEFM, for example by
optimum fitting of finite element results); and E’ = E = Young's modulus, for
the case of plane stress, or E' = E/(l-—v)z, for the case of plane strain. For

a crack with the tip at s, the linear elastic fracture mechanics (LEFM)
solutions for the normal stress o across the crack plane and the crack
opening displacement v have the general form:

P s(g,n) 7/ Lb (4)
P V(§,m) / E'b (5)
where the following approximations can be used for sufficiently small

|&-nl:

for n <€ =< 1. 2
for 0 < § = 7u: v

S(Em) = k(n) /7 v2r(€ - ) (6)
VEm) = k(n) vB/mn vV g - € )
(Fig.1). When |€—n| is not small, one has (for &<1) the asymptotic expansions:
SEm) = [by + b HE-N + bmEN + .1 k) / VE -7 8)
VIEW = [ey + ¢ ) + c)(mn-E° + 1 km) VA =& (9)
where b0 = 1/V2m, cg = v3/x; bl(n), cl(n). bz(n),...are nondimensional

smooth continuous functions which can be determined from LEFM, for example by

optimum fitting of finite element results with Eqs. 8 and 9.
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Fig. 1 Stresses and displacements caused by a crack with tip at x = s.
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Fig. 2 Superposition of stress and displacement fields of several cracks of

different lengths.
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SUPERPOSITION OF THE FIELDS OF SMEARED CRACK TIPS

Now we turn attention to nonlinear fracture mechanics of a line crack with
a nonlinear fracture process 2zone of nonzero length. However, the solid
outside theb crack line is still assumed to be elastic, and nonlinearity
arises only from the relation between the crack bridging stress ¢ and the
crack opening displacements v (the width of opened crack is 2v). The opening
profile v(x) of such a crack can be obtained as a sum of the opening profiles
of many LEFM cracks of stress intensity factors dK(s) = k(%)dP(s)/bvVL where
n=s/L; the tips of these cracks, of coordinates s, are continuousiy
distributed (smeared) along the crack line (x 1is the crack length
coordinate); see Fig. 2. The stress fields of all these LEFM cracks as well
as the corresponding loads must also be superposed.

Let P(s) = p(n)bL be the load corresponding to one LEFM crack whose crack
tip has the coordinate s = 7nlL; p{w) represents the density of the loads with
respect to the relative crack tip coordinate m = s/L.. The load corresponding
to the crack tips located within an infinitesimal segment ds with a center at
coordinate s is dP = bLp(n)dn (keep in mind that all the load components dP
are applied at the same point as the actual applied load P). By

superposition, £
o(€) = J§ S(&m) p(n) dn (10)

v(E) = (L/E) [ VIEM) pln) dn an
To satisfy equilibrium, the sum of all the load components dP corresponding
to all the segments ds must be equal to the applied load P, i.e.
P =bL s pm dn (12)
The load-point displacement corresponding to the crack tips located within
segment ds centered at s is du = x(n)p(n)L/E’. Superposition of all these
displacement contributions (which all occur at the load application point)
yields
u = (L/E) Sg %) p(n) dn (13)
Egs. 10-12 are equivalent to those presented by Planas and Elices (1986,
1987; see Egs. 11-13 in their 1986 paper).

GENERALIZATION TO ARBITRARY NONLINEAR TIME-DEPENDENT FRACTURE LAW

We introduce the nondimensional  bridging stresses and opening

displacements:

0'=a*/ft, v=2vft/Gf (14)
where f1': = tensile strength of the material, and Gf = fracture energy of the
material (Gf = KI? / E’ where KIf= fracture toughness); Fig. 3. We will

consider a rather general stress-displacement law for the fracture process
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zone written in the form:

Vv = F@.VE + 8@, 7) (15)
where the superior dots denote partial derivatives with respect to time t,
and F, & are given nondimensional functions characterizing the material.
Function ¢ describes the rate effect on fracture, and function F the
instantaneous nonlinear response. Eq. 15 applies only to virgin loading of

the crack. For unloading or reloading we replace F(¢,v) by O, i.e.

v= ¢ (o,V) (16)
Before stress ¢ for the first time reaches the strength limit f i,

v=20 an
Substitution of Egs. 10-11 into Eq. 15 now yields

(2LE/E'Gy) S VIEM Bn,b) dn = FISED, V€] £:7108 st pn,0) dn
+ ®lo(€,1), V(1)) (18)

This represents a singular integro-differential equation. If & > O and if
o(€) and v(€) are known, then the unknown function p(€,t) may be solved from
this equation. But o(£) and v(€) are unknown, and so Egs. 18, 13, 10 and 11
are coupled. If & = O while ¢(€) and v(§) are known and u(t) is prescribed,
function p(£,t) may be solved from Egs. 18 and 13; and if P(t) is prescribed,
then from Eqs. 18 and 12.
METHOD OF SOLUTION BY FINITE DIFFERENCES

Time t is subdivided by discrete times t (r=1,2,...) into small steps At=
tr- tr—l' The spatial coordinate £ is subdivided by Ei (i=1,2,...N+1) into N
small intervals A = I/N = €i+1 - &'i (Fig. 4). The second-order finite
difference approximation of Eq. 18 at interval center point gi = §i+ A&/2 and

midstep t = tP = tr - At/2, representing the expression for At V'I(Ei,t), is:

N 372

2L = =, 0 L 2L 2 [ BE _
ag 1, = VEE) opy+ = VB K D3 () ey =
J =i+l 0 _
i-1 . k(&i) -
F* [ AE X S(Ei.E.) Ap. + V2 A€ Api] (i=1,...N} (19)
j=1 o VZr
= F = oo — 2
where F* = F, Ei = Ei + AE/2, Api = (Api + Apiﬂ)/z and to = E Gf/ft . Also
N+l
Z c, x(E.) 4p, = Au (20)
E e 44

¢, are the coefficients of the numerical integration formula chosen to
evaluate the integral in Eq. 13, and subscripts i, j refer to the discrete

coordinates. In deriving Eq.19, the integral in Eq. 18 in the near-tip
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intervals has been evaluated as follows:

S 3 |
Il(zi"')—md’HW'J'_m(n-gi)mdvﬁg[ﬁ]
& § 342

If Au is given, Eqs. 19 and 20 represent a system of N+l equations for N+l

372

unknowns Apl. Apz, "'ApN+1' After solving the equations, the load increment
according of Eq. 12 is

N
AP = bLAE I c, bp, (21)
j=1 Jj i

Note that if the finite difference approximations were centered at Ei rather
than at interval center points, there would be N+l equations for N unknowns,
and the equation system would be insoluble.

Because function F depends on the unknowns, iterations in each time step
must be used. In the first iteration, F* is taken as the value of F
calculated from the final values of ¢ and v from the preceding time step. In
the subsequent iterations, F* is taken as the value of F calculated from the
midstep values of ¢ and v obtained in the preceding iteration.

The system of N+l equations in Eq. 19 may be concisely rewritten as

oL N+l N+1
Za fp = F* I B. Ap, (i=1,2,...N) (22)
Ly o 1 je1 W

where aij and Bij are coefficient matrices which must be generated on the

basis of Eq. 19, and are independent of Apj and of F*.

GENERALIZATION TO AGING VISCOELASTIC MATERIAL

For materials such as concrete, there is not only a rate effect in the
fracture process zone, but also significant creep in the entire structure.
Assuming the stresses outside the fracture process zone to be in the linear
viscoelastic range, we may consider the stress-strain relation for concrete

to be of the form:

£(t) = B Jg Jt.t') dg(t’) 23)

where £ and ¢ are 6x1 column matrices of stress and strain components, Bis a
constant 6x6 matrix implementing the conditions of isotropy, and J(t,t’) is
the compliance function representing the strain at age t caused by a uniaxial

stress applied at age +t'. Considering time step Atr and

t -t
r r-1
approximating the history integral in Eq. 23 by a finite sum, one can obtain

the quasielastic incremental stress-strain relation:
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approximating the history integral in Eq. 23 by a finite sum, one can obtain

the quasielastic incremental stress-strain relation:

Ae = B[ (Ac /E") + bg" ] (24)
~r ~ ~r ~r
where
B r-l
Ag;'_ = — I Cr q Ag:q (25)
E" q=1 ’

Here Cr are coefficients which can be deduced from the finite sum

approximation to the integral in Eg. 23 (see Eq. 2.33, p.116, BaZant, Ed.,
1988). It may now be noted that the elastic stress-strain relation € = B ¢/
E may be transformed intc Eq. 24 by replacing 1/E' with the matrix

difference operator:
r-1

(...) + pX Cr (...)r (26)
q=t 9

Making now this replacement in Eq. 22, we obtain the following equation

N+l o F*
5 [_J . _B.,] ap. = H, (i=1,2,...N) 27)
j=1 E" L 1J J'r 1
where N+1
Hi = - I @ Aw. r (28)
J‘=1 J J’
and r-1
Aw, = z C Ap. (29)
Jbhr =1 r,q pJ,q

Together with Eq. 20, Eq. 27 represents a system of N+l linear algebraic
equations for N+l unknowns Apj,r‘ (j=1,...N+1). Solving in each time step this
equation system, one can obtain, step by step, the load history from the
prescribed values of the load-point displacement increments. Alternatively,
if the load increments are prescribed, the system of equations for each time

step must be enlarged by Eq. 20.

GENERALIZATION FOR MULTIAXIAL BEHAVIOR IN FRACTURE PROCESS ZONE
The preceding formulation tacitly presumed uniaxial stress-displacement
relation for the fracture process zone. Since this zone is treated as a line
crack with bridging stresses, multiaxial stresses in fact do not exist in
this zone. In reality, however, the fracture process zone has some finite
width, in which case it is conceivable that, for example, the normal stress
oy in the direction parallel to the crack may influence the response. Such
behavior might produce volume dilatancy in the fracture process zone, which

could for example be the driving force of axial splitting cracks produced by
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uniaxial compression. The present formulation can be also extended to model
such behavior if functions F and ¢ (Eq. 13) are made to depend also on o, or

€_.
X

CONCLUSION

The formulation presented makes it possible to obtain accurate solution to
fracture problems with rate-dependence of fracture and viscoelasticity of the
material, coupled with nonlinear behavior due to bridging stresses in the
fracture process zone (e.g. Mazars and BaZant, eds., 1988). However, this
formulation still remains to be tested and verified by numerical experience.
This will be the next phase of research.
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