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Abstract--The results of an experimental study of a sudden change in loading rate on the fracture behavior 
of normal- and high-strength concrete specimens of three different sizes are reported. Geometrically similar 
three-point bend specimens were subjected to either a sudden 1000-fold increase or a 10-fold decrease of 
the loading rate. It was observed that for a large increase of the loading rate, the post-peak softening can 
be reversed to hardening followed by a second peak of the stress-strain diagram. A sudden decrease of the 
loading rate initially causes a steeper softening slope of this diagram. The results are similar for normal and 
high strength concrete specimens. The viscoelastic cohesive crack model with the rate-dependent softening 
law is used to model the experimental results. 

INTRODUCTION 

ALTHOUGH CLASSICAL fracture mechanics is a rate-independent theory, the strength and fracture 
properties of Portland cement concrete and other cementitious materials, as well as many other brittle 
materials, depend on the loading rate [1-3]. One source of the rate sensitivity observed in brittle 
materials, such as concrete, is thermally activated crack growth [4, 5]. The explanation of the rate 
sensitivity of crack growth is well known--the probability that the thermal vibration energy of an 
atom or molecule would exceed the activation energy barrier of the bond increases with the 
superimposed potential due to the applied stress. A second source of rate sensitivity is creep of the 
material in the bulk of the specimen, which alters the stress field near the crack tip [6-10]. The rate 
effects in concrete fracture have been thoroughly investigated at fast, dynamic loading rates, in which 
the time to reach peak load is less than 1 s [11-13]. Creep is negligible at fast loading rates but the 
inertial effects complicate the observed fracture behavior [14]. Creep effects, which have insufficient 
time to develop at fast, dynamic loading rates, dominate the fracture behavior at slow, static loading 
rates [15]. The fracture behavior of concrete structures with rates corresponding to the times to reach 
the peak load ranging up to many years is of great practical interest. This knowledge is needed to 
predict the long-term cracking and failure of large fracture-sensitive structures, such as concrete 
dams. 

In a detailed study, Ba~ant and Gettu [16] investigated the rate effect in the static range 
with the time to peak load ranging from 1 s to 2.5 days. They showed the fracture toughness 
to decrease with a decreasing loading rate, similar to what had already been known for the 
dynamic range [17]. As a new, surprising result, the effective length of the fracture process zone 
was also found to decrease with a decreasing rate. From their study, the existence of a strong 
interaction between the fracture properties and the creep of concrete became clear. The results 
of Ba~ant and Gettu, which are limited to constant loading rates, have been modeled successfully 
by B~ant  and Li [18] using a viscoelastic cohesive crack model with a rate-dependent softening 
law. Their model of fracture in a viscoelastic medium consists of a nonlinear version of the cohesive 
crack model, in which the process zone is considered to be of finite size. This model is applicable 
to the crack initiation stage; the crack-growth stage can be obtained as the asymptotic limit. 
The cohesive stress distribution in the process zone ahead of the actual crack tip is considered as 
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the unknown and is solved by fracture analysis. To model typical tests, the solution is obtained 
under the condition of controlled crack-opening displacement. The details of this model, as 
well as general analyses of size effects and rate effects on the peak load, are presented by Ba~ant and 
Li [18]. 

The principal aim of this study is to examine the effect of a sudden increase or decrease of the 
loading rate on the fracture properties of normal- and high-strength concretes, both experimentally 
and theoretically. The experimental results are presented in the next section of the paper. Then, an 
extended cohesive crack model taking into account the viscoelasticity in the bulk material, as well 
as the time-dependent softening law of cohesive cracks is described briefly. Finally, the model is 
compared to the experimental data for sudden changes in the loading rate. 

EXPERIMENTAL DETAILS 

The materials used for this study--normal-strength concrete (NSC) and high-strength concrete 
(HSC)--were designed and mixed in the laboratory. The mix ratio (by weight) of the normal-strength 
concrete, was cement:sand:gravel:water = 1:2:2:0.6. The mix ratio of the high-strength concrete, by 
weight, was cement:sand:gravel:water:silica fume = 1:2:2:0.3:0.3. The cement was ASTM Type I 
Portland cement and the sand was ASTM No. 2 sand. The maximum aggregate size in the mixes 
of normal- and high-strength concretes was 9.5 mm (3/8 in.). In addition, 88.5 ml of water reducing 
agent (W. R. Grace, Daracern-100) was added to one batch (~  0.3 ft 3) of the high-strength concrete 
mix. Silica fume (W. R. Grace, WRDA-19, microsilica) was used as a mineral admixture to modify 
and strengthen the interface between the aggregate particles and the matrix. 

Geometrically similar single-edge notched beams of three different beam sizes were employed 
in the study. The specimens of three sizes were characterized by beam depths d = 38, 76, 152 mm, 
designated S--small, M--medium and L--large. For all the beam specimens, the span-to-depth 
ratio was equal to 2.5. The ratio of the initial notch length a0 to specimen depth D was 0.17. The 
thickness of all specimens was constant (38 mm), which means the specimens were similar in two 
dimensions. This is preferable to three-dimensional similarity for reasons stated by Ba~ant and 
Pfeiffer [19]. All the specimens were compacted by rodding and vibration. During the first 24 h the 
specimens were left in the molds. Then the specimens were removed and cured in water until the time 
of testing. The notches were cut with a diamond band-saw and were 1.8-mm wide. Companion 
cylinders of 76-mm diameter and 152-mm length also were cast. These cylinders were capped with 
a sulfur compound and were cured under water with the notched specimens. The cylinders were tested 
in compression after 28 days of curing. The normal-strength concrete cylinders failed at an average 
maximum compressive stress of 46.4 MPa, with a standard deviation of 5.4%. The high-strength 
concrete cylinders had an average compressive strength of 73.2 MPa, with a standard deviation of 
3.3%. 

The notched beam specimens were tested under crack-mouth opening displacement (CMOD) 
control in a 89 kN load frame with an MTS (MTS 810, Materials Testing Systems, Minneapolis, 
MN) closed-loop control system. During each test the load, cross-head displacement and CMOD 
were measured. The CMOD, which is the basic indicator of the crack growth in the specimen, was 
measured by a COD clip gage (MTS, COD gage 632.13B-20). All the geometrically similar 
three-point-bend specimens of all sizes were subjected to either a sudden 1000-fold increase or a 
10-fold decrease in the loading rate of the post-peak region. The machine response to such a rate 
change is nearly instantaneous, with a delay of less than 0.5 s after the electronic signal, which is 
insignificant compared to the duration of the test. 

Summary of experimental results 

These experiments show an overall consistent picture for normal- and high-strength concretes, 
similar to the preliminary results reported by Ba~ant et al. [20] for normal-strength concrete only. 
For normal- and high-strength concrete specimens tested under similar loading histories, the results 
can be summarized as follows. 

1. A sudden increase of the loading rate reverses the post-peak softening to post-peak hardening 
followed by a second peak. This is illustrated for a large-size, normal-strength concrete specimen in 
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Fig. l(a). The initial CMOD rate was ~ 10- 5 mm/sec, and after the peak load P~ at Pc, the CMOD 
rate was suddenly increased 1000-fold to ~ 10-2 mm/sec. The post-peak softening curve is seen to 
reverse to hardening, with a second peak at ~ 105% P~. The second peak may be higher or lower 
than the first peak at the previous slow rate of  loading, depending on the ratio of  rate increase and 
the magnitude of  load decrease prior to the increase of  loading rate. Figure 1 (b) shows the response 
to a sudden increase in loading rate after a load drop to ,-,90% of  the previous peak load in a 
large-size, high-strength concrete specimen. 

2. After a sudden decrease of  loading rate, the slope of  the measured load-CMOD diagram 
suddenly becomes steeper, but later the previous slope is resumed again. The specimens were 
initially at ~ 10 5 mm/sec and, in the post-peak regime, the CMOD rate was suddenly decreased 
to ~ l0 6 mm/sec. The typical results for normal- and high-strength concrete specimens are 
shown in Fig. 2(a) and (b), respectively. The sudden decrease in the loading rate was 
accompanied by an almost instantaneous drop in load, followed by a conventional post-peak 
softening response. 

3. The effects of the sudden decrease or increase in the loading rates are similar for different 
geometrically similar sized notched specimens of  normal- as well as high-strength concrete. The test 
results obtained on normal-strength concrete and high-strength concrete beam specimens of the three 
sizes are summarized in Tables 1 and 2, respectively. 
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Fig. 1. (a) Load vs C M O D  response of  a large-size, normal-strength concrete beam specimen for a 1000-fold 
rate increase at point Pc, after a load drop to ~ 9 0 %  P~. (b) Load vs C M O D  response o f  a large- 
size, high-strength concrete beam specimen for a 1000-fold rate increase at point Pc, after a load drop to 

~ 90% PI. 
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Fig. 2. (a) Load vs CMOD response of  a large-size, normal-strength concrete beam specimen for a 10-fold 
rate decrease at point Pc, after a load drop to ~70% Pt. (b) Load vs CMOD response of a large-size, 
high-strength concrete beam specimen for a 10-fold rate decrease at point Pc, after a load drop to ~ 70% Pt. 

VISCOELASTIC COHESIVE CRACK MODEL WITH 
RATE-DEPENDENT SOFTENING 

For an elastic structure such as the three-point bend beam shown in Fig 3, the crack-opening 
displacement w and the cohesive (crack-bridging) stress ~r must satisfy the following compatibility 
condition: 

J 
~a 

l'~(X ) = --  ao OWO( X,X/)lT(X t) d x t  "JW ~-.wP(x )P ,  ( 1 )  

where C+°(x,x') and ~We(x) are the geometric compliance functions of the elastic specimen, that is, 
compliances for a unit ~,alue of elastic modulus E. These compliances exhibit the proper symmetry 
according to linear elastic reciprocity; a0 is the notch length, a is the total cohesive crack length 
including the process zone length, and P is the load. The problem considered here is two-dimensional 
and the structure is assumed ~to be, of unit thickness (b = 1). 

When the material is viscoelastic, the deformation depends on the loading history, and the elastic 
relation described in eq. (!) must be generalized according to the princiPle of superposition and the 
elastic-viscoelastic analogy [21]. For an aging linearly viscoelastic material (with a constant creep 
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Table 1. Data on fracture tests on normal-strength concrete beams 

991 

First stage Second stage 
Age Rate Load at rate change, Peak load, Rate Peak load, 

Specimeni" (days) (ram/see) Pc(N) P~(N) (inm/sec) P2(N) 

$2 35 1.1 x 10 -5 1600 91% Pi 1.1 × 10 -2 109% P, 
M1 28 1.5 x 10 -5 2837 90.3% P, 1.5 x 10 -2 100% Pj 
L1 36 2.0 x 10 -5 4456 90.3% PI 2.0 × 10 -2 105% PI 
M2 28 1.5 x 10 -5 2408 64.2% Pt 1.5 x 10 -2 69% PI 
L2 36 2.0 x 10 -5 4874 71.2% PI 2.0 X 10 -2 80% Pz 
L4 37 2.0 × 10 -4 5054 78.2% Pi 2.0 x 10 -2 85.5% Pi 
L6 37 2.0 x 10 -5 4596 29.7% Pi 2.0 x 10 -2 32.8% P~ 
M5 30 1.5 x 10 -5 2320 71.7% Pl 1.5 × 10 -~ - 
L3 36 2.0 x 10 -5 4977 73.4% PI 2.0 x 10 -6 - 

tS--small  (d = 38 mm), M--medium (d = 76 mm), L--large (d = 152 mm). 

Table 2. Data on fracture tests on high-strength concrete beams 

First stage Second stage 
Age Rate Load at rate change, Peak load, Rate Peak load, 

Specimen1" (days) (mm/sec) P~(N) PI(N) (mm/sec) P2(N) 

S1 60 1.1 x 10 -5 1326 92% PI 1.1 x 10 -2 113% Pl 
M1 59 1.5 x 10 -5 2424 93.1% PI 1.5 x 10 -2 107% P] 
L1 64 2.0 x 10 -5 5183 86.8% PI 2.0 × 10 -2 96.7% Pl 
$2 60 1.1 x 10 -5 1292 68.4% PI 1.1 x 10 -2 79.4% P] 
M2 59 1.5 x 10 -5 3307 68.5% Pt 1.5 × 10 -2 78.8% PI 
L2 64 2.0 x 10 -5 5089 68.7% PI 2.0 x 10 .2 77.2% PI 
M3 60 1.5 x 10 -5 3176 32.1% PI 1.5 x 10 -2 36.7% PI 
L3 64 2.0 x 10 -5 5961 30% PI 2.0 3< 10 -2 33.4% PI 
M4 60 1.5 x 10 -5 2982 73.4% Pi 1.5 × 10 -6 - -  

L4 65 2.0 x 10 -s 6772 56.2% Pt 2.0 x lO -s  - 

tS--small  (d = 38 ram), M--medium ( d -  76 mm), L--large (d ffi 152 mm). 

Poisson's ratio equal to the elastic Poisson's ratio), this generalization leads to the compatibility 
condition [18]: 

w ( x , t )  = --  C~ ' ( x , x ' ) tTd(x ' , t )  d x '  + CWr(x)P~(t ) ,  (2)  

o 

where the effective cohesive stress and the effective load are, respectively, 

~ ( x , t )  = J( t , t ' )~(x ,d t ' )  (3) 
x) 

T 
D 

t 
= L 

Fig. 3. Three-point bend elastic structure, ¢ is the bridging 
s t r e s s .  
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Fig. 4. Static and rate-dependent softening law. 
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and 

Paf(t) = J(t,t') dP(t'). 
• lt 0 

(4) 

Here to is the time at which the load is first applied, J(t,t') is the compliance function of the material 
representing the strain at age t caused by a unit uniaxial stress acting since age to. For a continuous 
stress history, a (x,dt') = [Oa(x,t)/~t'] dt', and in the case of a jump at time t~, the part of the integral 
in eq. (3) from t~- to t~ is J (t,t 0 [tr(x,tf) - a(x,/~-)]. 

For the present load durations, the compliance function can be approximated by the 
double-power law [22] 

J(t,t ')= ~El+~p(t ' -m+~)(t-- t ' )"  1, (5) 

where tp = 3-6, ct = 0.05, m = 1/3, n = 1/8 and fl is typically 1.5-2. Note that the instantaneous 
modulus E0 = 1/J(t,t') (t' = 1) according to eq. (5) is 1.5-2 times the standard static initial Young's 
modulus E, which corresponds to a loading duration of approximately 0.1 day. These values are given 
under the condition that the time is measured in days. 

Based on the concept of activation energy, Ba~ant [23] proposed and Ba~ant and Li [18] used 
the following rate-dependent softening law: 

E (w)] w = g  a - x a s i n h  ~b~ f i  ' (6) 

where ~i,0 is the reference crack-opening rate, x is a dimensionless empirical parameter, usually in the 
range of 0.01-0.05 for concrete. The parameter x determines the overall sensitivity of the softening 
law to a change of crack-opening rate, while the parameter w0 determines the lower limit of the loading 
rate, beyond which the rate-dependence becomes significant. The function g is the static softening 
law, and asinh is the inverse of the hyperbolic sine function. As shown in Fig. 4, this form of the 
softening law is simply a parallel shift of the static softening law, with the shift distance dependent 
on the crack-opening rate. 

Consequently, for the viscoelastic material, the crack compatibility condition can be written as 

- -  - - i ~  0 ~tt = - -  C- . . . .  ( x , x  ) ~ e f f ( X  , t )  dx" + CWe(x)Pe~t). 
o 

(7) 

From eq. (2), the crack-opening rate can be expressed as 

j~a a ~b(x,t) = -- OWa(x,x')(re~x',t) dx" + OW'(x)Pofr(t). 
o 

(8) 

The time derivative of the effective cohesive stress in this equation is expressed as 

1 Io OJ(t,t') Oa(x,t') dt', 6,~x,t) = - ~  #(x,t) + Ot Ot' 
(x) 

(9) 

where E(t) = 1/J(t,t) = elastic modulus at age t. In eq. (9), the first term is the elastic stress rate and 
the second term is due to creep. The latter represents the influence of the viscoelasticity of the bulk 
material on the response in the process zone. Even if the stress rate is zero, the effective stress rate 
is not zero because of the viscoelastic term. A similar expression can be written for the time derivative 
of  the effective load. 
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Fig. 5. (a) Experimental and predicted load vs CMOD response of a medium-size, normal-strength concrete 
beam specimen for a 1000-fold rate increase. (b) Experimental and predicted load vs CMOD response of 

a medium-size, normal-strength concrete beam specimen for a 10-fold rate decrease. 

PREDICTION OF MECHANICAL RESPONSE FOR A SUDDEN CHANGE IN 
LOADING RATE 

The finite element method is used to obtain the compliance functions for different crack lengths. 
The crack length a can therefore assume only discrete values in accordance with the mesh used in 
the calculation. Since the focus of  the analysis is on crack initiation rather than steady-state crack 
propagation, it is natural to use one parameter, the crack length a. Time t and the cohesive stress 
a are the further unknowns. If  the test is run under load control, the time history P(t) is given. If  
the test is run under displacement control, the crack-opening displacement w described in eq. (2) must 
be used to solve for the applied load, the cohesive stress and the time required for the given 
crack-length increment. The crack length is prescribed to vary in discrete steps, taking discrete values 
of  aj given by the mesh nodes (i = 0,1 . . . . .  q; aj < aj + 1). The stress and the applied load are assumed 
to vary linearly within each step from t, to t~+ ~, where t~ is the time when the basic equations are 
satisfied. It is most effective to use the rate of  cohesive stress and the rate of  load as the basic unknowns 
to solve for. The total stress, as well as the effective stress, can be expressed in terms of  these rate 
unknowns approximating the loading integrals by sums. A more detailed description of  the numerical 
technique is discussed in a separate paper [24]. 

To compare experimental results with the predicted results, all variables are expressed in 
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nondimensional form. The applied load P is usually characterized in terms of nominal stress trN, 
defined as 

7.5P 
aN-- b D '  (10) 

where b is the thickness of the beam and D is the beam depth. The nominal stress aN is then divided 
by the tensile strength of concrete, f ,  to get a dimensionless nominal stress. The measured CMOD 
is divided by the threshold value of the crack-opening displacement wc to provide the dimensionless 
crack opening. The characteristic size, representing the beam depth D is divided by the material length 
10 to make it dimensionless. The material length is defined as 

EG: (11) 
10- (/7,)2 

where Eis the Young's modulus, Gfis the fracture energy andf' ,  is the tensile strength of the material. 
For a material following a linear softening law, 

Ewe 
10- 2fi" (12) 

In this study, the following material parameters are used, f ' ,  = 7.2 x 106 N/m 2, 10 = 0.1 m, wc 
= 24 #m. For the rate-dependent softening law [eq. (6)] the parameters are chosen as x = 0.03 and 
the reference opening displacement rate w0 = 100/min. It is assumed that the material follows a linear 
softening law given by 

g(e)=wc 1 - - ~  . (13) 

The constants required for the compliance function are 4~ = 3.926 and fl = 1.8. These values are 
selected for a beam of a certain nondimensional size under the condition that the effective Young's 
modulus at the peak load be equal to the static Young's modulus when the loading rate produces 
a time to peak of approximately 10 rain. Since the curing time influences the strength of concrete, 
the compressive strength of concrete is variable. For ages over 28 days, the strength evolution can 
be approximately estimated from the ACI formula: 

(f), t 
- ( 1 4 )  

~)28 0.85t + 4.2' 

where t is the age of the specimen in days and (f'c)28 is the standard cylindrical compressive strength 
of concrete after 28 days of curing. It is assumed here that the ratio of tensile strength of concrete 
at any age to its value at 28 days can be calculated using the same formula. 

Results for sudden change in loading rate 

The experimental results for a sudden change in loading rate for the medium size (D = 76 mm) 
specimens of normal-strength concrete are compared with the predicted results in Fig. 5. The ratio 
of the load at which the loading rate was changed to the first peak load is specified for the calculations 
by the model. The predicted results are in good agreement with the experimental results for these 
specimens. Figure 6 shows the comparison of the experimental results to the predicted results for 
a sudden change in loading rate for medium-size high-strength concrete specimens. From these results 
it is clear that the viscoelastic cohesive crack model with rate-dependent softening can describe the 
observed response of both normal- and high-strength concretes for a sudden change in loading rate 
in the softening branch. 

For a sudden change in loading rate of high-strength concrete specimens of all three sizes, the 
comparison is made in Fig. 7. The predicted results are in close agreement with the experimental 
r e s u l t s  for these specimens. The present model, therefore, is able to describe the behavior for all three 
different sizes of geometrically similar specimens too. 

When the predicted results are compared with the experimental results, it is seen that some of 
the experimental response curves exhibit small local peaks before the overall peak is reached. In some 
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of the specimens one can see a relatively fiat region occurring after the first peak. These two 
phenomena are not systematic and are probably caused by random effects associated with specimen 
heterogeneity. 

The ratio of the two peak loads, P2/P~, is shown in Fig. 8 as a function of Pc/P~. The calculated 
results for normal- and high-strength concrete specimens can be represented by a straight line, which 
is virtually independent of the specimen size. The experimentally observed results agree very well with 
the results predicted by this model. Also, this result is very close to the result of Ba~ant and 
Jirfisek [24]. As shown by Ba~ant and Li [18], the slope of this curve can be controlled by the 
parameter r or w0, or both. Good agreement with experimental data indicates that good values of 
the fit parameters of the model have been identified. 

CONCLUSIONS 

1. The viscoelastic cohesive crack model with rate-dependent softening can predict the response 
to sudden loading-rate changes observed in the laboratory. For a sudden increase in the loading rate, 
a second peak, lower or higher than the first peak, is observed on the stress-strain diagram. For a 
sudden decrease in the loading rate, the slope of the diagram sharply decreases and the response 
approaches the load-CMOD curve for the lower rate. The experimental results for both the normal- 
and high-strength concretes are in good agreement with the predicted results. 
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Fi K. 6. (a) Experimental and predicted load vs CMOD response of a medium-size, high-strength concrete 
beam specimen for a 1000-fold rate increase. (b) Experimental and predicted load vs CMOD response of 

a medium-size, high-strength concrete beam specimen for a 10-fold rate decrease. 
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Fig. 7. (a) Experimental and predicted toad vs CMOD response of a small-size, high-strength concrete beam 
specimen for a 1000-fold rate increase. (b) Experimental and predicted load vs CMOD response of a 
medium-size, high-strength concrete beam specimen for a 1000-fold rate increase. (c) Experimental and 
predicted load vs CMOD response of a large-size, high-strength concrete beam specimen for a 1000-fold 

rate increase. 

2. This model can predict the experimental results for very different sizes of geometrically similar 
specimens. 

3. The ratio of the second peak load for the increased loading rates to the first peak load 
for the initial loading rate, as a function of the ratio of the load at which the rate is increased to the 
first peak load, is independent of the specimen size. This is also predicted by viscoelastic cohesive 
crack model. The second peak appears to be governed mainly by the rate-dependence of the softening 
law. 
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Fig. 8. Comparison of predicted rate effect on the second peak load with the experimental data. 
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