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Abstract—Based on the generalized theory of the size effect law allowing dissimilar specimens, this paper
proposes a new version of the size effect method for determining the fracture energy G and effective
process zone length ¢, which permits using specimens of only one shape and one size, but with different
notch lengths. Cutting notches of different lengths on specimens of the same shape and size is an easy
way to obtain specimens of different brittleness numbers, as required by the size effect method. Either
linear or nonlinear regression of measured maximum loads of these specimens can give the material
parameters G; and ¢;. An experimental program is conducted to verify the proposed method. The notched
holed split-tension cylinder is found to be a suitable specimen shape, while the notched eccentric
compression specimen is found to provide a barely sufficient range of brittleness numbers. The analysis
in the paper also indicates that there exists an upper limit of notch (or initial crack) length for some
specimen geometries as the limit for validity of the definition of brittleness number. Copyright © 1996
Elsevier Science Ltd.

INTRODUCTION

IN QUASIBRITTLE materials such as concrete, rock, ice and ceramics, as well as some metals, a sizable
fracture process zcne exists in front of the crack tip. Due to extensive distributed microcracking
and void formation the fracture process zone consumes a large amount of energy when the crack
develops and propagates, and therefore, increases the resistance against fracturing. With such a
toughening mechanism, failure of specimens or structures of quasibrittle materials cannot be
predicted on the basis of a single parameter such as the critical energy release rate or the critical
stress intensity factor defined in linear elastic fracture mechanics (LEFM).

The size effect law [1] and its generalized theory [2, 3] represent a fracture model that can be
used to identify the fracture properties of quasibrittle materials. Using two material fracture
parameters one can predict not only the nominal strength of any specimen, but also the R curve
of the specimen, representing the relation between fracture resistance and crack length. Thus,
experimental determination of the material fracture parameters is a central issue in the application
of the size effect law and its generalized theory to real engineering structures. In previous
applications these parameters have been determined from the maximum loads of specimens that
are geometrically similar but have different sizes. This paper proposes a test method based on the
size effect law in which different specimen sizes are not required.

To separate the size effect from other influences on fracture of quasibrittle materials, BaZzant
in 1984 [1] proposed a fracture model for geometrically similar specimens, which is commonly
called the size effect law (SEL). Geometrically similar specimens are those in which all the
dimensions including the length of the initial traction-free crack or notch are in proportion. SEL
provides an equation to correlate the nominal strength of the specimen (oy) and the specimen
dimension (d). For any geometry there are two constants, (Bf!) and d,, governing the equation.
These constants depend on the material properties as well as the geometry of the specimen. When
the specimen of a specific geometry increases to an infinitely large size, its fracture behavior must
follow LEFM because the process zone length becomes negligible in comparison with the crack
length and specimen size. Note that the initial crack or notch length also approaches infinity when
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the size of the structure approaches infinity under the condition that the geometry of the specimen
remains the same. Bazant and Pfeiffer showed in 1987 [2] that fracture energy in an infinitely large
structure should be independent of structural geometry. With this development the two constants
governing the SEL equation for specimens of any specific geometry are related to each other
through a material constant G—the critical energy release rate, called fracture energy, in brief. The
generalization of SEL was completed in 1990 by Bazant and Kazemi [3]. They proposed that not
only a constant representing the fracture energy, G, but also a constant called the effective process
zone length, ¢, can be defined for an infinite specimen as material parameters and can be evaluated
from SEL. By adapting LEFM formulas for the infinite-size specimen, Bf, and d, can be determined
for any specimen geometry from G; and ¢, Therefore, the nominal strength of a structure can be
uniquely predicted when G, ¢, the structural geometry and the size are known. Conversely, from
the maximum loads measured on a series of geometrically similar specimens, Bf, and d,, and
therefore G; and ¢, can be obtained.

With this theoretical background, RILEM recommended in 1991 {4] to determine G; and ¢;
by testing geometrically similar three-point bend beams. This method was named the “size effect
method™ and has been widely used [S, 6]. However, the generalized theory of SEL provides an
equation for gy explicitly in terms of G, ¢; and size d, valid for any specimen geometry. Therefore,
it is not necessary to determine Bf, and d, as a mid-step in passing from oy or the measured
maximum loads to G; and ¢,

The main advantage of the size effect method is that only the maximum loads of fracture
specimens need to be measured, which is easy. Because of the scatter typical of concrete the method
only works if the range of the brittleness numbers of the test specimens exceeds about 1:4 (the
brittleness number, as explained later, characterizes the relative proximity of the response to
plasticity and to linear elastic fracture mechanics). The size effect method according to the RILEM
Recommendation [4] achieves different brittleness numbers by varying the specimen size while
keeping the specimen shape, relative notch depth and loading geometry the same. However, the
need to produce specimens of different sizes is an inconvenience which has hindered applications,
especially in the field. To circumvent this inconvenience the present proposal exploits the fact that
different brittleness numbers can also be achieved by varying the notch depth while keeping the
specimen size and shape, as well as the loading geometry the same. Then, of course, the specimens
are not geometrically similar, but one can still apply in fracture testing the generalized form of the
size effect law. This was noted by Bazant and Kazemi [3], but the question as to whether a sufficient
range of brittleness numbers could be achieved for one specimen size, just by varying the notch
depth, has not been explored. The present paper has the objective of doing exactly that. As we
will see, the answer is affirmative. Various specimen geometries are compared to identify the most
favorable one. These comparisons include three-point-bend beams, rectangular eccentrically
compressed prisms, regular notched split-tension cylinders and notched split-tension cylinders with
a hole in the axis (Fig. I).

Simultaneously with the present study, Bazant and Li[7] proposed and validated another
variant of size effect method called the zero-size strength limit method, in which, also, fracture
specimens of different sizes need not be tested. This method uses one fixed geometry and one fixed
relative notch depth of the fracture specimen. The additional information needed to determine two
fracture parameters is obtained by calculating the load capacity for the small-size plastic limit from
the modulus of rupture (which is measured by the standard bending test of unnotched specimen).
In this manner, one in effect uses the measured maximum loads for two effective specimen
sizes—the actual size of the fracture specimen and the zero effective size, for which the nominal
strength can be calculated by plastic limit analysis.

Enlarging the size range makes it possible to reduce the uncertainty in the resulting values of
fracture energy and process zone size. In this light, a further refinement could be achieved by
combining the presently proposed variable-notch one-size method with the aforementioned
zero-size strength limit method. This would mean testing (i) fracture specimens of one size
and shape, but with different notch depths, and (ii) at the same time exploiting the nominal
strength calculated according to plasticity from the modulus of rupture. In this case, one
would in effect have data for three or more brittleness numbers—two or more of them
corresponding to the fracture specimens with two or more different notch lengths, and a zero
effective size.
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REVIEW OF THE SIZE EFFECT LAW OF ITS GENERALIZED THEORY
The size effect law proposed by Bazant in 1984 [1] reads:

aN=Bﬁ’(l+ %)“5 0

(7))
x|

Steel Plate

Fig. 1. Sketches of specimens. (a) Three-point bend beam. (b) Eccentric compression prism. (c) Regular
split-tension cylinder. (d) Holed split-tension cylinder.
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Fig. 2. Illustration of size-effect law.

where oy is the critical nominal stress, i.e. nominal strength of specimen (or structure), d is the
specimen size and Bf, and d, are constants for a given specimen geometry (Fig. 2). Note that B
and f! need not be identified separately because only their product matters, though f denotes the
tensile strength. Constants Bf! and d, can be determined from measured gy values of several
geometrically similar specimens of different sizes by using nonlinear regression. For the purpose
of linear regression, BaZant converted eq. (1) to the form Y = AX + C, where Y = (f{/o\)’, X = d,
B=1//c and d,=C/A. B and f are separated so that every term in ¥ =AX+ C is
dimensionless. When f is not available, both sides of eq. (1) can be divided by ( f7)’ so that B and
f{ be kept combined. The modification does not affect the values Bf! and d, that result from the
linear regression.

Generalization of SEL adopts the following LEFM relations (2)<(5) for the infinitely large
specimen. First,

K, = on/naF(x) @

where K, is the mode I stress intensity factor; a is crack length; « is the ratio of crack length a
to the specimen dimension d; F(a) is a function of a, called geometry factor; and oy is the nominal
strength of specimen, defined as

P
ON = Co g 3

where b is the specimen thickness, d is one specimen dimension representing specimen size, and
¢, is a constant which can be chosen arbitrarily, but is usually taken so as to make ¢y the maximum
tensile stress in the specimen of the same type with no crack. Considering the LEFM fracture energy
release rate G = (K,.)*/E with E as the elastic modulus, one obtains

2

G= g @

where P, is the critical load or maximum load, and

g(@) = fi(a) = mac;Fi(a) . (%)

The function g(z) and its derivative g’(2) permit generalizing SEL.

Based on the understanding that the fracture process zone length attains a limit value in an
infinitely large specimen, to which LEFM is applicable, SEL can be generalized by introducing as
the basic constants the effective fracture process zone length in the infinitely large specimen, ¢, and
the fracture energy in the infinitely large specimen, G;[3]. These two material constants can be
expressed in terms of geometry-dependent constants Bf! and d,, and geometry-determined
constants g(x,) and g’(%), where g, is the ratio of the initial crack length g, to the specimen
dimension d4:

_ By I {CY)
G crz‘E dog(ao)» = gl(ao) dO . (6a,b)
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Substituting Bf{ and 4, obtained from eq. (6a,b) into eq. (1) yields the equation of the generalized
SEL, ie. oy = Cn\/EGf{g'(ao)cf + g(ao)d]~'? or

EG;
g'(%) :
g | @

a+ s
T g ()

N = Cq

From eq. (7) with known g(«,) and g’(%), the nominal strength gy for any specimen or structure
can be determined if G; and ¢; are known. If the maximum loads for similar specimens of sufficiently
different sizes are measured, and where g(a,) and g'(%) are known, G; and ¢, can be obtained by
nonlinear regression. By algebraic arrangement, eq. (7) has been converted to a linear regression
equation:

Y=AX+C 8)
where
e g(%) 1 C
= —"—=,X=D= 2", -, = —
(003 gl g = g ®)

D is called the effective structural dimension (or size). Since both g(a,) and g’(c,) are constant for
geometrically similer specimens, they can be determined by regression as in the size effect method
recommended by RILEM [4]. By multiplying both sides of eq. (9) by g’(a,), one obtains

Y* = A*X* + C* (10)
where
ca g(ao) glag) C*
*x _ _n * = = —_
Y* = o X*=d, EG = =35, ¢ ) A (11)

This modification shortens mathematical manipulations in calculating the coordinates of data
points.

VARIABLE-NOTCH ONE-SIZE TEST METHOD

The proposed variable-notch one-size test method is based on eqs (7), or (8) and (9), with the
understanding that specimens are not necessarily geometrically similar and therefore g(o,) and
g’(a) are not necessarily constant. The method uses specimens of the same shape and size, but with
different notches. Material parameters G; and ¢; can be obtained from the measured nominal
strengths of these specimens by means of nonlinear regression (7) or linear regression (8).

The size effect is controlled by constants Bf, and d, [eq. (1)]. These constants depend on both
the material and specimen geometry. The generalized theory of SEL separates Bf! and d, to two
independent parts—-material factors Gy and ¢;, and geometry factors g(a,) and g’(a,). For specimens
of the same geomelry, g(a,) and g’(a) are constants, and therefore eq. (7) or (8) characterizes the
size effect for the specimens of this geometry. The effect of specimen geometry on oy is reflected
by the involvement of values of g(x,) and g’(«) in eq. (7) or (8). For specimens of different types,
g(o) and g’(2) have, respectively, different forms. For specimens of the same type and size, different
notch lengths make the specimens different in geometry. In other words, combination of these four
factors, G, ¢;, g(o) and g’(a,), controls both the geometry effect and the size effect on the nominal
strength. Generally speaking, G, and ¢; can be obtained from statistically sufficient data sets of oy,
d, of g(ay) and g’(«) of any different specimens.

When only one type of specimen is considered, the forms of g(x) and g’(«) are identical for
all the specimens so that there are only two factors to determine the nominal strength: a, and 4.
Then, in the In oy-In d plane (Fig. 3), each solid curve characterized by a value of a, represents
the size effect—the change in the normal strength with the specimen size for specimens of the same
geometry. The original version of the size effect method (4] regresses the data points distributed
along the same curve to yield G; and ¢, The proposed variable-notch one-size test method is to
regress data points of specimens of the same size but with different notches, which are shown in
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Fig. 3 as the points distributed along a vertical straight line parallel to the In oy-axis, but on
different solid curves. Essentially, this proposed method is based on the geometry effect on the
nominal strength of specimen or structure, which is described in SEL by variable g(x,) and g'(a).
As another variant of the size effect method [7], the zero-size strength limit test method attempts
to obtain G; and ¢; from a data point for a finite 4 in the In ox—In d plane, and the asymptotic
value of oy of the solid curve on which the data point is located as d approaches 0 (i.e. In d
approaches minus infinity).

The linear and nonlinear approaches are not completely equivalent because they imply
different weights of the data points. This assertion is also correct for the variable-notch one-size
variant. Although exactly the same results cannot be expected from the different regressions, it will
be seen later that values of G; and ¢, obtained by means of the linear and nonlinear regressions
in this experimental program are very close to each other. As functions for oy, eqs (7) and (8) are
mathematically identical, although the oy value obtained involves an error. In the sense of statistics,
the values of G;and ¢; obtained from egs (7) and (8) should become close to each other, respectively,
when the number of test specimens increases. Theoretically, as the number of test specimens tends
to infinity, the results from eqs (7) and (8) approach exactly the same values. Experimentalists may
prefer linear regression, although the weights implied by nonlinear regression are more reliable.
This is not only because a computation program for linear regression based on the least-squares
method is more popular and accessible than that for nonlinear regression, but also because the
“straightness” of the trend of the data points distributed in a plane is easily judged by visual
perception. Because of these advantages of linear regression, its application to the variable-notch
one-size test method will be discussed in detail.

ERRORS IN REGRESSION CONSTANTS CAUSED BY THE ERROR IN NOTCH
MEASUREMENT

Although random errors in measurement and regression due to material heterogeneity and
other random factors are unavoidable, systematic errors caused by instrumentation should
be reduced as much as possible. Of all the measurements in the fracture test, the possible
largest relative error is in o, because it is the shortest dimension to measure. The relative
error, Aap/a, = Aay/a,, propagates to factors of 1/g’(a,) and g(a)/g’ () in eqs (7) and (8).
Therefore, study of systematic errors in regression caused by the relative error of Aay/a, is
important.

The error of 1/g’(x) caused by Aa, can be estimated with the approximation of the first

order:
Al =L )= L Vaq, (12)
g (%) g ()

log (on)

log (d)

Fig. 3. Illustration of variable-notch one-size test method.
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provided Aa, is small enough. Then the relative error of 1/g"(x) is

] g() Tt Tha )

{5a)

g =<_m%>A_ao Boy _ Aa
1 % % %

g'(2)

where

_ ')

E= 7 (o)

&,

¥, will be called the relative error factor for 1/g’(a,). Similarly, the relative error of g(x)/g’(2%) may

be estimated as
A( g(%) )
g (a0) Ax,

_y A% _ Ag
)’—E—‘P% —lPao (14)
g ()

where

_ (&8 _ g'(n)
V= ( g 2(%) )"“”

Y will be called the relative error factor for g(a,)/g’(a). For accurate regression results, specimen
geometries that provide small ¢ and  are certainly preferable no matter whether linear or nonlinear
regression is executed.

Errors in linear regression constants caused by the error in measurement of g, need now to
be studied in more detail. Letting x and y denote the actual values for X and Y, one has

x=X+e,y=Y+$6 (15a,b)
where € and J are errors in X and Y, respectively. Substituting eq. (15a,b) into eq. (8) yields
y=C+ Ax + (0 — Ae) . (16)

Examining eq. (9), one obtains

5= (Y%O)Aao, e=<xaﬂo>Aao (17a,b)

where Aq, is the error of a,. The possible maximum of deviation |Aa,| for different notches,
designated by |Aay|y, should be the same when measured by the same instrument (e.g. a ruler). The
possible maximum deviation of y from the straight line ¥ = C + AX is estimated as

=(|ir& v
p (IYaoI+IXaOI)IAaolm- (18)

If the smallest X arnong all the data points is X, and the largest, X, (Fig. 4), the possible extreme
positions of the fitting straight line QR for ¥ = AX + C are illustrated as KL and MN. KL and
MN are determined by their deviations from QR: MQ =KQ =p, at X = X, and LR = NR = p,
at X = X,. By drawing QS parallel to KL, it is shown that the possible maximum error in 4 is

Ad= + H (19)
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Fig. 4. Errors in linear regression.

and the possible maximum error in C is

AC= tp,+XAd =t (Xop1 + Xip) (20)

1
XZ—X]

where X, — X, & x,-x, when (X, — X)) is not too small.

Therefore, to reduce errors in 4 and C caused by the error in measurement of notch length,
one should maximize (X, — X)) and also choose types of specimens for which y and y are small.
It is obvious that when the specimen dimension d is kept constant, the magnitude of (X, — X))
depends on the range of g(x)/g’(«o). The following analysis will show that, with prism specimens,
eccentric compression can provide a larger range of g(a,)/g’(2) than beam bending and that, with
split-tension cylinders, a hole drilled at the specimen center can remarkably enlarge the range of
g(2,)/g’(%%). The range of the ratio of g(ay)/g’(%) decides the maximum possible range of the
brittleness number and should be maximized in the specimen design. A certain limit of validity of
the definition of brittleness number will be discussed later.

ANALYSIS OF SEVERAL SPECIMEN GEOMETRIES

Three-point bend beams, eccentric compression prism, regular split-tension cylinder and
split-tension cylinder with a hole at the specimen center (Fig. 1) were analyzed with regard to
applying the proposed test method. The geometry function F(x) for the stress intensity factor K|
was obtained for each of these specimens with finite element analysis, which was performed with
the program package ABAQUS (product of Hibbit, Karlsson and Sorensen).

Three-point bend beams

Firstly, it was checked that for the beam with s/d = 4 [Fig. 1(a)), the finite element analysis
results for F(x) match very well the formula given by Srawley (cited in ref. [8]):

_ 1 199 —a(l —a)(2.15 — 3.930 + 2.72%)
F(a) - ﬁ (] + 2&)(1 - a)l.s (21)

for which the nominal stress is defined as

3Ps
Oy = '2b—'d2 . (22)
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Fig. 5. Function g(a)/g’(2) for three-point bend beams.

A similar finite element mesh was used for the beam with s/d = 2.5, the results show some slight
deviation from the formula given in ref. [4]. For 0.1 < a < 0.6, the fitting of the finite element results
for a = 0.1, 0.2, 0.2, 0.4, 0.5 and 0.6 provided
Fla) = 1 1.83 — 1.65a + 4.76a’ — 5.30a’ 4+ 2.514*
\/7_z (1 +22)(1 — 2)**
for which the nominal stress oy is also defined by eq. (22). This formula can be applied only for
0.1 < a <0.6. The deviation of each finite element result from the value calculated with eq. (23)
does not exceed 0.1%.

Based on the above results, functions g(a)/g’(a), x and { were calculated. For both beams
(s/d = 2.5 and 4), g(a)/g (a) takes its maximum value when a is about 0.27 (Fig. 5). Since functions
g(a) and g’'(a) for the two types of specimens are very similar, only x and { for the beam with
s/d = 2.5 are shown (Fig. 6).

(23)

Eccentric compression prisms

For the rectangular prism under eccentric compression [Fig. 1 (b)], the point load P can be
replaced by two statistically equivalent distributed loads: a uniform distributed compression and

Relative Error Factors
A
T

Il Il 1 Il

0 0.1 0.2 0.3 0.4 0.5 0.6

o

Fig. 6. Relative error factors for three-point bend beam (s/d = 2.5).
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Fig. 7. Finite element mesh for eccentric compression prism.

a linearly distributed load that acts as a pure bending moment. When the crack tip is far away
from the prism ends where the load acts, this replacement is justified by Saint-Venant’s principle.
Thus,

K, = o/ maF(a) = on/malmF (o) — Fy(a)] (24)
where
P b
aN=b—d,m—6<§ +c), (25a,b)
Fi(a) = 1.122 — 1.40a + 7.33¢* — 13.08«° + 14.0a* (26)
and
Ffa) = 1.122 — 0.231a + 10.55¢° — 21.71a° + 30.382«* . 27

Equation (26) is for the pure bending beam and eq. (27) is for simple tension of the single-edge
notched specimen [9]. Validity of eq. (24) was confirmed by finite element analysis. Figure 7 shows
the finite element mesh for the case of s/d = 4. In the figure, CF is a steel plate (whose thickness
h = 0.08 d) with assumed elastic modulus E = 210 GPa and Poisson’s ratio v = 0.3, which is well
bonded to the concrete body with assumed E =21 GPa and v =0.15. All the elements are
eight-node rectangular isoparametric elements. Collapsed quarter-point isoparametric elements are
used around the crack tip A. All the nodes along AB are fixed in the x-direction, but the node
at B is fixed in both x- and y-directions. Load P is moved along CF to different locations for
different load eccentricities. The stress intensity factor K is obtained through the J-integral. All
the calculated F(a) values do not deviate from eq. (24) by 0.5%. For a short prism with s/d = 2,
the deviation does not exceed 1.5%. Therefore, eq. (24) combined with eqs (25a,b), (26) and (27)
is at least accurate enough for the purpose of test data analysis of eccentric compression prisms
not shorter than s/d = 2.

The eccentric compression prism and the bend beam have no difference in appearance. The
difference between them is only in load arrangement. The change in load arrangement considerably
affects g(a)/g’(2), ¥ and . As shown in Fig. 8, the maximum value of g(a)/g’(a) for eccentric
compression is much higher than that for bending and so applying eccentric compression on the
specimen of the same size expands the span of (X; — X)) greatly. In eccentric compression with
¢ = 0, the span of (X; — X;) is much larger than that in beam bending. Another advantage of the
eccentric compression is a larger a value at which the maximum g(a)/g’(«) occurs. For example,
the « limit for eccentric compression with ¢ = 0 is 1.7 times as large as that for three-point bending.
It practically allows greater differences in notch lengths, which means greater differences in
specimens geometries. In addition, x and { are very small in eccentric compression with ¢ =0
(Figs 9 and 10). It seems that values of g(«)/g’(2) can be very high when the load is applied between
the center line and the unnotched side of the specimen [Fig. 1 (b)), i.e. when c is negative. However,
the tests conducted in this experimental program indicated that the specimen was likely to have
failed in the mode of compressive crushing underneath the load point or in the mode of mixed-mode
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Fig. 8. Function g(a)/g’(z) for eccentric compression prisms.

fracturing when the load is not far away from the specimen center line. It is suggested to use ¢ = 0
or 1/24. It must also be noted that the optimization of the design of eccentrically compressed
notched specimens may be limited by the compression strength of concrete.

Regular split-tension cylinders

The word “‘regular” refers to the split-tension cylinder with no hole drilled in it [Fig. 1 (c)).
The split-tension test is also called the split-compression test or Brazilian test. The finite element
mesh is similar to that shown in Fig. 11 except there is no hole (or r = 0). By considering the effect
of the distributed-load width [9], the load is assumed distributed (¢/R = 0.16) to simulate the load
condition in the test, where plywood load bearing strips are used to deliver loads to the specimen
(ASTM C 496). Tte following equation is obtained:

F(a) = 0.964 — 0.026a + 1.472a> — 0.2560° (28)
where
P
aN = m (29)
10
0 N
-10 c/d = 1124 \\\
= S .
20 F R .
30 A .
_40 1 1 L L A
0 0.1 0.2 0.3 04 05 0.6
o

Fig. 9. Relative error y for eccentric compression prisms.
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Fig. 10. Relative error { for eccentric compression prisms.

b is the thickness of the cylinder, R is the radius and P is the total compressive load. Function
F(a) is shown in Fig. 12. Similar to that for the three-point bend beam, the range of g(x)/g’(a)
for the regular split-tension specimen is quite small (Fig. 13). However, a small modification of
the cylinder such as a hole drilled at the specimen center can dramatically change the range of
g(2)/g’ (). Relative factors y and  for the regular split-tension cylinder are shown in Figs 14 and
15. Regular split-tension cylinder is not suitable for the proposed method.

Holed split-tension cylinders

Finite element analysis shows that a hole drilled at the cylinder axis greatly changes the stress
distribution in the split-tension cylinder [Fig. 1 (d)]. In the finite element mesh (Fig. 11), /R = 0.16,
r/R = 0.12, where ¢ is half the distributed-load width and r is the radius of the hole. This geometry
was used in the experimental program of this study. Elements with three sides that are located along
the curved boundary are all six-node triangular elements. All other elements are eight-node
rectangular isoparametric elements. Elements around the crack tip B are collapsed to quarter-point
elements. Nodes along DE are fixed in the y-direction, while nodes along AB are fixed in the

1,
W

-A oy
- 2\
__B 2\
.\
of C i
Y v"}_ ] X
9_ D R [

Fig. 11. Finite element mesh for holed split-tension cylinder.



Method for fracture energy and process zone length 395

18 L}

16 -

12 +~

0.8 n 1 L L " 1 — AL i L i Il "
0 0.1 02 03 0.4 0.5 0.6 0.7

Fig. 12. Geometry function F(a) for regular and holed split-tension cylinders.

x-direction. According to finite element computation, function F(x) for the holed split-tension
cylinder is:

F(o) = 2.849 — 10451 + 22.938« — 14.944° 30)

for which the nominal stress oy is defined as in eq. (29). Figure 12 shows that drilling of a hole
changes function F(a) surprisingly. Although F(a) decreases with « to its minimum value, K(«)
increases with increasing . In other words, the holed cylinder is not a negative, but still a positive
fracture test geometry. A large change in F(a) leads to correspondingly large changes in all
g(a)/g’(x), x and { (Figs 13 —15). As shown in Figs 14 and 15, 5 and { are significantly increased.
However, based on curves of both x and ¥ vs @, one may choose notch lengths properly so as to
avoid the highest values of x and V.

For many types of specimens, g(x)/g’(x) is not monotonic, and thus there exists a maximum
value of g(a)/g’(a). This observation will be discussed next in relation to the brittleness number
range.
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Fig. 13. Function g(«)/g’(«) for regular and holed split-tension cylinders.
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Fig. 14. Relative error y for regular and holed split-tension cylinders.

RANGE OF APPLICABILITY OF BRITTLENESS NUMBER

Bazant defined the brittleness number f = d/d, as a physical quantity to characterize the
brittleness of the structures [10]. This definition is not an arbitrary combination of variables that
affect the nominal strength of a structure, but is based on a physical law-SEL. This definition was
experimentally justified in Bazant and Pfeiffer [2], and several other works. With generalization of
SEL, the brittleness number automatically becomes [3]

p_E@) d _ D 31)

This brittleness number includes the function of g(a,)/g’(a) to reflect the geometry effect on the
brittleness of the structure. Concerning specimens of the same shape and size, experience shows
that a specimen with a longer notch is more brittle than one with a shorter notch. This property
is shown in eq. (31). When the notch lengths are not very long, f usually increases when the notch
lengths in the same specimen increase because g(a,)/g’(a,) usually increases with oy .
Nevertheless, the definition (31) is not always valid for specimens or structures that exhibit
a maximum value of g(«)/g’(2). The x value from which g(x)/g’() starts to decrease with increasing

2 |
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Fig. 15. Relative error { for regular and holed split-tension cylinders.
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Table 1. Mix designs of concrete for batches 1-3 (for 1 m’ of concrete)

Content Mass (kg)
Cement (type I) 391
Coarse aggregate (crushed limestone) 1055
Fine aggregate (siliceous sand) 721
Water 204

Water/cement ratio is 0.52. The maximum size of the coarse
aggregate for mix design 1 is 9.5 mm. The maximum size of the coarse
aggregate for mix design 2 is 12.7 mm.

« is the limit of the validity of the definition of the brittleness number. This limit seems not to
constrain the usefulness of the brittleness number much, because in practice, structures of
quasibrittle materials usually do not have a very long initial crack. It is necessary to point out that
the shape of the curve of g(x)/g’(2) vs a does not affect the validity of the size effect law and its
generalized theory. The effect of specimen geometry on the nominal strength does not rely only
on the factor of g(a,)/g’(a) in the generalized theory of SEL, but also on the factor of 1/g’(a)
[eq. (7)]. Our tests verify the validity of the generalized SEL theory for the holed cylinders for which
g(a,)/g’(ag) decreases with .

EXPERIMENTAL PROGRAM

An experimental program of fracture tests was conducted to verify the proposed
variable-notch one-size test method. Different types of specimens (Fig. 1) of four batches of
concrete were prepared. The concrete mix designs used for the first three batches are shown in
Table 1. The component proportions for the two mix designs were the same, but they used different
coarse aggregates. The maximum size of the coarse aggregate for mix design 1 (for batch 1) was
9.5 mm, whereas for mix design 2 (for batches 2 and 3), 12.7 mm. Although specimens of batches
2 and 3 were both made with the same mix design, they were cast at different temperatures, about
30°C and 24°C, respectively. Batches 1 and 4 were also cast at about 30°C (Table 2). The specimens
were demolded ore day after casting and then cured in a moisture room at 23°C. They were all
tested after 28 days. Cylindrical specimens of 152 mm (6 inches) in diameter were prepared for
compression tests from each batch. Elastic modulus of concrete was calculated from the
compressive strength with the ACI Building Code formula E = 4730 \/ch applicable for
normal-weight concrete, f°. is the compressive strength, and both E and f°. are in MPa.

Notches were cut in the specimens just before testing. Those in beam specimens and eccentric
compression prisms were cut by a diamond saw, whereas those in split-tension cylinders were cut
by a saw blade threaded through the hole after a hole was drilled at the specimen axis. All the
split-tension cylinders were 152.4 mm in diameter. For some cylinders, the hole was so fine that
it did not have eppreciable influence on the stress distribution around the notch tip. Those
specimens were treated as regular split-tension cylinders [Fig. 1(c)]. For the other cylinders to be
called holed split-tension cylinders, a hole of 18.3-mm diameter (r/R = 0.12) was drilled [Fig. 1 (d)].
The width of all the notches was 3 mm. To reduce errors, the length of the notch in every specimen
was measured after the specimen was tested. This was done at three different locations along the
specimen thickness and their average was taken for data analysis.

All the values of g(x) and g’(«) used in test data analysis were calculated from the LEFM
formulas obtained by finite element analysis. The values of K and ¢; for each batch of concrete

Table 2. Mix design of concrete for batch 4 (for 1 m’ of concrete)

Content Mass (kg)
Cement (type I) 294
Coarse aggregate (crushed limestone) 1134
Fine aggregate (siliceous sand) 756
Water 147

Water/cement ratio is 0.50. The maximum size of the coarse
aggregate is 16 mm.
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Table 3. Test data of bend beams of concrete batch |

Specimen d (mm) a, (mm) 2%, = ap'd b (mm) sid P.(N) o.(MPa)
A-BRI 50.8 14.7 0.289 76.2 2.5 3113 3.016
A-BR2 50.8 14.7 0.289 76.2 2.5 3003 2.909
A-BR3 76.2 19.8 0.260 76.2 2.5 4693 3.031
A-BR4 76.2 19.8 0.260 76.2 2.5 4048 2.614
A-BRS5 101.6 252 0.250 76.2 2.5 5293 2.564
A-BR6 101.6 254 0.250 76.2 2.5 5026 2.434
A-BR7 152.4 40.5 0.266 76.2 2.5 7295 2.356
A-BRS8 152.4 39.7 0.260 76.2 2.5 7762 2.506

Table 4. Test data of eccentric compression prisms of concrete batch 1

Specimen d (mm) a, (mm) oy =ayd bid sid cid P.(N) o (MPa)
A-EC1 101.6 12.7 0.125 0.75 3.75 0 15930 2.058
A-EC2 101.6 12.7 0.125 0.75 3.75 0 16010 2.068
A-EC3 101.6 25.4 0.250 0.75 3.75 0 15480 2.000
A-EC4 101.6 254 0.250 0.75 3.75 0 14190 1.833
A-ECS 101.6 36.9 0.363 0.75 3.75 0 12790 1.652
A-ECé6 101.6 36.5 0.359 0.75 3.75 0 13230 1.709

were obtained with both linear regression and nonlinear regressions based on the method of
least-squares. G, was calculated from G; = (K;)’/E. For nonlinear regression, a computer program
based on the Levenberg-Marquardt algorithm was developed. The main subroutines of the
program were taken from ref. [11].

Fracture test specimens of batch 1 were beams (Table 3) and eccentric compression prisms
(Table 4). The beams were geometrically similar with s/d = 2.5 and a, = 0.25, and were of four
different sizes. However, saw cutting was not perfectly controlled to achieve a constant o, But
differences in a, would yield differences in g(a,) and g‘(a,). In such a case, the variable-notch method
should be used for regression to avoid large errors. A steel plate was mounted on each end surface
of the eccentric compression prism [Fig. 1(b)] with high-quality bond, so that the plate would
deliver both compressive and tensile stresses to the concrete specimen. The ratio c¢/s = 0 was used
in all the tests, where c is the load distance from the side of prism. Values of K, G; and ¢; were
obtained with linear and nonlinear regressions from beams and eccentric compression prisms; see
Table §5. Test points of all the specimens of this batch are shown in the Y-X plane in Fig. 16 for
visual perception. (The solid circle in Fig. 16 indicates the data from brittle plastic analysis, which
are not included in the present regressions and will be discussed in the following section) It seems
that values of K (or say Gy and c¢; obtained from specimens of beams and from eccentric
compression prisms are close to each other, which confirms the results of Bazant and Pfeiffer in
1987 (2], and Bazant and Kazemi in 1990 [3].

In batch 2, the specimens were split-tension cylinders (Table 6), eccentric compression prisms
(Table 7) and bend beams (Table 8). These prisms and beams had the same shape and size, but
with different notches. The lengths of notches in the eccentric compression prisms were restricted
to avoid large y values. All the split-tension cylinders in this batch (Table 7) had diameter 152.4
mm. Three of them were considered regular cylinders because only a very small hole was drilled
[Fig. 1 (¢)]. A comparatively large hole was drilled for the remaining cylinders [Fig. 1 (d)]. The
ratio of the hole radius r to the specimen radius R was 0.12. The ratio of the distributed load width
2t to the specimen diameter 2R was 0.16 for all the cylinders. The notch lengths for the split-tension
cylinders (Table 6) were selected to avoid the largest x and ¥ (Figs 14 and 15).

Table 5. G; and ¢ of concrete batch 1

Specimen series Linear regression Nonlinear regression

R? Ky (MPam'?) G, (Nm~") ¢ (mm) K;(MPam'?) G;(N-m-') ¢ (mm)
Similar beams of different sizes 0.761 1.03 38.7 22.8 0.933 31.8 16.4
Eccentric compression 0.928 1.16 49.1 19.2 1.18 50.1 21.0

The elastic modulus E = 27.4 GPa is calculated from the compressive strength with the ACI formula. R? is the
correlation coefficient for the linear regression.
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Fig. 16. Linear regression for data from specimens of concrete batch 1.

Regressions from the split-tension test data provide K, (or G;) and ¢, values that are very close
to the results from eccentric compression tests (Table 9 and Fig. 17). Regression combining data
from these two types of tests is also conducted and given in Table 9. The data points of the beams
are also plotted in Fig. 17. Different from beams of batch 1, the beams of this batch provide a
considerably lower ¢ value than eccentric compression prisms (Table 9). This indicates that the
differences in measured ¢, may be caused by random factors rather than the geometry of the
specimen. However, specimens of the same shape and size have always shown a reasonably looking
linear fit. It may be speculated that, because the same geometry and size of specimens provide the
same boundary conditions for moisture and heat flow during specimen curing, the same degree of
hydration in these specimens might be reached within the same period. Regressions of the test data
of all the specimens gave a Kj; value very close to that from the test data of the split-tension and
eccentric compression specimens (Table 9). It is because the range of (X; — X)) of the beams is much
smaller than that of the split tension and eccentric compression. In the sense of linear regression
(Fig. 17), the range of (X, — X)) is a decisive factor.

Batch 3 consisted of one series of similar beams (Table 10) and another series of beams of
the same shape and size, but with different notches (Table 11). As in batch 1, the variable-notch
method was used for regression of the beams whose specifications are listed in Table 10 because
slight differences in o, caused different g(a,) and g’(a,) values. Linear and nonlinear regressions for
these cases gave very similar results (Table 12). The beams of the same size did not allow good

Table 6. Test data of split tension cylinders of concrete batch 2

Specimen Type R (mm) 2a, (mm) oy=ay/R b(mm) ¢/R r/R P.(N) o.(MPa)
B-S1 regular  76.2 18.0 0.1181 63.0 0.16 0 47860 3.182
B-S2 regular  76.2 20.0 0.1312 63.0 0.16 0 46750 3.010
B-S3 regular  76.2 18.0 0.1181 60.0 0.16 0 53510 3.548
B-S4 holed 76.2 395 0.2592 74.0 0.16 0.12 42930 2.423
B-S5 holed 76.2 375 0.2461 77.0 0.16 0.12 37320 2.025
B-ST6 holed 76.2 38.0 0.2493 78.0 0.16 0.12 40660 2.178
B-ST7 holed 76.2 69.0 0.4528 71.0 0.16 0.12 27890 1.513
B-ST8 holed 76.2 68.5 0.4495 76.0 0.16 0.12 22600 1.242
B-ST9 holed 76.2 68.5 0.4495 75.0 0.16 0.12 24640 1.372

Table 7. Test data of eccentric compression prisms of concrete batch 2

Specimen d (mm) a, (mm) o = ao/d b/d sid c/d P.(N) a.(MPa)
B-ECl1 157 16.5 0.1052 1 2 1/24 37280 3.580
B-EC2 15€ 41.7 0.2676 1 2 1/24 29450 2.831
B-EC3 15C 56.0 0.3734 1 2 1/24 27130 2.608
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Table 8. Test data of bend beams of concrete batch 2

Specimen d (mm) a, (mm) % = Goid b (mm) s/d P (N) . (MPa)
B-BGlI 152.4 12.8 0.0837 152.4 2.5 26420 4.266
B-BG2 152.4 14.3 0.0935 152.4 2.5 26330 4.253
B-BG3 152.4 26.3 0.172 1524 2.5 20190 3.261
B-BG4 152.4 25.8 0.169 152.4 2.5 21260 3.433
B-BG5 152.4 37.7 0.247 152.4 2.5 17880 2.887
B-BG6 152.4 37.5 0.246 152.4 2.5 16680 2.693

Table 9. G; and ¢, of concrete batch 2

Specimen series Linear regression Nonlinear regression
R? Ki¢ (MPam'®) G, (N'm ") ¢ (mm) K, (MPam'?) G, (N-m"') ¢ (mm)

Split tension 0.808 0.883 29.4 15.4 0.841 26.7 12.5
Eccentric compression 0.939 0.939 333 19.4 0.908 31.1 15.9
One-size beams 0.936 0.955 344 5.53 0.956 345 5.60
Split tension and eccentric

compression 0917 0917 31.7 18.0 0.873 28.8 14.4
All specimens 0.780 0.885 31.9 13.7 0.886 29.6 10.3

The elastic modulus E = 26.5 GPa is calculated from the compressive strength with the ACI formula. R? is the
correlation coefficient for the linear regression.

regression as seen in Fig. 18. (The solid circles in Fig. 18 represent data from brittle-plastic analysis
and will be discussed in Section 8.) Obviously these beams did not provide a sufficient range of
(X; — X)). It must be concluded that when rectangular prismatic specimens of the same size are
prepared, eccentric compression should be preferred. The test data from the beams with a, = 0.48
and 0.50 deviate essentially from the straight line that fits the similar specimens. The large deviation
might result from error propagation [eq. (17a)] with large y at large a, (Fig. 6). It has been an
experience for many experimentalists using the original version of the size effect method with
geometrically similar specimens that small «, would provide a better curve fitting than a value of
o larger than 0.3 or 0.4. We suggest that, no matter what version of the size effect method is used,
for a specimen geometry which provides large x and {, more specimens should be tested in order
to reduce the variances of X and Y.

Now let us consider the ranges of effective size D (or brittleness number f) that are achieved
with the specimens tested. For the three-point bend beams with different notches, the range of D,
that is, the ratio of the maximum D to the minimum D, is 1.9 (Fig. 17). In view of the scatter
magnitude typical of concrete, this range is not sufficient, except perhaps for very crude results.
Therefore, the three-point bend beams with variable notches cannot be recommended for the
present version, unless this version is combined with other versions of the size effect method [7].
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Fig. 17. Linear regression for data from specimens of concrete batch 2.
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Table 10. Test data of geometrically similar bend beams of different sizes of concrete batch 3

Specimen d (mm) ay (mm) o = ao/d b (mm) sid P.(N) o. (MPa)
C-BR1 78.5 20.5 0.261 127 2.5 9964 3.748
C-BR2 78.5 21.5 0.274 127 2.5 8985 3.380
C-BR3 115 29.0 0.252 127 25 12630 3.244
C-BR4 115 28.7 0.250 127 2.5 11570 2977
C-BRS 155 395 0.255 127 2.5 15480 2.949
C-BR6 155 43.0 0.277 127 2.5 15390 2.932
C-BR7 230.5 53.7 0.233 127 2.5 22240 2.849
C-BR8 229.5 52.2 0.227 127 2.5 21890 2.816

Table 11. Test data of bend beams of the same shape and size of concrete batch 3

Specimen d (mm) a, (mm) % = Go/d b (mm) s/d P. (N) o. (MPa)
C-BG1 150.7 37.0 0.246 152.4 25 17930 2.928
C-BG2 152.7 383 0.251 152.4 2.5 17170 2.767
C-BG3 152.5 59.7 0.391 152.4 25 12100 1.952
C-BG4 152.5 59.7 0.391 152.4 25 12190 1.967
C-BGS 153.0 74.0 0.484 1524 25 8096 1.302
C-BG6 152.3 76.3 0.501 1524 2.5 7740 1.251

Table 12. G, and ¢ of concrete batch 3

Specimen series Linear regression Nonlinear regression
R* K¢ (MPam') G (N'm~') ¢ (mm) Ky (MPam'?) G; (N'm~'") ¢ (mm)
Similar beams of different sizes 0.858 1.30 60.8 25.2 1.27 58.0 223

The elastic modulus E = 27.8 GPa is calculated from the compressive strength with the ACI formula. R? is the correlation
coefficient for the linear regression.

For the eccentric compression specimens with different notches, the range of D is 2.6 in Fig. 16
and 3.0 in Fig. 17. This is better and adequate for crude results, but still not quite satisfactory.
Based on previous studies of the size effect method with geometrically similar specimens of different
sizes [2, 4], the range of D should be at least 1:4 in order to obtain statistically acceptable regression
results. By carefully arranging notch lengths, one can obtain a much larger range of D, exceeding
4. To verify it, rectangular prism specimens were made as batch 4 concrete (Table 13). The shortest
notch for these specimens was 8-mm long, exceeding half the maximum aggregate size. The range
of D was 4.8. From the linear regression (Fig. 19), fracture parameters are obtained as K;; = 0.865
MPa'm'? and ¢; = 15.0 mm with R’ = 0.800. The nonlinear regression is based on eq. (7) results
K, = 0.852 MPa-m'? and ¢; = 14.6 mm. These results are listed in Table 14.
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Fig. 18. Linear regression for data from specimens of concrete batch 3.
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Table 13. Test data of eccentric compression prisms of concrete batch 4

Specimen d (mm) a, {(mm) do = dojd bid Iid cid P.(N) on (MPa)
D-EC1 102 8.3 0.082 0.75 4 0 14679 1.896
D-EC2 102 8.0 0.082 0.75 4 0 12233 1.580
D-EC3 102 20.3 0.20 0.75 4 0 11832 1.528
D-EC4 102 21.3 0.21 0.75 4 0 12010 1.551
D-ECS 102 4.7 0.44 0.75 4 0 10898 1.408
D-EC6 102 453 0.45 0.75 4 0 8714 1.126
D-EC7 102 55.0 0.44 0.75 4 0 8941 1.155

Table 14. G, and ¢, of concrete batch 4

Specimen series Linear regression Nonlinear regression
R? K¢ (MPa-m'?) G, (N'm~") ¢ (mm) K; (MPa-m'®) G, (N‘m~") ¢; (mm)
Eccentric compression 0.800 0.865 29.0 15.0 0.852 28.1 14.6

For the holed split cylinder test specimens with different notches combined with the regular
split cylinders, the range of D is 5.6 (Fig. 17). This is satisfactory for the purposes of regression,
and exceeds the lower limit 1:4 recommended before. Therefore, the specimens that are
recommended for the presently proposed new testing method are the split tension cylinder and
eccentric compression prism.

COMBINATION OF VARIABLE-NOTCH VARIANT WITH BRITTLE-PLASTIC VARI-
ANT OF SIZE EFFECT METHOD

The original version of the size effect method varies the specimen size d to change the
brittleness number, whereas the present version varies &, and then g(a)/g’(a) to change the
brittleness number. So apparently, accuracy of the variable-notch one-size method can be enhanced
by using one more size of the specimen. If specimens of the same shape and size are used, then
the accuracy of the variable-notch one-size method could be substantially enhanced by combining
it with the zero-size limit strength method. This method can also be combined with the original
version of the size effect method. Generally, combination of any two versions of the size effect
method would greatly increase the range of brittleness numbers. The zero-strength limit method [7]
analyzes the small-size plastic limit capacity as the asymptotic limit of the size effect described by
the size effect law. According to the size effect law [eqs (1) and (7)], the limiting value of oy for
d—0, designated as g, is

op =B, f, . (32)
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Fig. 19. Linear regression for data from specimens of concrete batch 4.
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Table 15. G, and ¢ of concrete batches 1 and 3 from linear regression including brittle—plastic analysis

Concrete Specimen series R K (MPa-m'?) Gi(N'm™") ¢r (mm)

Batch 1 Similer beams of different sizes 0.921 1.04 389 23.5

Batch 3 Similer beams of different sizes 0.922 1.33 63.6 27.2
One-size beams 0912 1.17 49.2 22,5

R is the correlation coefficient for the linear regression.

The equations for calculating B; for three-point bend beam and eccentric compression prism are
proposed based on brittle—plastic analysis [7], and the tensile strength f°, in eq. (32) also depends
on the specimen geometry. Basically, £ for any specimen geometry needs to be experimentally
determined. Although the general equation for the size effect law diverges when d—0, we can still

write
e/ EG
cg'(at)
but a value of &y, «, is specimen geometry dependent and needs to be experimentally determined
to satisfy eq. (33), where [, is the modulus of rupture obtained by testing unnotched beams.
For the three-point bend beam (s/d = 2.5), the present tests showed that o, = 0 can make o;
match the data from the notched specimens (Figs 16 and 18). The data for the solid circles in the
figures were obtained by substituting a, = 0, d = 0 and the values of modulus of rupture into eq. (8),
and the formula provided by [7] for brittle-plastic analysis of the beam. Bazant and Pfeiffer [2]
observed that, for lbeam specimens, the value o, = 1/6 made f, in the size effect law equal to a tensile
strength, which wes converted from the compressive strength through the ACI formula /" = 6\/fc’
psi. It should be noted that the converted value can be rather different from the experimentally
measured modulus of rupture. The moduli of rupture for concrete batches 1 and 3 in the present
experimental program were experimentally obtained by breaking unnotched beams (ASTM C78):
f.=15.985 MPa for batch 1, /", = 6.274 and 7.240 MPa for batch 3. The results from linear
regression including brittle-plastic analysis are shown in Table 15. It is seen that the correlation
coefficient R? for “he linear regression from the geometrically similar beams is greatly enhanced
by including the Y value at X = 0 from brittle--plastic analysis. Although variable notches on the
same-size beams of batch 3 did not provide a sufficient range of D for regression (Fig. 18),
introduction of the brittle—plastic one-size variant to the variable-notch one-size variant makes the
regression possible and leads to reasonable results (Table 15). As for using the zero-size strength
limit method to increase the range of D for eccentric compression prisms and holed split tension
cylinders, further experimental study is needed to obtain a, for these two types of specimens.

Op =

= B(a)f (33)

CONCLUSIONS

1. A variable-notch one-size test method is proposed to obtain G; and ¢; based on the
generalized theory of size effect law. Fracture parameters G; and ¢, can be obtained from either
linear or nonlinear regression so long as these specimens provide a sufficiently broad range of
brittleness number f or the effective structural dimension D, which was previously found to be
about 1:4. Since specimens of the same shape and size with different notches are easily prepared,
this method can facilitate application of the size effect law and its generalized theory to engineering
practice.

2. Three-point bend beams of the same size and with different notch lengths cannot provide
a range of D (or B) exceeding about 1:4. Eccentric compression tests can provide a barely sufficient
range of D. In such specimens, the load is best applied along the unnotched side of the prism or
very near this side.

3. The regular split-tension cylinder (a cylinder with a notch along its diameter) cannot
provide a sufficient range of D. However, a hole drilled at the specimen center dramatically expands
the range of D up to about 5.6, which is sufficient. This makes the split-tension tests of the notched
holed cylinder of the same size, combined with the generalized size effect law for G; and c;, suitable
for application in practice. Cored specimens can be used for determining G; and ¢; of concrete in
Situ.
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4. When specimens of the same size and with different notch lengths do not provide a sufficient
range of brittleness number B, or of effective structural dimension D, specimens of a different size
can be used to expand the range of D based on the original version of the size effect method.
Another recent version of the size effect method—the zero-size strength limit version of Bazant and
Li (1995) can also be combined with the present version to greatly increase the range of D. Indeed,
a combination of these two new versions results in a very effective one-size version of the size effect
method. Experimental results showed that f{ in the size effect law can be considered equal to f7
(modulus of rupture measured on the unnotched bend beam) for the three-point bend beam
(s/d = 2.5 and a, = 0). Application of both new versions of the size effect method to the tested
beams provides consistent values of G; and c..

5. Four specimen types, including three-point bend beam, eccentric compression prism,
regular split-tension cylinder and notched holed split-tension cylinder, are analyzed with linear
elastic fracture mechanics. Formulas for the stress intensity factor in these specimens are given.
Errors in geometry functions 1/g"(xy) and g(a,)/g’(a) caused by the errors in measurement of the
notch length are analyzed, and it is shown that possible large errors could be avoided by properly
selecting the notch lengths.

6. The experimental results indicate that the values of G; obtained from different types of
specimens are very close to each other. However, the values of ¢; exhibit much more scatter,
although there is no evidence that the cause is the geometry of specimen. Providing large ranges
of D, split-tension and eccentric compression tests conducted in this study fit the same curve well.

7. For many specimens (or structures), the values of g(a,)/g (a), and therefore also D, increase
with o, in the same specimen when the notch is not very long. The brittleness number defined on
the basis of the generalized theory of size effect law can be used to characterize the brittleness of
the structure. However, in some specimens, the values of g(x,)/g’(«), and therefore D, decrease
with a, after o, exceeds a limit value. This should be the limit for validity of the definition of
brittleness number.
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