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I. INl’KOI>UCTION 

In ic)3S, G. 1. Taylor suggested ;I new class of materiul ~nockls for plastic polycrysttlllinc 

metals in which the constitutive material properties arc ~h~ir~~~t~ri~~d by relations hctwccn 

the stress and strain ~~?rnpon~nts on planes of vurious ~ri~nt~lti~ns in the materiaf (now 

called the microplancs). which arc constrrtinrd either staticrtlly or ~in~rn~lti~~llly to the 

macro-stress or mitcr+stritin. fktsccl on the statio constraint. this basic icloa has been 

extcnsivcly dcvrlopcd for mctitls under the n;lmc of slip theory. beginning with the pion- 

ccring work of Butdorf and Hudiunski (1939). Lutcr. the models with static constraint have 

been iiditptcd for gcomatcrials (Zienkicwicz and Park, 1977; Pandc ilnd Sharmit. 1983). 

In ;lpplication to concrete and gcomatcrials. the name “slip theory” bccumc misleading 

bccausc most of the inclustic rcsponsc is due to dam:tgc such as microcracking. and the 

rnl>rc gcncrrtl term “misropfanc modci” was coined (Uahnt itncf Oh, 19Y3 ; fk&mt. 1984). 

f t was ills0 rccognizfd that the str~~in-s~~~.t~nin~ obscrvcd in ~~~~~l~~&~riillS CittlilOt bC rep- 

rescntcd with ;t static constr~~int bcc:~usc the nli~r~~pli~n~ system becomes unstable, and 

conscqucntly ;L kinematicconstraint has hctn adopttXi (f3a%unt and Oh. 19X3, 1985; Buiitnt, 

1984: BitPant and Gamharova. IWJ: Ikti.itItt :tnd f’ritt. IVXX). although ;I more gcncral 

mixed constraint might conceivably also bc used. 

The microplanc model with kinematic constraint and strain-softening hiis proved to 

bc a powerful approach for modcfling rather complex aspects of trianial hchavior of 
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brittle-plastic materials such as concrete. rock. ceramics and some composites (Baiant and 

Gambarova. 1984; Baiant and Oh. 1985; Baiant and Prat. 1988; Baiant and Oibolt. 

1990). However, as usual in the exploration of new constitutive models. most attention has 

so far been paid to achieving an accurate representation of the main aspects of material 

behavior given by experimental curves rather than to other theoretical or numerical aspects 

also important for constitutive modelling. 

Further work has lead to the conclusion that the theoretical description of the model 

given in previous works can be simplified. the same concepts can be presented in a more 

comprehensive way, and a new and clearer interpretation of some of the equations and 

variables involved in the formulation is possible. Also, some derivations can be given a 

more rigorous or alternative description, and some changes can be made in the hypotheses 

and assumptions, so that the final formulation is better suited for practical application. 

From the viewpoint of numerical implementation and code development. the previous 

formulations of the microplane model also lacked a systematic approach. In general. the 

computer implementation of a constitutive model is undertaken with one of the following 

two purposes: (i) representation of the material behavior itself. as a relationship between 

stress and strain (“single-point constitutive verification”). or (ii) representation of the 

material behavior in the context of structural analysis (“F.E. analysis”). Without ;I unitied 

scheme of implementation, the programs developed for these two purposes may well have 

completely different structures, and the part of the code corresponding to the constitutivc 

model may feature two completely different implementations of the same model. which in 

a way was the case for the previous versions of the microplane model. 

In this paper both aspects, a new theoretical description (Section 7) and ;I new numerical 

imptcmcntation scheme (Section 3) for the microplane model, arc prcscnted. Altogether, 

these aspects yield a new version of the model which, while keeping all the useful features 

achieved in the previous version in terms of constitutivc verification. is also casicr to 

understand and better suited for practical use in the context of a general F.E. code. The 

new computer schcmc includes two model-indcpcndcnt main programs calling the s;unc 

material subroutine which gives ;LCCCSS LO all the model-specific routines and computations. 

In this way, all the inconveniences caused by having two dilfercnt programs implementing 

the same model are overcome automatically : the code needs to he written only once. and 

once verified at the constitutive level it is automatically working for I:.E. computations. 

Moreover, any further modifications introduced to the model need to bc cncodcd only once. 

Thus. both the single-point and F.E. analysis programs always contain the sarnc version of 

the model, and the results obtained from both levels of analysis arc fully consistent for 

comparison or complementary use in the same practical problem. By virtue of the general 

scheme used and the new theoretical assumptions for the modct, the computations in these 

subroutines (which basically must perform a load-stepcomputation from prescribed strain) 

are fully explicit, without any step-by-step integration procedure. This makes the code 

simple to implement and fast to run. 

Section 4 presents some examples. The results obtained arecompared with expcrimcntnl 

data and published results of the previous version of the microplane model. The comparison 

is made in terms ofcapability to fit experimental data as well as numerical efficiency. Fimtlly, 

Section 5 gives a brief summary and the main conclusions drawn from this work. 

2. TIIEORETICAL DESCRlPTtON OF THE EXPLICIT MICROPLANE MODT:L 

At a point within the material, a microplane is defined as an arbitrary plane which cuts 

through the material at that point, defined by the orientation of its normal unit vector of 

components n,. The most direct and easiest physical interpretation of a microplane comes 

from the observation of the material microstructure, as the interface or discontinuity plane 

between grains or different components in the heterogeneous medium (Batant and Gambarova. 

1984; Baiant and Oh, 1985; Baiant and Prat. 1988). 

On a generic microplane. certain components of strains and stresses are considered. 

These are the normal and shear strains and stresses on that plane. A set of stress-strain 

laws are defined as the relations between strains and stresses on the microplane. These laws, 
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together with the relations between macroscopic and microplane stresses and macroscopic 

and microplane strains. constitute the material model. 

2. I. Kinematicail~ construinetl microplune s_wem 
In the first models of this type developed for metals and soils. a static constraint (the 

microplane stresses are equal to the resolved components of the stress tensor on that plane) 

was assumed as the fundamental micro-macro relationship. However. to represent the 

behavior of quasibrittle materials such as concrete or rock. showing strain softening. a 

kinematic constraint (the microplane strains are equal to the resolved components of the 

strain tensor on the plane) seems to be necessary. As will be shown in Section 3. this 

assumption fits very well into the strain-to-stress scheme used for numerical calculations 

and makes possible fully explicit types of calculations with great economy in computer 

time. 

The theoretical framework for the new explicit microplane model is based on the three 

hypotheses given below, similar to those used by Baiant and Prat (1985). with some changes 

that affect the resulting formulation and its numerical implementation : 

H.yotltcsis 1. The normal and shear (tangential) strains cs and cr on a microplane of 

unit normal II, arc the resolved components of the macroscopic striin tensor E,, in that 

direction. which implies that 

+ = 1:,,tr,n, (1) 

Er = f:,,tt, -i:~tt, = (h,, -tt,tt,)ttAt:,k. (‘I 

Additionally. the normal strain is split in two parts. the volumetric strain I:~ and the (normal) 

dcvintoric strain I:,,. the cxprcssions of which arc 

t:,, = 1:s -I:“. (J) 

The latin lowercase subscripts rcfcr to Car&an coordinates .r,(i = I. 3. 3). and subscript 

ropstition implies summation. 

Note that the tangential strain is II vector with three components in space, but its 

direction always lies in the microplane of normal n, [(cheek that Er,tt, = 0, from cqn (?)I. 

Also the normal strains are vectors with three Cartesian components in the normal direction 

II,, though only their magnitudes c.+ t:” and El, arc used. A useful alternative interpretation 

of the variables E”, t:,, and E,., can bc obtained if they are dcrivrd in terms of the volumetric 

.Q and dcviatoric v,, = I:,, -t:vS,i pilrts of the macroscopic strain instead ofdircctly from the 

tensor t:,,. Then. the volumetric strain at microplanc lcvcl G,. which is the same for all the 

microplancs, is directly equal to the macroscopic volumetric strain. The normal deviatoric 

strain E,, and the tang~ntii~l strain c,,. which ilrc dilTixcnt for each microplane, arc equal to 

the normal and tangential components of the projection of the dcviatoric strain tensor. v,,. 

on the microplanc considcrctl. 

tf~pothcsis II. Associated with the three strains cv. c,, and Er,. the three corresponding 

stresses gv. (r,, and ur, arc introduced so that their rcspcctivc products give directly the 

work done on the microplanc. The strain--stress laws at this Icvcl arc a set of empirical 

relationships defining the evolution of each one of those three strcsscs as a function of the 

three microplanc strains (and possibly their history) exclusively. 

The fact that the laws for cv. CT,, and cr,, ilK functions of strains cnclusively is a very 

important difl’crence with the previous version of the model (Baiant and Prat, 1958). This 

hypothesis permits the model to bc fully kincmatically constrained. Consequently, other 

kinds ofdependences. such as the dependence of OTT, on a certain invariant of the macroscopic 
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stress tensor assumed in previous works (which in fact established a “mixed” kinematic- 

static constraint for the model) are in this case excluded from the formulation. 

Hypothesis II/. The relationship between the microplane stresses bv. c,, and oT, and 

the macroscopic stress tensor a,, is obtained by applying the principle of virtual work. Its 

application to this case is explained in some detail in Appendix A. including certain 

considerations about symmetry requirements for the tensors a,, and E,, necessary to ensure 

interchangeability of the indices iandjin the final expressions (the symmetry considerations 

used in the Appendix are an alternative to the a priori symmetrization of eqn (2) used in 

previous works to reach the same final effect). The expression for the macroscopic stress is 

then : 

s 
;(nJ,,+n,6,,-%,n,n,)dR 

n - 

where the integral domain represented by R represents the upper half hemisphere and Sii 

is the Kronecker delta. 

An important new feature of eqn (5) is that it is written in terms of the total values of 

stresses instead of differential increments. The equation would also be valid ifall the stress 

variables were replaced by their differential increments. which was how it was prcscnted in 

the original formulation (Raiant and Prat, 1988). If. howcvcr. the equation is written in 

terms of the total values. then the current (total) value of the macroscopic stress tensor a,, 

can bc ohtaincd from the current (total) values of the microplanc strcsscs av. c,, and a1, at 

any moment during the load history, by direct application of cqn 5. This dcsirahlc fcaturc 

cannot bc obtained from the incrcmcntal-type equation. 

Another advantageous aspect of eqn (5) is that is permits a clear intcrprctation of the 

contribution of each of the microplanc strcssrs (av, a,, and a,,) to the m;icroscopic stress 

tensor c,,. From that equation. one can SW that the by term gives it volumetric contribution 

to 6,,. and the c,, term gives a pure dcviatoric contribution to the macroscopic stress tensor 

(this bccomcs clear by noting that this term bccomcs Lcro if i =j). The a,, term is the only 

one which gives both volumetric and dcviatoric contributions to the macroscopic stress 

tensor. Consequently, this term is responsible for the intrinsic coupling the model shows 

bctwccn volumetric and deviatoric behavior, such as dcviatoric-induced dilatancy, etc. 

With the three hypothcscs presented. and provided that spccilic definition of the 

microplanc stress-strain relationships is given according to Hypothesis Ii, the basic frame- 

work of the model is complete and it is already possible to calculate the macroscopic stresses 

which correspond to a prescribed value of macroscopic strains [see the scheme in Fig. (I)] : 
from the macroscopic strain increment, the microplane strain incrcmcnts are evaluated by 

using cqns (l)-(4) then the microplane stresses are computed using the stress-strain laws 

dcfincd at the microlcvel, and finally the new macroscopic stress tensor is obtained by 

integration of microplane stresses according to eqn (5). 

MACROSCOPIC MICROPLANE 

LEVEL LEVEL 

STRAIN Eii 

I 
KilWlll~liC 

(INPUT DATA.) conctraint ‘- G #ED ,ETr 

I 

1 

Microplanr 
laws - 

STRESS ai 
principle of 

(OUTPUT Virtual Work av ,a0 ,Gr 

RESULT 1 
I 

Fig. I. Basic scheme for the computation of macroscopic stresses rrom the macroscopic strains. 
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Although not always necessary, in certain situations (e.g. as a part of a FL program). 

it is useful to calculate additionafly the macroscopic tangential stiffness tensor Diik,. relating 

macroscopic stress and strain increments. In particular. this tensor is required to obtain the 

tangential stiffness matrix of the structure whose eigenvalues decide path bifurcations and 

determine the stable paths (Baiant. 1988 ; de Borst. 1987). The expressions for D,,II can be 

easily derived from the incremental counterpart ofeqn (5) by substituting for the microplane 

stresses their expressions in terms of microplane strains and then, for the microplane strains 

their expressions in terms of the macroscopic strains. However. since the resulting stiffness 

expression can be different depending on the type of stress-strain laws used at microplane 

level, this derivation will be given in Section 2.4, after the definition of the microplane IUNS. 

Within the basic framework presented. a very wide range of models can still be defined 

depending on how the microplane stress-strain relationships are chosen. In this work. the 

laws for bv, on and or, have been selected on the basis of those used in previous versions 

of the microplane model (Baiant and Pmt. 1988) but with some modihcations and new 

dependencies so as to make numerical implementation more convenient. 

(a) E’oltirnttri~ km. This microplane lr~w dircctIy reproduces the macroscopic behavior 

of the material when only volumetric strains or stresses are present. Thcrcforo. a curve that 

tits cxpcrimcntal data for hydrostatic tests may be directly introduced. For compression 

(av > 0) the following law is i1SSlUllCd : 

while for hydrostatic tension (av < 0) 

whsrc Et, 11, h, p, (1. u,, 11, arc empirical material constants obtain4 by titting a single 
cxpcrimcnt:rl curve. The volumetric law is plotted in Fib 1. 21. For unloading--rclonding, both 
the tcnsilc and compressive curves act as envelopes. In compression the unloading branches 

are assumed to always have the initial slope E z, and the origin of the tcnsilc part of the 
diagram always shifts to the point in which the unloading compressive branch rcachcs the 

horizontal axis. The unloading-reloading in tension is assumed to follow a sCWnt slope 

bctwccn the maximum point reached in the tensile curve and the origin of that curve. 

(b) ~V{~r~rl~~f ~l~~~irr~t~rj~ hs. This law is based on the same type of cxp~n~Iiti~ll stress- 

strain envelope curve used for the tensile part of the volumetric behavior, but now con- 

sidering two ditferent sets of parameters for tension and compression 

where Ei. a,. p,, u2. pz are empirical material constants, The law is rcprcscnted in Fig. 2b. 

For unloading-reloading. straight lines arc assumed with a certain slope. For compressive 
behavior the initial slope EE is always used, while a secant slope (from the origin to the 

point of maximum positive strain previously reached} is used on the tensile side of the 

diagram. For unloading in compression, the origin of the tensile pnrt of the diagram is 
always assumed to shift to the point in which the unloading compressive branch intersects 
the horizontal axis. 
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a)Volumetrlc stress-strarn relatlonshlp 

b) Normal dewatoric stress-stram relatlonshm 

c)Tangent~al stress-strain madulc relatlonshlp 

I:ig. 2. Strczs str;tirl I;iws ;It tIi~ microplaw lovcl. 

(c) 7irr~,qc~r/itr/ (slk~r) /UW. This is the most complicated among the Lhrcc niicroplanc 

constitutivc laws. The complexity comes from two facts : first. the tangcntiul stress illld 

strain h:lvc two in-plant components t!i\ch on the microplanc and. thcrcforc, the stress 

strain law must lx two-dimcnsionul, that is, it must provide it coupled relation bctwccn two 

components of stress itnd two components of strain simultnncously. Second. in this law 

thcrc must also bc an additional dcpcndcncc 011 il macroscopic v:tri;~blc giving ii measure 

of the c.ytcrn;lI conlining prcssurc such that the tangential rcsponsc is stilrcr when the 

contincmcnt is hi&r. This is to rcllcct in sonic way the phcnomcnon of internal friction. 

which must bc taken into account it’ the model is cxpcctcd to lit. with the same set 01 
material paramctcrs. the cspcrimcntal data li)r dillkrcnt confincnicnt prcssurcs. 

Scvcr:ll possibilities can bc considcrcd to Ibrmulatc such iI model in ;I consistent way. 

One of them might bc to adopt ;I gcncral t~vo-tliln~nsion;lI plastic model similar to the ones 
already existing ror the bchilvior of joints or intcrfnces (Gas CI (I/.. 1989). However, 

illthough this kind of model would bc I’ully consistent and satisfy all the rcquircmcnts 
mcntioncd. the complexity ilnd computiltionill domand’of such iI model running at the same 
time on cvcry one of’thc microplancs used for the numerical integration over the hemisphcrc 
would seriously rcducc nunicrical cf~iciency. 

Among other altcrnativcs considcrcd. the basic schcmc proposed by Baiant and Prat 
(19S8) seems to remain the btst compromise bctwccn performance and cost, though sonic 
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important improvements concernin g the intluence of the macroscopic confinement may be 

introduced. Basically. this approach, which we call “parallel tangential hypothesis”. consists 

of the simplifying assumption that the tangential stress vector on a microplane. or,, remains 

ahva\s parallel to the corresponding tangential strain vector. Er,. This means that 

Err 
‘T, ., ET-- 

I 

where r = \ ‘GGy illld ;’ = bIcCiI. Then the problem reduces to establishing a one- 

dimensional relation between the tangentiul stress and strain moduli T and 7. The relation- 

ship ~‘e use for that purpose is an exponential curve similar to that used for the other 
microplime la\vs : 

in which E’: and p, are empirical m;~teri:ll constants and (li is ;L certain empirical function. 

As shown in Fig. 2c. the curve given by this equation is used as an envelope. with 

unloading-reloading branchcs with initial stiffness E” r. Zero tangential stress is assumed 

when the horizontal axis is reached during unloading. For reloading the full initial stifTness 

applies again up to the current envelope. In this way. ;I very simple loop is obtained at 

this Icvcl. which seems to be sulticicnt for obtaining n reilsonablc simplified approach to 

unloaJing-rclo~ldirlg lo~~ps at macroscopic Icvel, as shown in one of the examples of 

application IiltCr in this paper. 

AS dcscribcd so far. howcvcr. the tilngcntiill stress strain relation would not show any 

dcpcndcncc on the macroscopic conlincnicnt. This tlcpcndcncc is inlrotluccd through the 

paramctcr (I, in eqn ( I I ). which is assumctl to have increasing valucS dcpcnding on the 

m;lcroscopic conlincrncnt. In this work WC take the vuriahlc ~:v ilS the measure of the cx- 

turnal conlincmcnt instcacl of ~7~. = (f~,, + rr,,,)/7 which WilS usctl in the 0rigiIlill formulation 

(fkliit~~t ilntl I’rat. I’M). This assumption has the ;ltlv:mt:lgc that it ~n:~kc~ Lhc m~dcl fully 

kincni:ilically constrained. A linear varkition is assunicrl for lhc dcpcntlcncc of (I, on 1:” 
(I:ig. 3) : 

(I, = (1’; + IQ, (1’) 

whcrc (1’: illd k,, iIK elnpirkill rwtcriiil WIlStilnlS. 

The fact that II, tlcpcntls on I:\ introduces the ncccssity of some :~cltlitional assumptions 

on how to compute the stress T from the strain ;’ in Fig . 2~. In this work. the following 

proccdurc is used : lirst, the incrcmcnl of T is computed cI:ISticidIy from the incrcmcnl of; 

on the basis of the initial modulus f?,‘. Then the curve given by cqn (I I) with ;L value oft, 

corresponding to the limil v~iluc of I :\ is IISL’~ ilS il limit cnvclop~ for T. AS described, this 

proccdurc is bused only on the tot;11 \~illucs of’tk vnriublcs at the end of the load step. not 
involving. thcrcforc, any numerical integration proccdurc with sub-stepping. This feature 

is iln apparently minor but prilctically important modilication of lhc previous version of 
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the model (in which the numerical integration procedure was needed) : it makes possible a 

fully explicit computation of a strain-prescribed load step. which is one of the objectives of 

this work. 

2.3. Purh-~i~~rtrrit~n~~t~ 
As is clear from eqns (6)-( II!). the microplane stress-strain relations are total-strain 

relations which are path-independent for the case of monotonic loading on the microplane. 

It is important to note. however. that the macroscopic response for macroscopically mono- 

tonic loadins is path-dependent. The reason is that even such loading normally involves 

unloading (for volumetric or deviatoric curves) or change of direction (for shear) on some 

microplanes. As in the previous microplane model. it is assumed that all the macroscopic 

path-dependence stems from the possibility of various combinations of loading and unload- 

ing on the microplanes. 

This is an attractive simplifying theoretical feature of the rnodcl. In practice. however. 

some numerical precautions must be taken due to the numerical scheme used. explained in 

Section 3. According to the kinematic micro-macro constraint assumed. the change of 

direction of the microplane strains must come from ;I change in direction of the macroscopic 

strains. As will be shown in Section 3. the increments of strains. stresses and other variables 

arc calculated for each loild step within ;I loop over the number of external loi\tl steps. In 

the (macroscopic) strain space. the strain increment corresponding to ;I load step is rcp- 

resented by ;i straight scgmcnt. and the segments of the subsqiicnt load steps constitute il 

poly~onnl approximation to the true strain pilth. In gcncrnl. the trut strain pilth ivill bc ;l 

curve not necessarily smooth (t2.g. consider the sudden dcvclopmcnt of IiltlXll dilatancy in 

;I uniarial test ncilr the peak. as in the first cxamplc prcscntcd in Section 4). C’onsqucntly, 

it is clcnr that in practice the load history must hc divided into ;I suliicicnt nunihcr of load 

steps so that the true strain path and. thcrcforc. the corresponding loading unloading 

combinations in the microplilncs. can bc capturccl in the n~lculations. 

2.4. ‘liutqcwl ttrtri~rosc~o~tic. sIij]kw Icwsor 

I:or the derivation ol’thc macroscopic tangent stili‘ncss matrix. cqn (5) must bc rcwriltcn 

in lcrnis of the tlilYcrcnti;il stress incrcnicnts instead of the total values: 

df7,, = da,&, + 
3 

s 3n fl 
dd,,/l,tl, dR + ‘- 

s 

da, 

271 <) 2 
c (tt,d,, +,I,&, -2tt,tt,tt,)dQ. (13) 

Then the incrcmcnts ofstresses iit the microplane lcvcl must be replaced by their incrcmcntaI 

expressions in terms of the current tangent modulus and the incrcmcnts of strain at that 

Icvel. Thcsc are simple scalar expressions for da, and dn,,, 

but not for drr,., sincc both the tangential stress and strain on it microplanc arc vectors. 

Their incromcntal relationship must involve it matrix : 

da,, = C/l:” dr:,<. (16) 

The matrix Ii:‘:” for the parallel tangential model used in this work is derived in 

Appendix IX Its final expression involving the tangential shear stiffness E’;‘” (obtained from 

the relationship ds = Ey”dy) ils well Ils the current values of ‘T~,,E~, and their rcspcctivc 
moduli r and ;‘. is 
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(17) 

Introducing eyns (l-t)-( 16) into eqn (13) and then replacing the microplane strain 

increments according to eqns (Z)-(4). the final expression of the tangent macroscopic 

stilfness matrix D$, can be obtained. This derivation is presented in Appendix C and it 

requires the introduction of certain symmetry considerations for identifying the matrix 

coefficients from the resulting equation (or alternatively. the use of an apriori symmetrized 

version of eqn (2). as done in previous works) in order to pet a stiffness expression that 

satisties the interchangeability of stress tensor indices i and j and the strain tensor indices 

k and 1. The final expression is : 

da,, = D I::, dEk, (18) 

where 

Nutc that this is not the same cxprcssion as obtained by Baiant and Prat (1988). whcrc 

the rckltionship bctwocn macroscopic strain and stress incrcmcnts was dcr,, = C,,,, dr:k,+da;‘, 

with the additional initial slross term ; the tensor C,,,,did not have the meaning of tangential 
sti tl’ncss. 

Prior to establishing the linnl list of model paramctsrs. it is useful to relate the three 

initial moduli of the microplanc stress strain laws El). L+i: and EF. which do not have any 

macroscopic physic;lI mcnning. to the standard elastic paramctcrs. This can bc easily 

achicvcd if WC impost the condition that virgin concrctc initially follows a lincar elastic 

bchahior. In that situation the behavior on any microplanc is the same: linear elastic 

functions for rrv. r~,, and 6, in terms of their respective strains with initial moduli Et. EL 

;llld El'. Thcsc cquiltions can bc introducsd into the intsgral in .eqn (5). the microplane 

strains rcplaccd according to crlns (Z)-(4). and the integral over the hcmisphrre solved by 

hand, from which ;I tinal linear relationship bctwcrn macroscopic stress and strain is 

obtained. 11~ identifying the coclticicnts of that cxprcssion with the cocllkients of Lamb’s 

equation of elasticity, the following relations arc obtained (13aZant and Prat. 1988) : 

E” = 1 50-~~) 
I 

11 

_. _.. _ 
3 ‘I+\* 

2#lo I?;. 1 (22) 

Thus. Young’s modulus. E. Poisson’s ratio. 1’. and the additional parameter. q,,, can be 

used as input parameters instead of the three initial moduli at microplane level. Then the 

program calculates the values of those moduli internally. 

The final list includes a total of I4 parameters : 

(i)---Elastic paramctcrs: E, \* and ‘1”. 

(ii&Volumetric law: (1. h. p, q. a, and p,. 
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(iii)--Normal deviatoric law : u2 and p: 

(iv)-Tangential law : a’,‘. k, and p:. 

However, the six volumetric law parameters can be identified separately by simple curve 

tittinp of the compressive and tensile hydrostatic stress-strain curves. Of these six 

parameters. five can be usually assumed to have the same values for most concretes: 

0 = 0.OOS.h = 0.3.p = 0.25.q = 2.25.p, = o.s.co nstants Eand v are knotvn from elastic 

tests. Thus. only seven parameters need to be identified by fittinp other than hydrostatic test 

data on the basis of eyn (6). Furthermore. experience shoivs that for most concretes. one 

can use pz = p, = 1.5. Consequently. there are only five parameters. q,,. u,. N:. (I!; and k,,. 
which must be determined to fit the esperimental data for non-linear triaxinl behavior 

curves. Moreover. in the case of tats with ncgligiblc confining pressure. h-,, = 0 can be used 

and the number of p;lr;lmetcrs is reduced to only four. With only five or four unknolvn 

parameters. the titting of non-linear triaxial test data is not ditticult. 

3. SUMERICAL IMPLEMENTATION 

We now present ;i uni tied scheme for two computer programs serving the purposes of 

both “single-point” constitutive vcritication and F.E. structural analysis. This schcmc 

involves t\vo (constitutivc) niodcl-indcpcndclit main prosrams and one (constitutive) 

model-specific set of subroutines. 

Figure 41 shows the basic llo&hart of the “single-&int” main program dcvclopctl for 

constitutivc vcritication , and Fig. 4b the s;inic schcmc for the companion F.E. main 

program. fIoth diapr~inis prcscnt ;I similar structure, though the l:.I:,. program obviously 

inclutlcs all the xldition;iI 0pcr;itions for calculatin, 4~ clcnicnt still’ncss matrices. etc. After 

the gcncral tl;~t;~ input, ;I first loop over the number of load steps can bc obscrvcd in both 

programs. f:c>r the linitc clcnicnt progr:im . ;I load step consists . as usunl, of ;i set of npplicd 
lo;~rls and prcscrihcd nodal displaccnicnts, while for the sin+point program ;I load step 

consists of ;I set of values ol’cithcr prcscrihctl stress or prcscribcd strain for cnch of the six 

dcgrccs of frccrloni considcrcd at the constitulivc Icvcl. 

In both programs. the non-linear analysis of each load step is carried out by using ;I 

standard itcrativc initial-stress type strategy. This is rcllcctccl in the Ilowchnrts with the 

inner loop controlled by an IF statcmont at the bottom of the diagrams. As II consequence 

of using the same non-linear strategy, the s;tmc type of constitutivc computntions arc 

rcquirccl for an iteration in both programs. Those computations arc of the prcscribcd strain 

type, i.e. knowing the previous (initial) state and the v;~lucs ofu prcscribcd strain increment, 

the new linal state (including the new values ofstrcsscs) must bc obtained. 

Note that the sin&z-point main program of Fig. 41 deals directly with the components 
of strain and stress at ;I point of the m;ltcrial. In gcncctl. similar results can bc obklinctl 

usincy c ;I finite clcmcnt program \vith ;I single clomcnt. Howcvcr, thcrc may bc ditkrcnccs 

bctwccn the two types of analysis when stress (and not only strain) is prcscribcd to some 

of the dcgrccs of frcctlom. Then. if uncspcctcrl results arc to bc intcrprctcd. it bccomcs 

dillicult to distinguish H.hcthcr they arc due to the constituti~~c nioclcl itself or to spurious 
or non-spurious but uncapcctcd behavior of the linitc clcmcnts (it is possible to obtain 

apparently correct but misleading results from I:.E. computations with one or few clcmcnts. 
since the method is cxpcctcd to convcrgc to the solution of the physical problem studied 

only when the mesh is tint enough). 

The unified implcmcntation of the computational schcmcs for constitutivc verification 

and for F.E. analysis. has important advantqcs which in gcncral arc clear to the specialists 
on large-scnlc computer programming. but stem to bc unapprcciatcd by many solid mech- 
anicists who spccializc in material modclling. One obvious advantage of the unified schcmc 
presented hcrc is that n sin@ subroutine (or set of subroutines) for the constitutive model 

needs to bc dcvclopcd for both Icvcls of analysis. This subroutine (or set of subroutines) 
can be dcbuggcd and testcd with the single-point main pro_cram . and then. after this phase 
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of the work hiIs been finished. the model is ~tutomatic:llly reildy 3s an itdditionill option in 

the gcncrul F.E. code. There arc other advi~nt:~ges: (I) From the viewpoint of the consti- 

tutive model, the single-point main program described is general in the sense that any 

combination ofeither prcscribcd strain or prescribed stress for every d.o.f. is possible. und 

that this combination can vary from load step to loud step. Thcrcforc. any imaginable load 

history (with either stress or strnin prescribed for every d.o.f.) can be iIn:ilyzed with this 

program. (2) The constitutivc subroutines for both (single-point and F.E.) main progrnms 

can be considered ;Is 3 “bliick box” called only from one point in the program. Therefore, 

these programs arc indcpendcnt of the constitutive model used except for that lint. which 

enables the same singlepoint main program to bc used with different constitutivc models. 

This can be easily done by replacing the CALL statement or, altcrnativcly. making all the 

statements of CALL to the different models nvililuble uithin an IF structure. The schcmc 

suggested also makes it easy to implement sevcritl constitutivc models in the same F.E. 

program. as options that can be used alternatively or simultaneously in difl’crcnt parts of 

the discretization. 

In the context of the unified scheme presented ubovc. the subroutine implementing the 

constitutivc model itself necessitates that only the following type of computations be 

performed : given a certain “initial state” and a certain strain increment. the resulting final 

values of stress and other variables defining the new “final state” at the end of the increment 
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must be computed. A basic description of the steps to follow in this type of computation 

has already been @ven in Section 2. I and Fig. I. However. for the implementlttion in a 

practical computer subroutine. someadditional numerical procedures need to beestablished 

first. 

The tirst one is the integration over the hemisphere necessary to obtain the macroscopic 

stress and stiff‘ness from the stresses and stiffnesses at the microplane level as shown in eqns 

(5) and (19). Following Bairtnt and Prat (19%). this integation is performed numerically, 

as ;L summation of the value of the function to be integrated in ;L number of selected 

“directions” II, (points on a hemisphere). each with its corresponding wei,nht coefficient. A 

rule with a total of 3 integration points (or directions) distributed over the upper hemi- 

sphere (Stroud. 1971) has been adopted in this paper. However. a slightly less accurate 

formulution (BaZant and Oh. 1985) with 21 points could also be adequate. 

The state variables in this version of the model. for both macroscopic and microplane 

levels include : 

(i)-The rn~~~ros~opi~ strain tensor (E, a total of six variables). 

(ii)-Ttvo history variables (maximum and minimum 6:” achieved so far) for the 

volumetric microplano stress-strain law. same for all the 28 microplanes: a total 

of two variables. 

(iii) -Two history vrtriablcs (maximum and minimum I:,, achieved so far) for the 

normal dcvkrtoric microplanc stress--strain law. ~~i~r~r~nt for each one of the 28 

ll~i~r~~pl;iiles: ;I total of 56 variables. 

(iv) -0nc history vnriahlc (maximum 8~~) for the tarlgWtiill microplane strcsss strain 

law. JitYcrtnt for GICII WC of the 28 microplancs: ;I totill of 2X v;lriiiblcs. 

This makes ;I grand total of 92 state variahlcs which must he stored and updalcd ;tt e;lcll 

load step during the computation of the stress fiistory from the strain history at a material 

p<>iitl (for the slightly less :icuuratc ilit~~r~lti~)n litrmukl with 21 points. this would dccreasc 

to 7 I variahlcs). 

I’hc gcncnll Ilo\vcl~rt ol’ the computer subroutine implamcnting the constitutivc mods1 

for strain-lo-stress c;llcul;ttions is rcprcscntccl in I?g. 5. One can WC: Ihilt the tlowchnrt has 

;I simple struclurc with ;I sin& loop over the number of’all microplancs considcrcd for the 

intcgratictn rule, 25 in the prcscnt f~~r~~~~tl~~ti~)~l. Then the micropktnc strains xc computed, 

and thy corresponding laws arc used to obtain the new microplatlc strrsscs. stifi’ncsscs and 

history variables. This is done only once (outside the loop) for the volumetric IiibV, since 

the voIum~[ric behavior is the S;IIIIC fi)r all the micropluncs. and 11s many times as the number 

of microplancs (inside the loop) for the normid deviatoric LIntI tnngcntinl laws. Finally, the 

integration over the hemisphere is performed iltld the new macroscopic stress and still’ncss 

v;ducs for the end of fhc load step ~~bt;;iIl~d. 

The most important fcitturc of the present schsmo is that the computation of the 

rnodcl response under ;I strain-prcscribcd loud step is f’ully explicit. ix. no substepping and 

numerical intcgrntion is necessary within the loi~d step for obtaining the new stress ilnd 

history vari:tblcs at the end of the step. Among all the new theoreticill :lnd numerical tt~pects 

of this version of the modcf, there are three that muke it possible to achieve this: (if the 

model is fully ~i~~~~~l~~ti~;~lly constrained, so the in~rem~nts of microplrtnc strains can bc 

somputccl directly from the prcscribcd increment of macroscopic strain (including I:~); (ii) 

the stress strain rclationships ;It the microplane level are also explicit under any type of 

macroscopic Ionding. so the new viilucs of strcsscs at the mkroplnne level can be computed 

from the microplanc strains (cvcn or, for non-constant G); and (iii) the integral of the 

microplanc stress over the hcmispherc is cnprcssod in terms of the totnl viIlueS of stresses 

and so the new total value of the macroscopic stress tensor can be obtained by integration 

of the microplane stresses. 

J. EXAMPLES OF APPLIC~\TION 

The first cxamplc prcsentcd in this section corresponds to a uniaxial compression test 

carried out by van Micr (IYYJ), in which both Ion~itudin~Il and transverse strains were 
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Input fmm the main pmgram cdling the submutise: 

- Model paramcten 
- Initial state including 

l qw1, 
. Volumetric. deviatoric and tangential history 

variables 

- Prescribed A< 

b 
VOLUMETRIC COMPUTATIONS 

Compute cOy and AE~ from q;_,) and AC 

Use the volumetric Iwv: 

FROM: Initial state (E: and two volumetric history 
variables). and prescribed Arv 

OBTAIN: New OY. Cvm and volumetric hktory variables 

Compute new EY = C: + AEV 1 

Ip, Loop over microplanes (28) 

I 

DEVIATORIC COMPUTATIONS 

Compute E: and A~I, from Q,_~, and As 

Use the deviatoric Ixw: 

FROM: Initial state (CL and two deviatoric history 
vnriables). and prescribed ACD 

OBT~\lN: New oD, c;” nnd dcvintoric history vnrinbles 

4 

TANGENTIAL COMPUTATIONS 

FROM: Init ststc (c;, nnd t;mgcntinl hintory vnrkble). 
and pruzwibrd ACT, nod cy 

OBTAIN. New 0~. , f/i? nnd history vntinbk 

Integration of ELM. ELM, and I/!? to obtain new Q’- 

mcusurcd. These mc;lsurements include the post-peak softening of the specimens-a ditficult 

aspect whose complete description would require a very complex analysis of triaxial strain 

locnlizution in the spccimcns. The softening may have caused the strain state in these 

specimens to bccomc non-uniform after the peak load, although no observations to this 

elTect were documcntcd. Since evidence is lucking. the tests with post-peak softening ;lre 

here i~n:~lyzed under the hypothesis of uniform strain. This hypothesis is applicable only to 

sutiicicntly smilll spccimcns whose size is approximately equal to the characteristic length 

of the material uscrl in non-local formulations (Bu%nnt and Wbolt, 1990). If the strain 

locitlizcd, the post-peak stress -strain curve of the material would decline less steeply than 

shown in Fig. 1 (and would yield a higher value of energy dissipation, which means the 

present iin;tlysis is on the safe side with respect to cncrgy dissipation). The prcscnt model 

could then be iidjusted to describe it correctly. It should further be noted, though. that even 

if the strain in these spccimcns \vils localized. the average stress-strain relation obtained 

can still be used for an approsimrltion of finite elements of nearly the same size as the 

specimens tested [this is exitctly true if the structural action can be approximated by the 

series coupling model : see Bi&lnt and Cedolin (I 99 I). Chapter 131. Analysis of strain 

locrilization in the specimens tested is beyond the feasible scope of this paper. 
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C’ompurisons of’ lhc prcscnt model (solid curves) ivith van Micr’s mc;Isurcmcnts (dull 

points) arc shown in Figs hn and 6h, the tirst including the axial stras strain curve and 

axial stress latcr;ll strain curve. and the scco~ltl the asiaI stress volunictric strain curve. In 

lhcsc diagxms. lhc rcsul ts ohtaincil with lhc new explicit microplanc model are rcprosontcil 

by the solid lines. while the dashctl lines arc the results ohtaincil with the previous version 

of the micropl~~nc motlcl already published by IIaiant and I’rat ( I WX). The circles dcnotc 

cspcrimcnt;Il data. The prescribed strain on the loadin, 0 axis was applied in I5 incrcnicnts 

of0.0005 for lhc first IO incrcmcnts and O.OOlO for the remaining live. The parameter volucs 

used in this GISC arc L = 2406 MPa. I’ = 0. IY, qI, = 0.85, (I, = 0.0003. II: = 0.0043. 

(1:’ = 0.00 IX. k,, = 0. The remaining paramctcrs have their general values already spcciktl. 

Since k,, = 0, the p;lr;lmcter (I, is assu~nctl to bc w11sta11t AS it was in fhlant and Pnlt 

(19XS). In this particular situation both versions ot’ the ~noclcl arc ccluivalcnt from ;I 

thcorctical point of view. The values of the rcmaininp paranicters in this example are also 

the same, which explains why the curves shown in the tigure are al~nost coincident. 

Howcvcr. there is one large ditl’crcnce: the amount of computer time spent on cal- 

culations in both cases. In the old microplnnc model. ;t step by step numerical integration 

was perform4 within each load step, which in general is ;I very expensive procedure, while 

in the new explicit formulation. the same linal values are directly obtained by means of ;L 

set ofcxplicit expressions previously integrated by hand. 

In order to make iI comparison between the computer time spent with each version of 

the model under similar conditions. a new implementation of the old version of the micro- 

plane model has also been made. The original subroutine has been modified so that it 

performs the type of strain-to-stress constitutivc calculi~tions nccdcd to bc used in con- 

junction with the same “sir@-point” main program ;ls the new explicit formulation. Then 

both models can bc used to solve the same cxamplc under almost identical conditions and 

an objective evaluation of the true savings obtained tvith the new formulation can bc made. 
For any step-by-step integration proccdurc. the subroutine implcmcnting the old ver- 

sion of the model includes a parameter that gives the mcasurc of”how tint” the substcpping 
within the prescribed loiid step will bc. In that subroutine. a paramotcr called EPSlNC is 

used for that purpose: any strain-prescribed load step to bc computed by the subroutine is 



Sew exphcit microplane model for concrek llY7 

divided in ;L number of proportional substeps so that the largest component of the strain 

tensor in one substep would not be larger than EPSINC. If EPSINC is very small, then the 

number of substeps is large and the integration more precise but expensive. If. on the other 

hand. EPSINC is given a larger value. the integration is cheaper but the error increases. 
For the purpose of comparison. the same example as described in Fig. 6 was also 

computed several times using the old formulation with different values of EPSINC. The 

results obtained using the old formulation with EPSINC values of 0.0001, 0.00003 and 

0.00001 are summarized in the first three columns of Table I. together with the results 

obtained using the new explicit formulation in the fourth column. 

The tirst four rows in Table I contain information about the CPU time spent in the 

computations. and the lust four about the accuracy obtained in the results. The CPU times 

are pi\-en in terms of total values (row I) and average CPU time spent each time the 

constitutive subroutine is called (row 4). since the total number of times the subroutine is 

called (row 3) is not the same for each run (it depends on the number ofiterations necessary 

for each load step to converge in the single-point main program. see Fig. 4). Also. the ratio 

of the CPU time spent in the three calculations with the old version of the model to the 

time spent by the explicit formulation is given (rows 2 and 5) in the table. The comparison 

of accuracy is made in terms of the stress obtained at strains 0.0035 (approximately the peak 

strain. row 6). and 0.007 (about twice the peak strain. row 8). Assuming the values of stress 

computed with the explicit formulation to bc the exact solution. the integration errors for 

the computations with the old incremental model have also been obtained (see rows 7 and 9). 

From the results SIIO~II in the table it is apparent that the explicit formulation is much 

faster than the old incrcmcntal formulation. and the computer time is rcduccd dramatically. 

The csac~ value of the reduction factor dcpcnds on which of the three runs of the old model 

is conip;ircci. hut it can very well hc grcator lhan IO for “rcnsonablc” integration errors 

under I ‘X, in lhc cu~iiplc stutlicd. It must also hc pointed out that under some other types 

of lo:lding in ivhich the amount of strain prcscribcd to fhc material is larger than in the 

cxamplc an;lly/cd (c.g. uni:txial loading after application of a high conlining prcssurc). the 

(‘l’li time reduction couhl bc cvcn Iargcr than cvaluatcd. since fhc number of inkgration 

suhhtcps incrcascs proportionally lo the stsp size. while the CPU time for the explicit 

formulation only tlcpcittls on how ni;iny hid steps arc’ consitlcrccl in the computation. 

The second cxaniple prcscntcd in this section corrssponds to ;I uniaxial compression 

test carriccl out by llogncs~~l 1’1 111. (1955). The results arc rcprescntcd in Fig. 7. The 

paranictcr valiics arc I:’ = MO ksi, v = 0. IX. II,, = 0.5, 0, = 0.00005. ~1: = 0.0025, 

11’: = 0.00 I5 ~ntl k,, = 0. The remaining paramctcrs have their gcncral values. In this 

cxamplc, the uniaxi:ll strain is tirst incrcascd up to 0.0028 (sonicwhat beyond the peak), 

then it is tlccrc;lscd to 0.00 I and again increased to the final value of 0.0040. all in load 

stcph 0.0002 in si/.c. 

The cnvclopc curve in Fig. 7 agrees very wsll with the old curve and with rxpcrimental 

dat;t as well. and also II reasonable shape for a basic quasi-static loop is obtained at rhis 

stage. It may bc rcmurkcd that it is not a spccilic purpose of this work to model loops 

;lccurately. Rather. lhc purpose hcrc is mcrcly to show that rcasonablc (or at lcast not 

mcaninglcss) results arc obtuincd in the cast of a load reversal. 

Tahlc I, C’omp;lrk~m hc~~scn IIW pcrliwm;mccs of the old and new formulations of the micropl;mc model 

Skp si/c 
Old incrcmcrkd model Explicit 

O.OOOI o.OOOo3 0.0000 I model 

61.6s 156.2 5 4lKYs 11.13s 
5.5 14.0 37.6 I 

1,‘) ___ 206 I97 193 
0.277 0.757 2. I30 0.057 
4.9 13.3 37.3 I 

3Y.00 3Y.77 JI).OS 4O.lO 
2.74 0.32 0.12 0 

X3.24 29.22 “Y.58 29.76 
5.1 I I.85 0.60 0 
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In the lust two examples, similar load historics consisting of two load steps arc 

considrred. During the lirst lo;d step, certain confining pressure is applied to the concrete. 

and then a second load step consisting of :I uninxial strain incrcmcnt under constant lateral 

pressure is applictl. Thcsc cxan~plcs corrcspontl to two scrics of standard trinxial tests 

carrid out by Mtncr (IWO) itntl Kotsovos and Ncwnxlnn (107X). III both CWCS. scvcral 

tats untlcr tli!Ycrcnt conlining prossurcs arc ~~~dcllccl; see Figs 8 -9. The villucs OF the 

paranictcrs ilK : for Mnicr, E = 3500 ksi. \’ = 0. IS. I/,, = 0.x5. N, = 0.00005. (1: = 0.001. 

Balmor. 1949 
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u:) = 0.0025. k, = 3.28 ; and for Kotsovos and Newmann. E = WOO ksi. v = 0.18, ‘lo = 0.85. 

a, = 0.00005. (I: = 0.001. a: = 0.008 and k, = 0.61. All the remaining parameters have 

their general values. 

The objective of these two examples is to demonstrate that the new explicit formulation 

can also reproduce satisfactorily the behavior of concrete under different confining 

pressures. as can be seen in the figures. This is an important achievement. since it is in this 

part of the model (influence of -ternal confinement on microplane laws) in which the main 

theoretical change has been made compared to the old microplane model. 

5. SIJMXIARY ASD CONCLUSIOSS 

While the aim of the original development of the microplane model had been the 

accuracy in the modellinp of test results. the main objective of the present new version of 

the model is to achieve a new more rational and comprehensive theoretical description of 

the model. as well as an easy implementation in a general code and numerical efficiency in 

larpc-scale computations. To this end. the basic hypotheses have been rcvicwed. some 

txprcssions have been rewritten in terms of total values rather than differential increments 

of the variables. and a few important changes have been made in the functions and internal 

dependcnccs assumed. Also. physical interpretation has been provided for the variables and 

equations uhcnever possible. On the numerical side. the model has been implcmcnttxi in a 

subroutine capable of performing explicit strain-to-stress calculations. This subroutine can 

he used in cithcr of ttvo main programs. one for constitutivc verification and the other for 

I-.E. analysis. The cx;~mplcs of application show that the new esplicit formulation gives a 

very important reduction in computer Lime (one order of magnitude compared with the 

WIIIC cast an:llyxtf using the previous version of the motlcl). The cxplicitncss of stress 

calculation also climinarcs the prohlcm of crrur iiccuniulu~ion during the numerical intc- 

gration. Thcsc practical advantages togcthcr with the good qualitative agrocmcnt of the 

~notlcl with ;I wide range ol’sxpcrinlcntal rcsdb in the fu11 three-tlimcnsion;ll domain make 

altractivc rhc use of the niodcl in the contc.ut of’gxcral I:.li. codes and practical structural 

compuI;iCons. 
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APPCSDIS A: APPLICATION OF THE PRISCIPLE OF VIRTUAL WORK 

Enliwctng the cqual~ty of vtrtual work between the macroccopic strew ten%ior m,, and the c’c~rwpondlng 
micropl;~nc ctrswcs 0,. f-r,, and n,,. when a tield of arbitrary virtual str;lin vartations (jr:,, iire prcscrlhcd to the 
model. wit obtains thc cqu;1110n (tkktnt. IYXJ) : 

Jn 

! 
n,,rir:,, = 2 1’ [(CT, + fl,, )A:, + n , ,&I:, ,I do (.A I J 

II 

OI:, = ti,,i,ril: 
I, 

(/\7) 

r;, = CT,&,, + 3~ 
i n,,n,n, dS! + 

3 In 
0 2n 

I n,,(ri,,n, -rr,n,n,J 1111. 
0 

(AS) 

Equ;ltion (Al) i\ ;I variarwlal equation which must tu)ld liar any v:lrlation A:,( hut ulth the rc~~rIctIon gikcn hy 
,)mmctry (a.., cannot bc dili’crcnt to A,,). This rrstrictiw makes the direct climln;ltion ofthc term oi.,, from both 
a&s of the quation (uhlch ~(wld lad to n,, = I’,,) incorrccl. sincc it would hc cquiv;IIcnI tu ;~cccpt 111.11 

symmrtric terms can have indcpcndcnt wriations. Ins~cad. ths implicil summation wcr i and i on both sides ol 
the cquatiw mu>~ bc dcwlopcd. and each pair of the symmetric trrms of A:,, and 0,, considsrod as a stnglc tsrni 
and their cwllisicn~s grouped. f:in;dly the following expression is ohtainrd : 

“,, = icy,,+ I;,, (/\hJ 

from which, after whstitution of 1.,, from CL~II (A5). the linal cqn (5) liw n,, is oht;linud. 
r\ltcrn2ti\sly. with inluilioii ( IWan~ :lnd I’ral. IYXX). one’ rn;l) *)rnmctri~ in ad\;tncc the Icn~w~l c\prcAon 

multiplying A:,, in cqn (A3) hcc;lusc the product of ils nonsymmctric parI with A:,, v;mi&s. In that C‘;IX. r,, 1s 
symmetric. qn (A-t) implies that n,, = Y :Ind ccln (5) results aqin. ,, 

APPESDIS IS: IS<‘REMENTAL RELATIONSIIII’ FOR TIIT: l’,\R;\I.LI:I. MODEL 

The basic qualion of the paraM model. cqn ( IO). can hc rbrittcn ;IS : 



SW explicit mkropl;lnr model for concrete 

By dilferentiutron. 

I I91 

(82) 

The difkrentiution of r ;’ lrdds to 

d tB3) 

where the increment of the shear stress modulus can tx urittcn as ;L product between the tangent stitTness in the 
r-y space (modulus to modulus relationship) and incrcmrnt of shear strain modulus: 

dr = E’“” d-.. r , (B-L) 

The increment of the shear strain modulus d;, must be related to the increment of its components dcr, as 

_- 
and. since ;’ = , cr cr , ,. the partial dcrivativc kames 

(BS) 

(Rh) 

from which. making all the corrcspcmding h;l~)i-sclhstitutions. the Cnal cqn ( 17) is ohtaincd 

/\PI’I;Sf~IS (‘: DERIVATION 01: TIIE M/\C‘KOS(‘OI’I(‘ TANCiENT STII’I‘NISS 

l’hc cocllicicnts Z,,,, have hccn &rived c0rrcctly and, if used (0 compute lhr incrcmcnt of stress, they would pivc 
thr correct v;iIucs. I It)ucvcr. they c;mnol hs idcntilicd directly will1 lhc ctmlponcnts of the tangent still’ncss tensor 
sincc thsy do n~)t satibfy the condition of intcrcti;lllgc;lhility of indicts k, / x~socia~cd with the symmetry of thr 
strain tcnror (although they &r satisfy the condition liu indiccs i, j associakd wiUl the symmstry of the strcsscs). 
One way lo identify the comp~~ncnts of a syllllllctry-ct)nsiklccilt stili‘ncss mxtri.x f)$,. may hc (~1 rcplxc lhc ‘itruss 

Incrcmcnt in cc111 (Cl) hy its cxprcsxitrn involving f>$‘,, ix 

I)‘.“’ dl. = % ,111 “I dr ,111 “I (C3) 

‘fl~cn the procsdurc IO follow is to d~Aop the summ:ltion for k and I on both sides. consider thr symmetric 
components kl and lk of the z,train tensor as ;l single variahlc. group their cucllicicnts. ~riicl 1lic11 ;ilso amsider 

n:;;, and D,;,, "'I ~1s lhs same vari;ihlc. m result is 

,)‘“” = 
l,l, ifir,,,, +%,,,I (C’J) 

which Icads dirLvtly to thr linal cxprsssion of /):T;‘, in sqn (IV) 


