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Abstract--Based on the generalized theory of the size effect law allowing dissimilar specimens, this paper 
proposes a new version of the size effect method for determining the fracture energy Gr and effective 
process zone length cr, which permits using specimens of only one shape and one size, but with different 
notch lengths. Cutting notches of different lengths on specimens of the same shape and size is an easy 
way to obtain specimens of different brittleness numbers, as required by the size effect method. Either 
linear or nonlinear regression of measured maximum loads of these specimens can give the material 
parameters G~ and cr. An experimental program is conducted to verify the proposed method. The notched 
holed split-tension cylinder is found to be a suitable specimen shape, while the notched eccentric 
compression specimen is found to provide a barely sufficient range of brittleness numbers. The analysis 
in the paper also indicates that there exists an upper limit of notch (or initial crack) length for some 
specimen geometries as the limit for validity of the definition of brittleness number. Copyright © 1996 
Elsevier Science Ltd. 

I N T R O D U C T I O N  

IN QUASIBR1TTLE materials such as concrete, rock, ice and ceramics, as well as some metals, a sizable 
fracture process zc,ne exists in front o f  the crack tip. Due to extensive distributed microcracking 
and void format ion the fracture process zone consumes a large amount  o f  energy when the crack 
develops and propagates,  and therefore, increases the resistance against fracturing. With such a 
toughening mechanism, failure o f  specimens or  structures o f  quasibrittle materials cannot  be 
predicted on the basis o f  a single parameter  such as the critical energy release rate or  the critical 
stress intensity factor  defined in linear elastic fracture mechanics (LEFM).  

The size effect law [I] and its generalized theory [2, 3] represent a fracture model that  can be 
used to identify the fracture properties o f  quasibrittle materials. Using two material fracture 
parameters one ca~ predict not  only the nominal  strength o f  any specimen, but also the R curve 
o f  the specimen, representing the relation between fracture resistance and crack length. Thus, 
experimental determination o f  the material fracture parameters is a central issue in the application 
o f  the size effect law and its generalized theory to real engineering structures. In previous 
applications these parameters have been determined from the maximum loads o f  specimens that 
are geometrically similar but have different sizes. This paper proposes a test method based on the 
size effect law in which different specimen sizes are not required. 

To separate the size effect from other  influences on fracture o f  quasibrittle materials, Ba~ant 
in 1984 [1] proposed a fracture model for geometrically similar specimens, which is commonly  
called the size effect law (SEL). Geometrically similar specimens are those in which all the 
dimensions including the length o f  the initial traction-free crack or notch are in proport ion.  SEL 
provides an equation to correlate the nominal  strength o f  the specimen (aN) and the specimen 
dimension (d). For  any geometry there are two constants,  (Bf() and do, governing the equation. 
These constants depend on the material properties as well as the geometry o f  the specimen. When 
the specimen o f  a :~pecific geometry increases to an infinitely large size, its fracture behavior  must  
follow L E F M  because the process zone length becomes negligible in compar ison with the crack 
length and specimen size. Note  that the initial crack or  notch length also approaches  infinity when 
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the size of the structure approaches infinity under the condition that the geometry of the specimen 
remains the same. Ba~ant and Pfeiffer showed in 1987 [2] that fracture energy in an infinitely large 
structure should be independent of structural geometry. With this development the two constants 
governing the SEL equation for specimens of any specific geometry are related to each other 
through a material constant Gr-the critical energy release rate, called fracture energy, in brief. The 
generalization of SEL was completed in 1990 by Ba~ant and Kazemi [3]. They proposed that not 
only a constant representing the fracture energy, Gr, but also a constant called the effective process 
zone length, c, can be defined for an infinite specimen as material parameters and can be evaluated 
from SEL. By adapting LEFM formulas for the infinite-size specimen, Bf~' and do can be determined 
for any specimen geometry from Gf and cf. Therefore, the nominal strength of a structure can be 
uniquely predicted when G, cf, the structural geometry and the size are known. Conversely, from 
the maximum loads measured on a series of geometrically similar specimens, Bf;  and do, and 
therefore Gr and cf, can be obtained. 

With this theoretical background, RILEM recommended in 1991 [4] to determine Gf and cf 
by testing geometrically similar three-point bend beams. This method was named the "size effect 
method" and has been widely used [5, 6]. However, the generalized theory of SEL provides an 
equation for aN explicitly in terms of Gf, cf and size d, valid for any specimen geometry. Therefore, 
it is not necessary to determine Bf( and do as a mid-step in passing from aN or the measured 
maximum loads to Gf and cf. 

The main advantage of the size effect method is that only the maximum loads of fracture 
specimens need to be measured, which is easy. Because of the scatter typical of concrete the method 
only works if the range of the brittleness numbers of the test specimens exceeds about 1:4 (the 
brittleness number, as explained later, characterizes the relative proximity of the response to 
plasticity and to linear elastic fracture mechanics). The size effect method according to the RILEM 
Recommendation [4] achieves different brittleness numbers by varying the specimen size while 
keeping the specimen shape, relative notch depth and loading geometry the same. However, the 
need to produce specimens of different sizes is an inconvenience which has hindered applications, 
especially in the field. To circumvent this inconvenience the present proposal exploits the fact that 
different brittleness numbers can also be achieved by varying the notch depth while keeping the 
specimen size and shape, as well as the loading geometry the same. Then, of course, the specimens 
are not geometrically similar, but one can still apply in fracture testing the generalized form of the 
size effect law. This was noted by Ba~ant and Kazemi [3], but the question as to whether a sufficient 
range of brittleness numbers could be achieved for one specimen size, just by varying the notch 
depth, has not been explored. The present paper has the objective of doing exactly that. As we 
will see, the answer is affirmative. Various specimen geometries are compared to identify the most 
favorable one. These comparisons include three-point-bend beams, rectangular eccentrically 
compressed prisms, regular notched split-tension cylinders and notched split-tension cylinders with 
a hole in the axis (Fig. I). 

Simultaneously with the present study, Ba~ant and Li [7] proposed and validated another 
variant of size effect method called the zero-size strength limit method, in which, also, fracture 
specimens of different sizes need not be tested. This method uses one fixed geometry and one fixed 
relative notch depth of the fracture specimen. The additional information needed to determine two 
fracture parameters is obtained by calculating the load capacity for the small-size plastic limit from 
the modulus of rupture (which is measured by the standard bending test of unnotched specimen). 
In this manner, one in effect uses the measured maximum loads for two effective specimen 
sizes--the actual size of the fracture specimen and the zero effective size, for which the nominal 
strength can be calculated by plastic limit analysis. 

Enlarging the size range makes it possible to reduce the uncertainty in the resulting values of 
fracture energy and process zone size. In this light, a further refinement could be achieved by 
combining the presently proposed variable-notch one-size method with the aforementioned 
zero-size strength limit method. This would mean testing (i) fracture specimens of one size 
and shape, but with different notch depths, and (ii) at the same time exploiting the nominal 
strength calculated according to plasticity from the modulus of rupture. In this case, one 
would in effect have data for three or more brittleness numbers--two or more of them 
corresponding to the fracture specimens with two or more different notch lengths, and a zero 
effective size. 



Method for fracture energy and process zone length 

REVIEW OF THE SIZE EFFECT LAW OF ITS GENERALIZED THEORY 

The size effect law proposed by Ba~ant in 1984 [1] reads: 
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Fig. I. Sketches of specimens. (a) Three-point bend beam. (b) Eccentric compression prism. (c) Regular 
split-tension cylinder. (d) Holed split-tension cylinder. 
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Fig. 2. Illustration of  size-effect law. 

where as is the critical nominal stress, i.e. nominal strength of specimen (or structure), d is the 
specimen size and Bf{ and do are constants for a given specimen geometry (Fig. 2). Note that B 
and f (  need not be identified separately because only their product matters, though f{ denotes the 
tensile strength. Constants Bf{ and do can be determined from measured aN values of several 
geometrically similar specimens of different sizes by using nonlinear regression. For the purpose 
of linear regression, Ba~ant converted eq. (1) to the form Y = AX + C, where Y = (f{/aN) 2, X = d, 
B =  ! / ~ .  and do=C/A. B and J~' are separated so that every term in Y = A X + C  is 
dimensionless. When f{ is not available, both sides of eq. (1) can be divided by (f{)2 so that B and 
f (  be kept combined. The modification does not affect the values Bf( and do that result from the 
linear regression. 

Generalization of SEL adopts the following LEFM relations (2)-(5) for the infinitely large 
specimen. First, 

K. = aN,V/-~F(~) (2) 

where K~ is the mode I stress intensity factor; a is crack length; a is the ratio of crack length a 
to the specimen dimension d; F(~) is a function of a, called geometry factor; and aN is the nominal 
strength of specimen, defined as 

P 
aN = c, ~ (3) 

where b is the specimen thickness, d is one specimen dimension representing specimen size, and 
c, is a constant which can be chosen arbitrarily, but is usually taken so as to make aN the maximum 
tensile stress in the specimen of the same type with no crack. Considering the LEFM fracture energy 
release rate G = (K~c)2/E with E as the elastic modulus, one obtains 

P~ 
G = E ~ g ( a )  (4) 

where Pc is the critical load or maximum load, and 

g(~) = f ( ~ )  = ~c.~F~(~). (5) 

The function g(~) and its derivative g'(a) permit generalizing SEL. 
Based on the understanding that the fracture process zone length attains a limit value in an 

infinitely large specimen, to which LEFM is applicable, SEL can be generalized by introducing as 
the basic constants the effective fracture process zone length in the infinitely large specimen, ct and 
the fracture energy in the infinitely large specimen, Gr [3]. These two material constants can be 
expressed in terms of geometry-dependent constants Bf; and do, and geometry-determined 
constants g(~0) and g'(~0), where a0 is the ratio of the initial crack length a0 to the specimen 
dimension d: 

(Bf')2 ~ do. (6a,b) G~ = c~E dog(~o), c, = g ( ~ )  
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Substituting Bf; anddo obtained from eq. (6a,b) into eq. (1) 
SEL, i.e. aN = c,x/~F~Gdg (~0)cr + g(~0)d] -,i2 or 

EGf \ ,  

= 

Cr g - ~  I 

yields the equation of the generalized 

(7) 

From eq. (7) with known g(~o) and g'(~0), the nominal strength as for any specimen or structure 
can be determined if Gr and cr are known. If the maximum loads for similar specimens of sufficiently 
different sizes are measured, and where g(~0) and g'(~o) are known, Gr and Cr can be obtained by 
nonlinear regression. By algebraic arrangement, eq. (7) has been converted to a linear regression 
equation: 

where 

Y = A X  + C (8) 

g(ao) 1 C 
Y -  cZ" X = D = d, EGf ~ c f -  (9) 

g'(~)a~ ' g'(Oto) ' A 

D is called the effective structural dimension (or size). Since both g(~o) and g'(~o) are constant for 
geometrically similar specimens, they can be determined by regression as in the size effect method 
recommended by RILEM [4]. By multiplying both sides of eq. (9) by g'(~), one obtains 

Y* = A ' X *  + C* (10) 

where 

g(ao) g(cto) C* 
c--~2" X* = d ,  E G f =  A* ' c f= A* " (11) Y*= o'~' g'(a0) 

This modification ,shortens mathematical manipulations in calculating the coordinates of data 
points. 

VARIABLE-NOTCH ONE-SIZE TEST METHOD 

The proposed variable-notch one-size test method is based on eqs (7), or (8) and (9), with the 
understanding that specimens are not necessarily geometrically similar and therefore g(~) and 
g'(~o) are not necessarily constant. The method uses specimens of the same shape and size, but with 
different notches. Material parameters Gr and cf can be obtained from the measured nominal 
strengths of these specimens by means of nonlinear regression (7) or linear regression (8). 

The size effect is controlled by constants Bf( and do [eq. (1)]. These constants depend on both 
the material and specimen geometry. The generalized theory of SEL separates Bf( and do to two 
independent parts--material factors Gr and cr, and geometry factors g(~) and g'(~0). For specimens 
of the same geometry, g(~) and g'(~o) are constants, and therefore eq. (7) or (8) characterizes the 
size effect for the specimens of this geometry. The effect of specimen geometry on aN is reflected 
by the involvement of values of g(~) and g'(~0) in eq. (7) or (8). For specimens of different types, 
g(~) and g'(~) have, respectively, different forms. For specimens of the same type and size, different 
notch lengths make the specimens different in geometry. In other words, combination of these four 
factors, Gf, cf, g(~0) and g'(a0), controls both the geometry effect and the size effect on the nominal 
strength. Generally speaking, Gf and Cr can be obtained from statistically sufficient data sets of a~, 
d, of g(~0) and g'(c~0) of any different specimens. 

When only one type of specimen is considered, the forms of g(~) and g'(~) are identical for 
all the specimens so that there are only two factors to determine the nominal strength: ~0 and d. 
Then, in the In a~--ln d plane (Fig. 3), each solid curve characterized by a value of a0 represents 
the size effect--the change in the normal strength with the specimen size for specimens of the same 
geometry. The original version of the size effect method [4] regresses the data points distributed 
along the same curve to yield Gr and Cr. The proposed variable-notch one-size test method is to 
regress data points of specimens of the same size but with different notches, which are shown in 
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Fig. 3 as the points distributed along a vertical straight line parallel to the In try-axis, but on 
different solid curves. Essentially, this proposed method is based on the geometry effect on the 
nominal strength of specimen or structure, which is described in SEL by variable g(a0) and g'(~0). 
As another variant of the size effect method [7], the zero-size strength limit test method attempts 
to obtain Gf and cf from a data point for a finite d in the In tr~-ln d plane, and the asymptotic 
value of aN of the solid curve on which the data point is located as d approaches 0 (i.e. In d 
approaches minus infinity). 

The linear and nonlinear approaches are not completely equivalent because they imply 
different weights of the data points. This assertion is also correct for the variable-notch one-size 
variant. Although exactly the same results cannot be expected from the different regressions, it will 
be seen later that values of G and cf obtained by means of the linear and nonlinear regressions 
in this experimental program are very close to each other. As functions for as, eqs (7) and (8) are 
mathematically identical, although the as value obtained involves an error. In the sense of statistics, 
the values of Gf and cf obtained from eqs (7) and (8) should become close to each other, respectively, 
when the number of test specimens increases. Theoretically, as the number of test specimens tends 
to infinity, the results from eqs (7) and (8) approach exactly the same values. Experimentalists may 
prefer linear regression, although the weights implied by nonlinear regression are more reliable. 
This is not only because a computation program for linear regression based on the least-squares 
method is more popular and accessible than that for nonlinear regression, but also because the 
"straightness" of the trend of the data points distributed in a plane is easily judged by visual 
perception. Because of these advantages of linear regression, its application to the variable-notch 
one-size test method will be discussed in detail. 

ERRORS IN REGRESSION CONSTANTS CAUSED BY THE ERROR IN NOTCH 
MEASUREMENT 

Although random errors in measurement and regression due to material heterogeneity and 
other random factors are unavoidable, systematic errors caused by instrumentation should 
be reduced as much as possible. Of all the measurements in the fracture test, the possible 
largest relative error is in ~ because it is the shortest dimension to measure. The relative 
error, Aao/ao = A~o/~t0, propagates to factors of 1/g'(~) and g(Oto)/g'(~) in eqs (7) and (8). 
Therefore, study of systematic errors in regression caused by the relative error of A0to/~ is 
important. 

The error of 1/g'(~) caused by A~o can be estimated with the approximation of the first 
order: 
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Fig. 3. Illustration of variable-notch one-size test method. 
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provided A~0 is small enough. Then the relative error of 1/g'(~o) is 

d 
~, g (~) ,] 

g"(ao) _ '~ A~ A~ Aa0 (13) 

g'(~o) 

where 

g"(~o) 
X = g(~)  ~,  

will be called the relative error factor for l/g'(~t0). Similarly, the relative error of  g(~o)/g'(~) may 
be estimated as 

g (~) 
A~o Aa0 (14) 

- g(~o) - ~ - ~ - =  ~ ao 
g ' (~)  

where 

(g'(~o) g"(~) ) 
~b = g(~o) g'(~o) ~ '  

will be called the relative error factor for g(~o)/g'(ao). For accurate regression results, specimen 
geometries that provide small )~ and ~ are certainly preferable no matter whether linear or nonlinear 
regression is executed. 

Errors in linear regression constants caused by the error in measurement of  ao need now to 
be studied in more detail. Letting x and y denote the actual values for X and Y, one has 

x = X + e , y =  Y + 6  (15a,b) 

where e and 6 are errors in X and Y, respectively. Substituting eq. (15a,b) into eq. (8) yields 

y = C +  Ax  + ( , 5 -  A O .  (16) 

Examining eq. (9), one obtains 

where Aao is the error of ao. The possible maximum of deviation IAao[ for different notches, 
designated by [Aaol~t, should be the same when measured by the same instrument (e.g. a ruler). The 
possible maximum deviation of  y from the straight line Y = C + A X  is estimated as 

(18) 

If the smallest X among all the data points is X~ and the largest, X2 (Fig. 4), the possible extreme 
positions of  the fitting straight line QR for Y = A X  + C are illustrated as KL and MN. KL and 
MN are determined by their deviations from QR: MQ = KQ = p~ at X = X,  and LR = NR = p2 
at X = X2. By drawing QS parallel to KL, it is shown that the possible maximum error in A is 

pl + p2 (19) 
AA = ___ X 2 -  XI 
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Fig. 4. Errors in linear regression. 

and the possible maximum error in C is 

A C  = +_- p, + X1AA = +_ 
1 

X2 - X, (X2p, + X, p2) (20) 

where X2 - Xt ~ x2-x, when (X2 - X,) is not too small. 
Therefore, to reduce errors in A and C caused by the error in measurement of notch length, 

one should maximize (X2 - X,) and also choose types of specimens for which X and ~ are small. 
It is obvious that when the specimen dimension d is kept constant, the magnitude of (X2 - X0 
depends on the range of g(~o)/g'(~). The following analysis will show that, with prism specimens, 
eccentric compression can provide a larger range of g(~o)/g'(%) than beam bending and that, with 
split-tension cylinders, a hole drilled at the specimen center can remarkably enlarge the range of 
g(ao)/g'(~). The range of the ratio of g(cto)/g'(~) decides the maximum possible range of the 
brittleness number and should be maximized in the specimen design. A certain limit of validity of 
the definition of brittleness number will be discussed later. 

A N A L Y S I S  O F  S E V E R A L  S P E C I M E N  G E O M E T R I E S  

Three-point bend beams, eccentric compression prism, regular split-tension cylinder and 
split-tension cylinder with a hole at the specimen center (Fig. l) were analyzed with regard to 
applying the proposed test method. The geometry function F(ct) for the stress intensity factor K, 
was obtained for each of these specimens with finite element analysis, which was performed with 
the program package ABAQUS (product of Hibbit, Karlsson and Sorensen). 

Three-point bend beams 

Firstly, it was checked that for the beam with s /d  = 4 [Fig. l(a)], the finite element analysis 
results for F(~t) match very well the formula given by Srawley (cited in ref. [8]): 

F(o0 = 1 1.99 - o~(1 - a ) ( 2 . 1 5  - 3 . 9 3 a  + 2.7oc 2) (21)  
(1 + 2~)(1 - ,',)" 

for which the nominal stress is defined as 

3Ps 
a:~- 2ban. (22) 
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Fig. 5. Function g(cO/g'(a) for three-point bend beams. 

A similar finite element mesh was used for the beam with s/d = 2.5, the results show some slight 
deviat ion f rom the formula  given in ref. [4]. For  0.1 < ~ < 0.6, the fitting of  the finite element results 
for a = 0.1, 0.2, 0._ ~,, 0.4, 0.5 and 0.6 provided 

1 1.83 - 1.65~ + 4.76~ 2 - 5.300c 3 -k 2.51~ 4 
F(=) = ~ (1 + 2~)(1 - ~),5 (23) 

for which the nominal stress aN is also defined by eq. (22). This formula can be applied only for 
0.1 < ~ < 0.6. The deviation of each finite element result from the value calculated with eq. (23) 
does not exceed 0.1%. 

Based on the above results, functions g(=)/g'(=), Z and ~ were calculated. For both beams 
(s/d = 2.5 and 4), g(=)/g'(=) takes its maximum value when a is about 0.27 (Fig. 5). Since functions 
g(=) and g'(=) for the two types of specimens are very similar, only Z and ~ for the beam with 
s/d = 2.5 are shown (Fig. 6). 

Eccentric' compression prisms 
For  the rectangular  pr ism under  eccentric compress ion  [Fig. 1 (b)], the point  load P can be 

replaced by two statistically equivalent distr ibuted loads: a uniform distr ibuted compress ion  and 

1 
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uJ -4 

-8 I I I I 

0.1 0.2 0.3 0.4 0.5 

Fig. 6. Relative error factors for three-point bend beam (s/d = 2.5). 
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Fig. 7. Finite element mesh for eccentric compression prism. 

a linearly distributed load that acts as a pure bending moment. When the crack tip is far away 
from the prism ends where the load acts, this replacement is justified by Saint-Venant's principle. 
Thus, 

Kl = trNV/-~F(ot) = trNx/~[mF,(0t) -- F2(ct)] (24) 

where 

and 

a N -  b d '  m = 6 + c  , 

F~(ct) = 1 .122 -  1.40ct + 7.33ct 2 -  13.08~t3 + 14.0ct 4 

(25a,b) 

(26) 

F2(ct) = 1.122 - 0.231ct + 10.55ct 2 - 21.71~t 3 + 30.382r,'. (27) 

Equation (26) is for the pure bending beam and eq. (27) is for simple tension of  the single-edge 
notched specimen [9]. Validity of eq. (24) was confirmed by finite element analysis. Figure 7 shows 
the finite element mesh for the case of  s/d = 4. In the figure, CF is a steel plate (whose thickness 
h = 0.08 d) with assumed elastic modulus E = 210 GPa and Poisson's ratio v = 0.3, which is well 
bonded to the concrete body with assumed E =  21 GPa and v = 0.15. All the elements are 
eight-node rectangular isoparametric elements. Collapsed quarter-point isoparametric elements are 
used around the crack tip A. All the nodes along AB are fixed in the x-direction, but the node 
at B is fixed in both x- and y-directions. Load P is moved along CF to different locations for 
different load eccentricities. The stress intensity factor K~ is obtained through the J-integral. All 
the calculated F(a) values do not deviate from eq. (24) by 0.5%. For  a short prism with s/d = 2, 
the deviation does not exceed 1.5%. Therefore, eq. (24) combined with eqs (25a,b), (26) and (27) 
is at least accurate enough for the purpose of test data analysis of  eccentric compression prisms 
not shorter than s/d = 2. 

The eccentric compression prism and the bend beam have no difference in appearance. The 
difference between them is only in load arrangement. The change in load arrangement considerably 
affects g(ot)/g'(ct), X and ~. As shown in Fig. 8, the maximum value of g(~t)/g'(~t) for eccentric 
compression is much higher than that for bending and so applying eccentric compression on the 
specimen of the same size expands the span of (X2 - X~) greatly. In eccentric compression with 
c = 0, the span of (X2 - Xj) is much larger than that in beam bending. Another advantage of the 
eccentric compression is a larger 0t value at which the maximum g(~t)/g'(~t) occurs. For  example, 
the ~t limit for eccentric compression with c = 0 is 1.7 times as large as that for three-point bending. 
It practically allows greater differences in notch lengths, which means greater differences in 
specimens geometries. In addition, X and ~ are very small in eccentric compression with c = 0 
(Figs 9 and 10). It seems that values ofg(ct)/g'(~t) can be very high when the load is applied between 
the center line and the unnotched side of  the specimen [Fig. 1 (b)], i.e. when c is negative. However, 
the tests conducted in this experimental program indicated that the specimen was likely to have 
failed in the mode of  compressive crushing underneath the load point or in the mode of  mixed-mode 
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Fig. 8. Funct ion g(=)/g'(~) fo r  eccentric compression prisms. 

fracturing when the load is not far away from the specimen center line. It is suggested to use c = 0 
or 1/24. It must also be noted that the optimization of the design of eccentrically compressed 
notched specimens may be limited by the compression strength of concrete. 

Regular split-tension cylinders 

The word "regular" refers to the split-tension cylinder with no hole drilled in it [Fig. 1 (c)]. 
The split-tension test is also called the split-compression test or Brazilian test. The finite element 
mesh is similar to that shown in Fig. 11 except there is no hole (or r = 0). By considering the effect 
of  the distributed-load width [9], the load is assumed distributed (t/R = 0.16) to simulate the load 
condition in the test, where plywood load bearing strips are used to deliver loads to the specimen 
(ASTM C 496). The following equation is obtained: 

F(:t) = 0.964 - 0.026~ + 1.472ct 2 - 0.256~t 3 (28) 

where 

P 
aN = nbR (29) 
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b is the thickness of the cylinder, R is the radius and P is the total compressive load. Function 
F(~t) is shown in Fig. 12. Similar to that for the three-point bend beam, the range of g(~t)/g'(ct) 
for the regular split-tension specimen is quite small (Fig. 13). However, a small modification of 
the cylinder such as a hole drilled at the specimen center can dramatically change the range of 
g(~t)/g'(ot). Relative factors ~ and ¢/for the regular split-tension cylinder are shown in Figs 14 and 
15. Regular split-tension cylinder is not suitable for the proposed method. 

Holed split-tension cylinders 

Finite element analysis shows that a hole drilled at the cylinder axis greatly changes the stress 
distribution in the split-tension cylinder [Fig. 1 (d)]. In the finite element mesh (Fig. 11), t /R = 0.16, 
r/R = 0.12, where t is half the distributed-load width and r is the radius of the hole. This geometry 
was used in the experimental program of this study. Elements with three sides that are located along 
the  curved boundary are all six-node triangular elements. All other elements are eight-node 
rectangular isoparametric elements. Elements around the crack tip B are collapsed to quarter-point 
elements. Nodes along DE are fixed in the y-direction, while nodes along AB are fixed in the 

YIp 

~,~ D R .~!E 

Fig. I I. Finite element mesh for holed split-tension cylinder. 
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x-direction. According to finite element computation, function F(~t) for the holed split-tension 
cylinder is: 

F(~) = 2.849 - 10.451~ + 22.938= 2 - 14.94a 3 (30) 

for which the nominal stress aN is defined as in eq. (29). Figure 12 shows that drilling of  a hole 
changes function F(ct) surprisingly. Although F(~) decreases with ~t to its minimum value, K,(~t) 
increases with increasing ~t. In other words, the holed cylinder is not a negative, but still a positive 
fracture test geometry. A large change in F(~) leads to correspondingly large changes in all 
g(ot)/g'(=), ~ and ~11 (Figs 13 - 15). As shown in Figs 14 and 15, Z and ~ are significantly increased. 
However, based on curves of  both ;( and ~ vs a, one may choose notch lengths properly so as to 
avoid the highest values of ~ and ~. 

For  many types of  specimens, g(~)/g'(~) is not monotonic, and thus there exists a maximum 
value of g(~t)/g'(cO. This observation will be discussed next in relation to the brittleness number 
range. 
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RANGE OF APPLICABILITY OF BRITTLENESS NUMBER 

Ba~ant defined the brittleness number fl = d/do as a physical quantity to characterize the 
brittleness of the structures [10]. This definition is not an arbitrary combination of variables that 
affect the nominal strength of a structure, but is based on a physical iaw-SEL. This definition was 
experimentally justified in Ba~ant and Pfeiffer [2], and several other works. With generalization of 
SEL, the brittleness number automatically becomes [3] 

f l _  g(ct0) d _ D (31) 
g'(~0) cf cr 

This brittleness number includes the function of g(~o)/g'(~) to reflect the geometry effect on the 
brittleness of  the structure. Concerning specimens of the same shape and size, experience shows 
that a specimen with a longer notch is more brittle than one with a shorter notch. This property 
is shown in eq. (31). When the notch lengths are not very long, fl usually increases when the notch 
lengths in the same specimen increase because g(~o)/g'(~o) usually increases with ~0. 

Nevertheless, the definition (31) is not always valid for specimens or structures that exhibit 
a maximum value ofg(ot)/g'(~t). The ~t value from which g(ot)/g'(ct) starts to decrease with increasing 
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Table 1. Mix designs of concrete for batches I-3 (for 1 m 3 of concrete) 

Content Mass (kg) 

Cement (type I) 391 
Coarse aggregate (crushed limestone) 1055 
Fine aggregate (siliceous sand) 721 
Water 204 

Water/cement ratio is 0.52. The maximum size of the coarse 
aggregate for mix design I is 9.5 ram. The maximum size of the coarse 
aggregate for mix design 2 is 12.7 mm. 

~t is the limit of  tile validity of  the definition of the brittleness number. This limit seems not to 
constrain the usefulness of  the brittleness number much, because in practice, structures of  
quasibrittle materials usually do not have a very long initial crack. It is necessary to point out that 
the shape of the curve of  g(~)/g'(ot) vs ~t does not affect the validity of the size effect law and its 
generalized theory. The effect of specimen geometry on the nominal strength does not rely only 
on the factor of  g(ao)/g'(ao) in the generalized theory of SEL, but also on the factor of l /g ' (~)  
[eq. (7)]. Our tests verify the validity of the generalized SEL theory for the holed cylinders for which 
g(~)/g'(~) decreases with ~.  

EXPERIMENTAL PROGRAM 

An experimental program of  fracture tests was conducted to verify the proposed 
variable-notch one-size test method. Different types of specimens (Fig. 1) of  four batches of  
concrete were prepared. The concrete mix designs used for the first three batches are shown in 
Table 1. The comlz~nent proportions for the two mix designs were the same, but they used different 
coarse aggregates. The maximum size of  the coarse aggregate for mix design l (for batch l) was 
9.5 mm, whereas for mix design 2 (for batches 2 and 3), 12.7 ram. Although specimens of  batches 
2 and 3 were both made with the same mix design, they were cast at different temperatures, about 
30°C and 24°C, respectively. Batches l and 4 were also cast at about 30°C (Table 2). The specimens 
were demolded or,e day after casting and then cured in a moisture room at 23°C. They were all 
tested after 28 days. Cylindrical specimens of 152 mm (6 inches) in diameter were prepared for 
compression tests from each batch. Elastic modulus of concrete was calculated from the 
compressive strength with the ACI Building Code formula E - - 4 7 3 0  ~ applicable for 
normal-weight concrete, jac is the compressive strength, and both E and ./'c are in MPa. 

Notches were cut in the specimens just before testing. Those in beam specimens and eccentric 
compression prisms were cut by a diamond saw, whereas those in split-tension cylinders were cut 
by a saw blade threaded through the hole after a hole was drilled at the specimen axis. All the 
split-tension cylinders were 152.4 mm in diameter. For some cylinders, the hole was so fine that 
it did not have appreciable influence on the stress distribution around the notch tip. Those 
specimens were treated as regular split-tension cylinders [Fig. l(c)]. For the other cylinders to be 
called holed split-tension cylinders, a hole of 18.3-mm diameter (r/R = 0.12) was drilled [Fig. 1 (d)]. 
The width of  all the notches was 3 mm. To reduce errors, the length of  the notch in every specimen 
was measured after the specimen was tested. This was done at three different locations along the 
specimen thickness and their average was taken for data analysis. 

All the value,,; of  g(~0) and g'(~0) used in test data analysis were calculated from the LEFM 
formulas obtained by finite element analysis. The values of  K~r and cf for each batch of  concrete 

Table 2. Mix design of concrete for batch 4 (for 1 m 3 of concrete) 

Content Mass (kg) 

Cement (type I) 294 
Coarse aggregate (crushed limestone) II 34 
Fine aggregate (siliceous sand) 756 
Water 147 

Water/cement ratio is 0.50. The maximum size of the coarse 
aggregate is 16 mm. 
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Table 3. Test data of  bend beams of concrete batch 1 

Specimen d (mm) ao (mm) ~ = ao.:d b (mm) s,'d Pc (N) a, (MPa) 

A-BRI 50.8 14.7 0.289 76.2 2.5 3113 3.016 
A-BR2 50.8 14.7 0.289 76.2 2.5 3003 2.909 
A-BR3 76.2 19.8 0.260 76.2 2.5 4693 3.031 
A-BR4 76.2 19.8 0.260 76.2 2.5 4048 2.614 
A-BR5 101.6 25.2 0.250 76.2 2.5 5293 2.564 
A-BR6 101.6 25.4 0.250 76.2 2.5 5026 2.434 
A-BR7 152.4 40.5 0.266 76.2 2.5 7295 2.356 
A-BR8 152.4 39.7 0.260 76.2 2.5 7762 2.506 

Table 4. Test data of  eccentric compression prisms of  concrete batch I 

Specimen d (mm) a0 (mm) ao = ao/d bid  s /d c/d Pc (N) at (MPa) 

A-ECI 101.6 12.7 0.125 0.75 3.75 0 15930 2.058 
A-EC2 101.6 12.7 0.125 0.75 3.75 0 16010 2.068 
A-EC3 101.6 25.4 0.250 0.75 3.75 0 15480 2.000 
A-EC4 101.6 25.4 0.250 0.75 3.75 0 14190 1.833 
A-EC5 101.6 36.9 0.363 0.75 3.75 0 12790 1.652 
A-EC6 101.6 36.5 0.359 0.75 3.75 0 13230 1.709 

were obtained with both linear regression and nonlinear regressions based on the method of 
least-squares. Gf was calculated from Gr = (K~f)2/E. For nonlinear regression, a computer program 
based on the Levenberg-Marquardt algorithm was developed. The main subroutines of the 
program were taken from ref. [I 1]. 

Fracture test specimens of batch 1 were beams (Table 3) and eccentric compression prisms 
(Table 4). The beams were geometrically similar with s/d = 2.5 and ~0 = 0.25, and were of four 
different sizes. However, saw cutting was not perfectly controlled to achieve a constant ~.  But 
differences in a0 would yield differences in g(a0) and g'(~). In such a case, the variable-notch method 
should be used for regression to avoid large errors. A steel plate was mounted on each end surface 
of the eccentric compression prism [Fig. l(b)] with high-quality bond, so that the plate would 
deliver both compressive and tensile stresses to the concrete specimen. The ratio c/s = 0 was used 
in all the tests, where c is the load distance from the side of prism. Values of Kzf, Gf and cr were 
obtained with linear and nonlinear regressions from beams and eccentric compression prisms; see 
Table 5. Test points of all the specimens of this batch are shown in the Y-X plane in Fig. 16 for 
visual perception. (The solid circle in Fig. 16 indicates the data from brittle plastic analysis, which 
are not included in the present regressions and will be discussed in the following section) It seems 
that values of K~f (or say Gr) and cr obtained from specimens of beams and from eccentric 
compression prisms are close to each other, which confirms the results of Ba~ant and Pfeiffer in 
1987 [2], and Ba~n t  and Kazemi in 1990 [3]. 

In batch 2, the specimens were split-tension cylinders (Table 6), eccentric compression prisms 
(Table 7) and bend beams (Table 8). These prisms and beams had the same shape and size, but 
with different notches. The lengths of notches in the eccentric compression prisms were restricted 
to avoid large X values. All the split-tension cylinders in this batch (Table 7) had diameter 152.4 
mm. Three of them were considered regular cylinders because only a very small hole was drilled 
[Fig. 1 (c)]. A comparatively large hole was drilled for the remaining cylinders [Fig. 1 (d)]. The 
ratio of the hole radius r to the specimen radius R was 0.12. The ratio of the distributed load width 
2t to the specimen diameter 2R was 0.16 for all the cylinders. The notch lengths for the split-tension 
cylinders (Table 6) were selected to avoid the largest X and ~ (Figs 14 and 15). 

Table 5. Gr and cr of  concrete batch 1 

Specimen series Linear regression Nonlinear regression 

R 2 Kif (MPa.m'  2) Gr (N .m-  ') cf (mm) Kif (MPa 'm ''2) Gf (N.m " )  cf (mm) 

Similar beams of different sizes 0.761 1.03 38.7 22.8 0.933 31.8 16.4 
Eccentric compression 0.928 1.16 49.1 19.2 I. 18 50. I 21.0 

The elastic modulus  E = 27.4 GPa is calculated from the compressive strength with the ACI formula. R 2 is the 
correlation coefficient for the linear regression. 
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Regressions from the split-tension test data provide K,f (or Gr) and cr values that are very close 
to the results from eccentric compression tests (Table 9 and Fig. 17). Regression combining data 
from these two types of tests is also conducted and given in Table 9. The data points of the beams 
are also plotted in Fig. 17. Different from beams of batch 1, the beams of this batch provide a 
considerably lower cr value than eccentric compression prisms (Table 9). This indicates that the 
differences in measured cr may be caused by random factors rather than the geometry of the 
specimen. However, specimens of the same shape and size have always shown a reasonably looking 
linear fit. It may 1:¢ speculated that, because the same geometry and size of specimens provide the 
same boundary conditions for moisture and heat flow during specimen curing, the same degree of 
hydration in these specimens might be reached within the same period. Regressions of the test data 
of all the specimens gave a Kxf value very close to that from the test data of the split-tension and 
eccentric compres.,;ion specimens (Table 9). It is because the range of(X2 - X,) of the beams is much 
smaller than that of the split tension and eccentric compression. In the sense of linear regression 
(Fig. 17), the range of (X: - X,) is a decisive factor. 

Batch 3 consisted of one series of similar beams (Table 10) and another series of beams of 
the same shape and size, but with different notches (Table 11). As in batch 1, the variable-notch 
method was used for regression of the beams whose specifications are listed in Table 10 because 
slight differences in a0 caused different g(~0) and g'(~0) values. Linear and nonlinear regressions for 
these cases gave very similar results (Table 12). The beams of the same size did not allow good 

Table 6. Test data of split tension cylinders of concrete batch 2 

Specimen Type R (ram) 2a0 (mm) ao = ao/R b (mm) t/R r/R P, (N) ac (MPa) 

B-SI regular 76.2 18.0 0.1181 63.0 0.16 0 47860 3.182 
B-S2 regular 76.2 20.0 0.1312 63.0 0.16 0 46750 3.010 
B-S3 regular 76.2 18.0 0.1181 60.0 0.16 0 53510 3.548 
B-S4 holed 76.2 39.5 0.2592 74.0 0.16 0.12 42930 2.423 
B-S5 holed 76.2 37.5 0.2461 77.0 0.16 0.12 37320 2.025 
B-ST6 holed 76.2 38.0 0.2493 78.0 0.16 0.12 40660 2.178 
B-ST7 holed 76.2 69.0 0.4528 77.0 0.16 0.12 27890 !.513 
B-ST8 holed 76.2 68.5 0.4495 76.0 0.16 0.12 22600 1.242 
B-ST9 holed 76.2 68.5 0,4495 75.0 0.16 0.12 24640 1.372 

Table 7. Test data of eccentric compression prisms of concrete batch 2 

Specimen d (ram) a0 (mm) ao = ao/d b/d s/d c/d Pc (N) oc (MPa) 

B-ECI 157 16.5 0.1052 1 2 i/24 37280 3.580 
B-EC2 156 41.7 0.2676 1 2 !/24 29450 2.831 
B-EC3 15C, 56.0 0.3734 1 2 1/24 27130 2.608 
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Table 8. Test data of bend beams of concrete batch 2 

Specimen d (ram) ao (ram) ~ = ao/d b (mm) s/d P, (N) oc (MPa) 

B-BG I 152.4 12.8 0.0837 152.4 2.5 26420 4.266 
B-BG2 152.4 14.3 0.0935 152.4 2.5 26330 4.253 
B-BG3 152.4 26.3 0.172 152.4 2.5 20190 3.261 
B-BG4 152.4 25.8 0.169 152.4 2.5 21260 3.433 
B-BG5 152.4 37.7 0.247 152.4 2.5 17880 2.887 
B-BG6 152.4 37.5 0.246 152.4 2.5 16680 2.693 

Table 9. Gf and cf of concrete batch 2 

Specimen series Linear regression Nonlinear regression 

R 2 Ktf (MPa.m' 2) Gf (N.m ' )  cf (mm) K,f (MPa-m ~'2) Gr ( N . m  i) cr (mm) 

Split tension 0.808 0.883 29.4 15.4 0.841 26.7 12.5 
Eccentric compression 0.939 0.939 33.3 19.4 0.908 3 I. I 15.9 
One-size beams 0.936 0.955 34.4 5.53 0.956 34.5 5.60 
Split tension and eccentric 

compression 0.917 0.917 31.7 18.0 0.873 28.8 14.4 
All specimens 0.780 0.885 31.9 13.7 0.886 29.6 10.3 

The elastic modulus E = 26.5 GPa is calculated from the compressive strength with the ACI formula. R ~ is the 
correlation coefficient for the linear regression. 

regression as seen in Fig. 1 8. (The solid circles in Fig. 1 8 represent data from brittle-plastic analysis 
and will be discussed in Section 8.) Obviously these beams did not provide a sufficient range of 
(,i"2 - X,). It must be concluded that when rectangular prismatic specimens of the same size are 
prepared, eccentric compression should be preferred. The test data from the beams with ao = 0.48 
and 0.50 deviate essentially from the straight line that fits the similar specimens. The large deviation 
might result from error propagation [eq. (17a)] with large X at large a0 (Fig. 6). It has been an 
experience for many experimentalists using the original version of the size effect method with 
geometrically similar specimens that small ct0 would provide a better curve fitting than a value of 
• 0 larger than 0.3 or 0.4. We suggest that, no matter what version of the size effect method is used, 
for a specimen geometry which provides large X and qJ, more specimens should be tested in order 
to reduce the variances of X and Y. 

Now let us consider the ranges of effective size D (or brittleness number 8) that are achieved 
with the specimens tested. For the three-point bend beams with different notches, the range of D, 
that is, the ratio of the maximum D to the minimum D, is 1.9 (Fig. 17). In view of the scatter 
magnitude typical of concrete, this range is not sufficient, except perhaps for very crude results. 
Therefore, the three-point bend beams with variable notches cannot be recommended for the 
present version, unless this version is combined with other versions of the size effect method [7]. 
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Table 10. Test data of geometrically similar bend beams of different sizes of concrete batch 3 

401 

Specimen d (mm) a0 (mm) ~0 = ao/d b (ram) s/d Pc (N) ac (MPa) 

C-BRI 78.5 20.5 0.261 127 2.5 9964 3.748 
C-BR2 78.5 21.5 0.274 127 2.5 8985 3.380 
C-BR3 1 ! 5 29.0 0.252 127 2.5 12630 3.244 
C-BR4 115 28.7 0.250 127 2.5 I 1570 2.977 
C-BR5 155 39.5 0.255 127 2.5 15480 2.949 
C-BR6 155 43.0 0.277 127 2.5 15390 2.932 
C-BR7 230.5 53.7 0.233 127 2.5 22240 2.849 
C-BR8 229.5 52.2 0.227 127 2.5 21890 2.816 

Table 11. Test data of bend beams of the same shape and size of concrete batch 3 

Specimen d (mm) a0 (ram) ~ = ao/d b (mm) s/d Pc (N) oc (MPa) 

C-BG 1 150.7 37.0 0.246 152.4 2.5 17930 2.928 
C-BG2 152.7 38.3 0.251 152.4 2.5 17170 2.767 
C-BG3 152.5 59.7 0.391 152.4 2.5 12100 1.952 
C-BG4 152.5 59.7 0.391 152.4 2.5 12190 1.967 
C-BG5 153.(~ 74.0 0.484 152.4 2.5 8096 1.302 
C-BG6 152.3 76.3 0.501 152.4 2.5 7740 1.251 

Table 12. Gr and cf of concrete batch 3 

Specimen series Linear regression Nonlinear regression 

R 2 Kjf (MPa.m I'~) Gf (N.m - ') cf (mm) Ktf (MPa'm ~'2) Gf (N-m-i) cf (mm) 

Similar beams of different sizes 0.858 1.30 60.8 25.2 1.27 58.0 22.3 

The elastic modulus E = 27.8 GPa is calculated from the compressive strength with the ACI formula. R 2 is the correlation 
coefficient for the linear regression. 

For the eccentric compression specimens with different notches, the range of D is 2.6 in Fig. 16 
and 3.0 in Fig. 17. This is better and adequate for crude results, but still not quite satisfactory. 
Based on previous studies of the size effect method with geometrically similar specimens of different 
sizes [2, 4], the range of D should be at least ! :4 in order to obtain statistically acceptable regression 
results. By carefully arranging notch lengths, one can obtain a much larger range of D, exceeding 
4. To verify it, rectangular prism specimens were made as batch 4 concrete (Table 13). The shortest 
notch for these specimens was 8-mm long, exceeding half the maximum aggregate size. The range 
of D was 4.8. From the linear regression (Fig. 19), fracture parameters are obtained as Ktr = 0.865 
MPa.m ';2 and cf =: 15.0 mm with R 2 = 0.800. The nonlinear regression is based on eq. (7) results 
Ktf = 0.852 MPa.m 1'2 and c~ = 14.6 mm. These results are listed in Table 14. 
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Table 13. Test data of eccentric compression prisms of concrete batch 4 

Specimen d (mm) a0 (mm) 

D-ECI 102 8.3 
D-EC2 102 8.0 
D-EC3 102 20.3 
D-EC4 102 21.3 
D-EC5 102 44.7 
D-EC6 102 45.3 
D-EC7 102 55.0 

ao=ao/d b/d //d c/d P c ( N )  a s  ( M P a )  

0 .082  0 .75 4 0 14679 1.896 
0.082 0.75 4 0 12233 1.580 
0.20 0.75 4 0 11832 1.528 
0.21 0.75 4 0 12010 1.551 
0.44 0.75 4 0 10898 1.408 
0.45 0.75 4 0 8714 1.126 
0.44 0.75 4 0 8941 1.155 

Table 14. Gf and cf of concrete batch 4 

Specimen series Linear regression Nonlinear regression 

R 2 Kjf (MPa.m':) Gf (N.m-') cf (mm) K. (MPa.m ~':) Gt (N.m-') cf (mm) 

Eccentric compression 0.800 0.865 29.0 15.0 0.852 28.1 14.6 

For the holed split cylinder test specimens with different notches combined with the regular 
split cylinders, the range of D is 5.6 (Fig. 17). This is satisfactory for the purposes of  regression, 
and exceeds the lower limit i:4 recommended before. Therefore, the specimens that are 
recommended for the presently proposed new testing method are the split tension cylinder and 
eccentric compression prism. 

C O M B I N A T I O N  OF VARIABLE-NOTCH VARIANT W I T H  BRITI 'LE--PLASTIC VARI- 
ANT OF SIZE EFFECT M E T H O D  

The original version of the size effect method varies the specimen size d to change the 
brittleness number, whereas the present version varies a0 and then g(ao)/g'(cto) to change the 
brittleness number. So apparently, accuracy of the variable-notch one-size method can be enhanced 
by using one more size of  the specimen. I f  specimens of  the same shape and size are used, then 
the accuracy of the variable-notch one-size method could be substantially enhanced by combining 
it with the zero-size limit strength method. This method can also be combined with the original 
version of the size effect method. Generally, combination of any two versions of  the size effect 
method would greatly increase the range of brittleness numbers. The zero-strength limit method [7] 
analyzes the small-size plastic limit capacity as the asymptotic limit of  the size effect described by 
the size effect law. According to the size effect law [eqs (1) and (7)], the limiting value of  a~ for 
d ~ 0 ,  designated as ap, is 

~p = B o f ' .  (32) 
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Table 15. Gf aad cf of concrete batches I and 3 from linear regression including brittle--plastic analysis 
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Concrete Specimen series R 2 K~f (MPa.m ''2) Gf (N.m - i) cr (mm) 

Batch I Similar beams of different sizes 0.921 1.04 38.9 23.5 
Batch 3 Similar beams of different sizes 0.922 1.33 63.6 27.2 

One-size beams 0.912 I. 17 49.2 22.5 

R 2 is the correlation coefficient for the linear regression. 

The equations for calculating Bp for three-point bend beam and eccentric compression prism are 
proposed based on brittle-plastic analysis [7], and the tensile strength f ,  in eq. (32) also depends 
on the specimen geometry. Basically, f ,  for any specimen geometry needs to be experimentally 
determined. Although the general equation for the size effect law diverges when d--,0, we can still 
write 

Cn~f 
ap - cfg'(a0) - B(a0~' (33) 

but a value of s0, ct0r, is specimen geometry dependent and needs to be experimentally determined 
to satisfy eq. (33), where f ,  is the modulus of rupture obtained by testing unnotched beams. 

For  the three-point bend beam (s/d = 2.5), the present tests showed that aOr = 0 can make op 
match the data from the notched specimens (Figs 16 and 18). The data for the solid circles in the 
figures were obtained by substituting ~0 = 0, d = 0 and the values of modulus of  rupture into eq. (8), 
and the formula provided by [7] for brittle-plastic analysis of the beam. Ba2ant and Pfeiffer [2] 
observed that, for beam specimens, the value 0b = 1/6 madef ' ,  in the size effect law equal to a tensile 
strength, which was converted from the compressive strength through the ACI formula f, '  = 6x/~{ 
psi. It should be noted that the converted value can be rather different from the experimentally 
measured modulu'.; of  rupture. The moduli of rupture for concrete batches 1 and 3 in the present 
experimental program were experimentally obtained by breaking unnotched beams (ASTM C78): 
jet = 5.985 MPa for batch 1; f ,  = 6.274 and 7.240 MPa for batch 3. The results from linear 
regression including brittle-plastic analysis are shown in Table 15. It is seen that the correlation 
coefficient R 2 for ':he linear regression from the geometrically similar beams is greatly enhanced 
by including the Y value at X = 0 from brittle--plastic analysis. Although variable notches on the 
same-size beams of  batch 3 did not provide a sufficient range of D for regression (Fig. 18), 
introduction of  the brittle-plastic one-size variant to the variable-notch one-size variant makes the 
regression possible and leads to reasonable results (Table 15). As for using the zero-size strength 
limit method to increase the range of  D for eccentric compression prisms and holed split tension 
cylinders, further experimental study is needed to obtain ~,  for these two types of specimens. 

CONCLUSIONS 

1. A variable-notch one-size test method is proposed to obtain Gf and cf based on the 
generalized theor~ of size effect law. Fracture parameters Gf and cf can be obtained from either 
linear or nonlinear regression so long as these specimens provide a sufficiently broad range of 
brittleness number fl or the effective structural dimension D, which was previously found to be 
about 1:4. Since specimens of  the same shape and size with different notches are easily prepared, 
this method can facilitate application of the size effect law and its generalized theory to engineering 
practice. 

2. Three-point bend beams of  the same size and with different notch lengths cannot provide 
a range of D (or fl) exceeding about 1:4. Eccentric compression tests can provide a barely sufficient 
range of D. In such specimens, the load is best applied along the unnotched side of  the prism or 
very near this side. 

3. The regular split-tension cylinder (a cylinder with a notch along its diameter) cannot 
provide a sumcient range of  D. However, a hole drilled at the specimen center dramatically expands 
the range of D up to about 5.6, which is sufficient. This makes the split-tension tests of  the notched 
holed cylinder of the same size, combined with the generalized size effect law for Gf and cf, suitable 
for application in practice. Cored specimens can be used for determining Gf and cf of concrete in 
situ. 
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4. When specimens of the same size and with different notch lengths do not provide a sufficient 
range of brittleness number fl, or of effective structural dimension D, specimens of a different size 
can be used to expand the range of D based on the original version of the size effect method. 
Another recent version of the size effect method--the zero-size strength limit version of Ba~ant and 
Li (1995) can also be combined with the present version to greatly increase the range of D. Indeed, 
a combination of these two new versions results in a very effective one-size version of the size effect 
method. Experimental results showed that f( in the size effect law can be considered equal to f ;  
(modulus of rupture measured on the unnotched bend beam) for the three-point bend beam 
(s/d = 2.5 and ~0 = 0). Application of both new versions of the size effect method to the tested 
beams provides consistent values of Gr and cf. 

5. Four specimen types, including three-point bend beam, eccentric compression prism, 
regular split-tension cylinder and notched holed split-tension cylinder, are analyzed with linear 
elastic fracture mechanics. Formulas for the stress intensity factor in these specimens are given. 
Errors in geometry functions 1/g'(~) and g(~o)/g'(~o) caused by the errors in measurement of the 
notch length are analyzed, and it is shown that possible large errors could be avoided by properly 
selecting the notch lengths. 

6. The experimental results indicate that the values of Gt obtained from different types of 
specimens are very close to each other. However, the values of cr exhibit much more scatter, 
although there is no evidence that the cause is the geometry of specimen. Providing large ranges 
of D, split-tension and eccentric compression tests conducted in this study fit the same curve well. 

7. For many specimens (or structures), the values ofg(~)/g'(~o), and therefore also D, increase 
with ~0 in the same specimen when the notch is not very long. The brittleness number defined on 
the basis of the generalized theory of size effect law can be used to characterize the brittleness of 
the structure. However, in some specimens, the values of g(~o)/g'(~o), and therefore D, decrease 
with ~ after ~ exceeds a limit value. This should be the limit for validity of the definition of 
brittleness number. 
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