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This paper, which represents the text of an introductory report pre- 
sented at Cardiff workshop in 1995, reviews the size effect from two 
different viewpoints: (1) the need to eliminate or minimize the effect 
of specimen size on the measured material fracture characteristics, 
and (2) the exploitation of measured size effect on the nominal 
strength for determining the material fracture characteristics. Three 
methods of fracture testing are examined in the perspective of the 
size effect, and the merits and weaknesses of various methods in 
regard to the size effect are pointed out. The parameters of all three 
methods can be determined by simple formulas and linear regression 
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T he size effect on nominal strength of structures 
is the most important practical consequence of 

_ _  the global energy release associated with large 
fractures. Therefore, it is natural to exploit the size effect 
for measuring the material fracture properties. At the 
same time, the measured values of the parameters char- 
acterizing material properties must be independent of 
the specimen or structure size, or they would not rep- 
resent only the properties of the material but also the 
properties of the structure. 

The objective of the present paper, which represents 
the text of an introductory report that was orally pre- 
sented at the size effect session of a recent workshop in 
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Cardiff 1 on the subject and was summarized at a sub- 
sequent workshop at FraM COS-2, 2 is to review the is- 
sues that were deemed 3 to be most important or inter- 
esting for the problem of selecting a standardized frac- 
ture test. Presentation of a comprehensive state-of-the- 
art report, mathematical derivations, and experimental 
validations are not the objective. No claims for exhaus- 
tiveness of the present review are made. Design and 
other aspects of size effect are not covered in this paper. 

Two Aspects of Size Effect 
The size effect impacts the problem of choice of a stan- 
dardized fracture test in two ways: 

1. Size Independence of Fracture Characteristics: Objec- 
tivity Requirement--The material fracture param- 
eters such as the fracture energy must be indepen- 
dent of the specimen size (and geometry) when 
geometrically similar specimens of different sizes 
are tested. It is the basic requirement of objectivity 
of a fracture model. 

2. Determination of Fracture Parameters from Size Effect 
Measurements - -Measurement  of the size effect on 
nominal strength of concrete specimens can be ex- 

1NSF Workshop on Standards for Measurement of Mode I Fracture Prop- 
erties of Concrete, organized by B.I.G. Barr and S. Swartz, University of 
Wales, Cardiff, July 20-21, 1995. 

2Workshop, coordinated by P. Rossi, on "Size Effects: Theoretical Con- 
cepts, Experimental Verification, and Implications for Design" at 2nd 
International Conference on Fracture Mechanics of Concrete and Con- 
crete Structures (FraMCoS-2), chaired by F.H. Wittmann, E.T.H., ZLirich, 
July 26, 1995. 

3Based on the reporter's correspondence before Cardiff workshop with 
the members of Working Group 3, having Z.P. Ba~ant and B. Karihaloo 
as co-chairmen and W. Gerstle, A. Maji, H. Mihashi, P. Perdikaris, V. 
Saouma, T. Tang, and M. Tasdemir as members. 
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ploited for determining the fracture parameters. It 
is in fact desirable to do so because the size effect 
is the most important feature of fracture mechan- 
ics of quasibrittle materials, distinguishing it from 
other failure theories, and it is the main reason 
why fracture mechanics needs to be introduced 
into design. If designers are concerned mainly 
about size effect, they should calibrate the mate- 
rial parameters on the basis of the measured size 
effect. 

Test Methods and Their Parameters 

Work-of-Fracture Method 
The work-of-fracture method (ACI 1992) [1], proposed 
for ceramics by Nakayama [2] and Tatersall and Tappin 
[3], was developed for concrete by Hillerborg [4]. It is 
based on the cohesive (or fictitious) crack model pro- 
posed for concrete by Hillerborg et al. [5]. This model is 
characterized by a stress-displacement curve ¢ = q~(~) 
relating the cohesive (crack-bridging) stress ¢ to the 
crack-opening displacement o~. The two main param- 
eters of the curve q~(~) are: (1) the area under the com- 
plete curve, representing the fracture energy G~ (super- 
script H referring to Hillerborg), and (2) the initial slope 
of the curve that may be characterized by the area un- 
der the initial tangent representing the initial fracture 
energy G~ (Figure 1). According to Planas, Elices, and 
Guinea [6], one can also approximately identify as the 
third parameter the center of gravity of the area under 
the ~b(~) curve, and the three parameters then suffice to 
uniquely characterize a bilinear softening curve ~b(v). 
The more detailed characteristics of the curve ~(~) have 
little effect on the predicted fracture behavior of struc- 
tures and can hardly be experimentally determined 
without ambiguity. So (aside from parameters E and fi, 
which do not refer exclusively to fracture), the number 
of fracture parameters that can be meaningfully deter- 
mined by this method is basically two, although per- 
haps a third parameter can be identified from tests in a 
crude approximate manner. 
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FIGURE 1. Softening stress-displacement law of cohesive (fic- 
titious) crack model and its bilinear idealization. 

Size Effect Method 
In the size effect method [7], proposed for measuring 
fracture energy by Ba~ant [8,9] and for measuring two 
fracture parameters by Ba~.ant and Kazemi [10], the ba- 
sic fracture characteristics are: (1) the fracture energy, 
G; (with superscript s referring to size effect method), 
and (2) the effective length of fracture process zone, cf, 
defined as the distance from the notch tip to the tip of 
the equivalent linear elastic fracture mechanics (LEFM) 
crack in a specimen mathematically extrapolated to in- 
finite size. The method is based on the size effect law 
proposed by Ba~ant [11,12] and particularly on its spe- 
cial form in terms of G; and cf and the dimensionless 
energy release rate function g(o0, accounting for geom- 
etry, as proposed by Ba~ant and Kazemi [10,13]. 

Jenq-Shah Method 
This method is based on a fracture model proposed for 
concrete by Jenq and Shah [14], which is mathemati- 
cally similar to the Wells-Cottrell [15,16] model for met- 
als but has a very different underlying physical mecha- 
nism, with no plasticity. Same as the foregoing two 
models, this model contains two material fracture pa- 
rameters: (1) the fracture toughness, K/s (with super- 
script JS referring to Jenq and Shah), and (2) the critical 

8CTOD, which repre- crack-tip opening displacement s 
sents the opening displacement at the tip of notch (pro- 
vided the fracture process zone remains attached to the 
notch). Instead of K/I s, one can use the fracture energy 
C~i s = (K]IS)2/E ' as one of the basic parameters. 

Each of the fracture models underlying these meth- 
ods is nonlinear and is completely or essentially defined 
by two parameters (Gf and fi, or Gf and @ or Gf and 
8STOP). By contrast, LEFM has only one material pa- 
rameter, either Gf or Kic = q E ~  d. 

Extrapolation to Infinite Size 
Every test method is inevitably based on some material 
fracture model. A practical fracture model of quasi- 
brittle material represents a simplified description of a 
very complex process of progressive material damage 
and its localization in the fracture process zone. For this 
reason, the parameters of any available fracture model 
serving as a basis of standardized test can be truly un- 
ambiguously defined only by extrapolation to infinite 
size. Indeed, in a specimen of infinite size, the fracture 
process zone is negligibly small compared to the speci- 
men size, which implies LEFM to be applicable. This in 
turn implies that the displacement field to which the 
fracture process zone is exposed along its boundary is 
the near-tip LEFM displacement field. This field is the 
same for any specimen geometry. Because the stress 
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and strain fields in the interior of the fracture process 
zone must depend (in the sense of continuum smooth- 
ing) on the boundary displacements uniquely, they 
must also be the same. This guarantees the material 
fracture parameters defined on the basis of extrapola- 
tion to infinite size to be shape independent and, of 
course, size independent. 

Thus, strictly speaking, an unambiguous definition of 
G;, G~, G~, G~ s, Cf, KIc, and 8CTOD as true material prop- 
erties, independent of specimen geometry and size, can 
be given only on the basis of extrapolation to infinite 
size. 

Requirement of Size Independence of 
Fracture Model Parameters 
The fracture parameters obtained from the size effect 
law are, by definition, size independent. This is true not 
only for the specimens of the geometry used in tests but 
also for specimens of other geometries, because the 
same size effect law was shown to apply to specimens 
of very different geometries. 

The parameters of the Jenq and Shah model deter- 
mined from the size effect law are of course size inde- 
pendent. If they are determined in the originally pro- 
posed way (with direct crack-tip opening displacement 
measurements), they appear to be approximately inde- 
pendent of the specimen size. 

The fracture energy G~, measured according to the 
work-of-fracture method on the basis of the area under 
the complete load-deflection curve of the specimen, was 
shown to be significantly size dependent. This appears 
to be a weakness of the cohesive crack model. The 
sources of this size dependence have been carefully 
analyzed by Guinea, Planas, and Elices [19,20], who 
also suggested how the size dependence of G~ could be 
mitigated. 

As for G~, it may be expected to be essentially size 
independent because it is approximately equal to G~, 
which is size independent. Thus, the size dependence of 
G~ appears to be caused by the tail of the stress- 
displacement curve. The size dependence implies that 
the stress-displacement curve q~(~0) cannot be unique, 
contrary to the basic hypothesis of the cohesive crack 
model. 

Ease of Determination of R-Curve for 
Given Structure Geometry 
Other fracture characteristics, such as the R-curve, can 
be obtained from the aforementioned fracture charac- 
teristics. The R-curve, allowing the use of LEFM, rep- 
resents the basis of the simplest method of structural 

analysis for fracture. Thus, it is desirable that the frac- 
ture model would yield the R-curve in the most direct 
way possible. 

This is achieved by the size effect method, for which 
the R-curve can be obtained from simple explicit ex- 
pressions on the basis of Gf, cf and the known energy 
release function for the given structure geometry. The 
formulas ensue from the size effect law because the 
R-curve is simply the envelope of fracture equilibrium 
curves for specimens of different sizes. 

When the Jenq-Shah model is used, the value of 
8CTOD may first be converted to cf and then the R-curve 
can be calculated from the size effect by a known pro- 
cedure. Another way, which is however equivalent, 
omits the explicit calculation of Cy and uses formulas 
giving the R-curve directly [17]. 

For the cohesive crack model, determination of the 
R-curve (curve of critical energy release rate R versus 
LEFM equivalent crack length a) is difficult; it requires 
nonlinear finite element analysis, which seems to be a 
disadvantage of this fracture model. Nevertheless, a dif- 
ferent type of R-curve, namely R versus CTOD, can be 
approximately calculated in a closed form [19,20,21]. 

Size Effect Method of Testing Material 
Fracture Parameters 
The main advantage of the size effect method of mea- 
suring material fracture characteristics is the simplicity 
of measurement. Only the maximum loads of speci- 
mens need to be measured. For this purpose, sophisti- 
cated closed-loop systems and a stiff testing frame are 
not necessary. The measurements can be carried out in 
any laboratory, with the simplest equipment, and can 
be carried out even in the field, as demonstrated at the 
Texas Transportation Institute [22]. 

The second advantage of the size effect method is that 
the measurements are based on the same effect as that 
needed most for structural design. The model is cali- 
brated by the effect that it is intended to predict. 

In the original form proposed in 1987 [8,9], the size 
effect method has been amply verified and is now sup- 
ported by broad experimental evidence. Recently, in an 
effort to make testing more convenient, three new ver- 
sions of the size effect method have been formulated, 
and so four versions exist at present. 

Original Version With Geometrically Similar 
Specimens of Different Sizes (Type I) 
In the originally proposed version [8,9], adopted as one 
of the RILEM recommendations [23], geometrically 
similar specimens of different sizes, spanning the size 
ratio of at least 1:4, are tested. G~ and cf are then deter- 
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mined either by nonlinear optimization or linear regres- 
sion, along with their coefficients of variation. 

For the original version, the size effect method has a 
third advantage: The identification of material param- 
eters can be reduced to linear regression, and the re- 
gression can be arranged in such a way that the slope of 
the regression line gives the fracture energy. Linear re- 
gression is the most effective way to obtain good sta- 
tistics, such as the coefficient of variation of the fracture 
energy, and the statistics are most dependable when the 
quantity of interest is the regression slope, as is the case 
for @. 

For a material exhibiting such a high random scatter 
as concrete, determining the coefficients of variation of 
Gf and cf is important. The design of structures should 
properly take this statistical information into account. It 
is one advantage of the size effect method that it makes 
determination of these coefficients of variation reliable 
and easy. 

One-Size Version Using Zero-Size Strength 
(Type I I) 
In this recently proposed version, the maximum loads 
(or nominal strengths cr N) of fracture specimens of only 
one size (and one geometry) are measured, and the 
nominal strength O-p at zero-size (plastic) limit for speci- 
mens of this geometry is calculated according to plas- 
ticity from a known value of tensile strength ft. Then, 
using the size effect law, one finds that the fracture 
characteristics can be calculated from the formulas: 

@Do g(o~o) 
Gf-  c2 E g(oLo), q=g'-~0) U° (1) 

D 
Do - ((rp/CrN) 2 -- 1 (2) 

and the nominal strength is defined as cr N = cnPmax/bD 
where c~ is a factor chosen for convenience. The value of 
(rp can be easily calculated according to Mohr-Coulomb 
yield criterion, assuming a bi-rectangular stress distri- 
bution along the ligament of the specimen, with stresses 
on one and the other end equal to the tensile and com- 
pressive strengths. An ongoing research at Northwest- 
ern University by Zhengzhi Li [24] has already shown 
that, for tensile strength equal to fr, this method works 
very well for notched three-point-bend concrete frac- 
ture specimens of span-to-depth ratio 2.5 and gives re- 
sults in good agreement with the original size effect 
method proposed by BaEant and Pfeiffer [8,9], provided 
that the notched specimens are large enough (a depth of 
6 inches appears to suffice, but the larger the better). 

There is, however, one aspect that must be handled 
empirically. The value of tensile yield strength fi, which 

is needed for calculating ap according to plasticity, is 
not predicted by fracture mechanics. By virtue of ap- 
proaching for small sizes a horizontal asymptote, the 
size effect law implies ~rp to correspond to strength 
theory or plasticity but does not imply the proper value 
of fi to be the direct tensile strength nor to be the same 
for various specimen geometries. In fact, upon equating 
the zero size limit crp = Bpfi to Cn[EGf/cfg'(oto)] 1/2 where 
Bp -- Bp(oL o) = nominal structure strength for unit value 
of material tensile yield strength calculated according to 
plasticity, one must conclude that the tensile yield 
strength value to be used must satisfy the relation: 

f't = cn N /  EGf /cfg' (o@ / Bp(oLo) (3) 

This value is not constant. It varies with specimen ge- 
ometry. Therefore, it is by chance that good results for 
the aforementioned specimens are obtained with fi -- fr 
-- modulus of rupture. For different geometries, differ- 
ent values offi have to be used (e.g., 1.3fr or 0.8 fr). They 
would have to be calibrated empirically for the geom- 
etry to be specified for the standard testing method. 
Although this is not difficult to do, it does mean that 
this method does not have a complete theoretical foun- 
dation but contains an empirical ingredient. This fea- 
ture is not surprising because the size effect law o- N ~ [1 
+ (D/Do)] -1/2 is valid only within the approximate 
range 0.22 ~ D/D o <~ 4.5, which excludes zero size. 

One-Size Version Using Notchless Specimen 
Strength (Type III) 
The aforement ioned empirical ingredient  can be 
avoided at the cost of slightly more complicated calcu- 
lations. Instead of the zero size limit, one can experi- 
mentally determine the strength of a notchless speci- 
men, preferably (but not necessarily) of the same size 
and shape. This is similar to the standardized test of 
modulus of rupture, ft. The size effect on fr (Appendix 2) 
[25,26] must of course be taken into account simulta- 
neously with the size effect for notched specimens. This 
can be accomplished by fitting the maximum load data 
with the universal size effect law in eq 12 of Appendix 
1, which is valid for both notched and notchless speci- 
mens. Under the assumption that D O >> D 0 where D b = 
thickness of the boundary layer in the modulus of rup- 
ture test (roughly one maximum aggregate size), which 
is normally satisfied, the universal law has recently 
been derived as the matched asymptotic satisfying the 
following asymptotic properties: 

1. For notched specimens and D >~ D 0, it agrees with 
the first three terms of the large size asymptotic 
series expansion and approaches the LEFM as- 
ymptote of slope -1/2 as D -~ o~. 
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2. For notched specimens and D ~ D 0, it agrees with 
the first two terms of the small-size asymptotic 
expansion and approaches a horizontal asymptote 
as D --> 0. 

3. For notchless specimens, it reduces to the recently 
derived size effect for the modulus  of rupture, 
agreeing well with test data [26]. 

Because this law differs from the original size effect law, 
the opt imum fit of the classical data for notched speci- 
mens of different sizes [9] is not exactly the same as 
published, but it is very close. 

The fitting of eq 12 to the measured nominal strength 
of notched and notchless specimens cannot be accom- 
plished by linear regression. However, a computer li- 
brary subroutine, such as Levenberg-Marquardt nonlin- 
ear optimization algorithm, readily yields the values of 
Gf and cf that provide the best fit. 

Alternatively, iteration of linear regressions can also 
be used. Equation 12 can be rearranged to the linear 
form Y = AX + C in which 

x=kD, , 

g' g (rN 

{1+  [ ( 'q  4 g ' D ,  g D ~ ] - ~  2 
X = + ~ J  ( l + g , c j j  J 

(4) 

and A = 1/Gf, C -- cJGf (note that for % = 0 we have g 
= 0 and X = 0). Parameter X is assumed 1 for the first 
iteration and its value is then updated after each itera- 
tion of the linear regression. At Northwestern Univer- 
sity, Zhengzhi Li [24] has already established that the 
iterations converge very well and that this method,  
which has a consistent theoretical foundation, gives ex- 
cellent results, very close to those obtained by Ba2ant 
and Pfeiffer [9] with the original size effect method. 
Again, the higher the brittleness number  of the notched 
specimens, the better the results. The specimen geom- 
etry and notch length should be chosen to minimize D 0, 
that is, the ratio g'/g. 

One-Size Version Using Notches of Different 
Length (Type IV) 
As a generalization of the original size effect method, 
the specimens need not be geometrically similar if the 
generalized size effect law in terms of g(c0, Gy, and cf 
[10] is used. However,  the range of brittleness numbers 

= D/D o must  again be at least 1:4. 
This formula offers the possibility of identifying ma- 

terial fracture parameters from the maximum loads of 
specimens of only one size and the same external shape. 
This has recently been studied in depth by Tang et al. 
[22] with nearly full success. However, it is not easy to 

achieve in this manner  a sufficient range of [3. Tang 
succeeded with eccentric compression specimens to 
achieve a range of about 1:4, which is the min imum 
required for meaningful approximate results. However,  
a notch as short as one-eighth of the cross-section depth 
had to be included to achieve this range of [3. From 
recent research leading to eq 12, it appears that, for such 
a short notch, the simple size effect law has a significant 
error, which is according to eq 12 about 14% (approxi- 
mately the same error magni tude for such a short notch 
would have to be expected for Jenq-Shah's model be- 
cause it is approximately equivalent to the size effect 
law). 

It would of course be possible to apply to such short 
notches the universal size effect law [12], which can 
describe the transition between specimens with large 
notches and no notches. But then one may  as well use 
the measurement  of the nominal strength of notchless 
beams, which is the method Type III, and in this way 
increase at the same time the range of ft. 

When two sizes of eccentric compression specimens 
that are similar but have two rather different relative 
notch depths a 0 are used and the size ratio is 1:2, one 
can reach a brittleness number  range of about 1:6, and 
for three-point-bend specimens about 1:4 (without us- 
ing excessively short notches for which the transition to 
size effect on modulus  of rupture would have to be 
considered). Both ranges are sufficient for measuring G t 
and cf. 

Relationship Among Parameters of 
Different Models 
Recently it has been shown that the Jenq-Shah method 
and the size effect method are mathematically equiva- 
lent within the first two terms of the asymptotic series 
expansion of the dimensionless energy release rate 
function g(o0 in the size effect law. Because the higher 
order  terms of this expansion can get significantly 
manifested only for size ranges exceeding about 1:20, 
these two methods must  be equivalent for practical pur- 
poses and their parameters must  be related. Indeed, 
such a relation has been established [27,28] and may  be 
written as follows: 

s<, c = v'g(=0)D0 = x/ 7 

G o D -  X/g gX/J o) X'( o)DoBf; 'n'E' 

? ic 
- -  

(5) 

(6) 

(6) 

where Bfi and D o are parameters of the size effect law 
~N = B fi[1 + (D/Do)] -1/2, with (r N = P/bD (c N = 1); E' = 
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E/(1 - ])2) for plane strain; R0 = initial relative notch 
depth; and the values of cf and G~ are the values ob- 
tained by fitting maximum load data for notched speci- 
mens with the size effect law written in the form: 

/ E'C; 
(r N = ~/g,(c~0)c f + g(OLo)D 

where D = characteristic dimension (size) of specimen. 
The calculations are the simplest when the specimens 
are geometrically similar. However, the specimens need 
not be geometrically similar, because differences in ge- 
ometry are captured by different values of g(~0). Be- 
cause of the typical scatter of test results for concrete, 
the range of brittleness numbers [3 = D / D  o must be at 
least 1:4. 

Extensive comparisons of test results by Karihaloo 
and Nallathambi [29,30] confirmed that 

C~ffs = G~ 

As for the cohesive (fictitious) crack model of Hiller- 
borg et al., it appears that, for normal concrete, 

G F 

which resulted from the simplified theoretical analysis 
of Planas and Elices [18]. In theory, one should expect 
G~ to be related not only to G; but also to cf, but this has 
not yet been researched. In a general cohesive crack 
model, the ratio G~/GIf could of course have any value. 

Accurate numerical calculations with the cohesive 
crack model show that the results closely follow the 
simple originally proposed size effect law [11,12] within 
size range 1:20. Thus, the values G; and cf, which give 
about the same maximum loads as the cohesive crack 
model, can be easily obtained by fitting this size effect 
law to the numerical results with the cohesive crack 
model. The inverse problem, namely determination of 
the cohesive crack model from the known size effect 
law, is more difficult. Nevertheless, it transpires that, 
approximately, the value of Gf resulting from the size 
effect law determines the initial slope of the stress- 
displacement curve, and the value of cf together with G; 
ought to decide the area under the complete stress- 
displacement curve. 

To predic t  the app rox ima te  sof ten ing  stress- 
displacement curve of Hillerborg's fictitious crack 
model from size effect data, the curve may be assumed 
to be bilinear, with a knee at the height about f i /3  (Fig- 
ure 1). The initial tangent aims at the point w = w 1 on 
the axis of displacement w, and the second straight line 

terminates on the w axis at point wf. Equations 9 and 10 
are satisfied if 

w I = 2G~/fi, wf = 2 . 5 w  I (11) 

In principle, however, cf ought to be involved in these 
(7) relations, but at present it is not known how. 

It must be pointed out that for normal laboratory 
specimens the maximum load values calculated nu- 
merically (by finite elements) with the cohesive crack 
model  are insensi t ive  to the tail of the stress- 
displacement curve defining the cohesive crack model 
(this might not be quite true for specimens of high 
strength concrete and strong mortar). These maximum 
load values are sensitive only to the initial slope of the 
curve, which means they essentially depend only on G~ 
and not on G~. On the other hand, the size effect on the 
ductility limit (snapback point on the calculated load- 
displacement diagram) does depend on G~, but this 
relationship has not yet been explored systematically. 

(8) For a size range 1:1000, accurate finite element calcu- 
lations of the maximum loads with the cohesive crack 
model show that a close fit by the size effect law re- 
quires its generalized form (r N = Bfi[1 + (D/Do)r] -1/2r 
[1,31,32]. For short notch three-point-bend beams, the 

(9) optimum value is r ~- 0.45, but r depends strongly on 
geometry; for example, for a large panel with a small 

(10) central crack loaded by pressure on the crack, the opti- 
mum value of r appears to be about 1.5. Values of r 
differing from 1 do not seem important and necessary 
for the normal size range up to about 1:20. 

Conclusion 
Knowledge of the size effect on the failure load of frac- 
ture specimens, coupled with the effect of shape, is very 
useful for measuring fracture properties. On the other 
hand, the effect of size on the values of material fracture 
parameters must be avoided. 

Appendix 1. Universal Size Effect Law 
and Verification of One-Size Method 
The universal size effect law [33,34] applicable to fail- 
ures at both large cracks and crack initiation from the 
surface reads: 

(1+ -1 } 
(12) 

in which -q = empirical constant of the order of 1 
and, if we denote g = g(e~o), g' = g'(oto), g~ -- g'(0), 
and g" = g"(c~0), 
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/EG , ,' <-g"> 
= cN ~c~g;-- Do ----g q, D~ = ~ c r, B = ~ j  

(13) 

Equation 12 can be proven by expressing ~ 2  in terms 
of O and expanding it into Taylor series in O about  point 
O = 0. This yields the original size effect law if % > 0, 
and ¢ N / ~  = 1 + Db/(D + "qD b) if % = 0. The latter differs 
from the recently published [35] size effect formula for 
the modulus  of rupture  by constant "q, but  agreement  
with the first two terms of the asymptotic expansion in 
D -1 is not affected and good fit of test data is not com- 
promised. Introducing constant "q achieves that ¢N be 
finite for D --4 0, for both % > 0 and % = 0. 

Equation 12 represents the matched asymptotic sat- 
isfying (1) the first three terms of the large-size expan- 
sion in D -1 for notched specimens, (2) the first two 
terms of the small-size expansion in D for the notched 
specimens, and (3) the first two terms of the large-size 
expansion in D -1 for notchless specimens. 

Figure 2 shows the surface of the universal size effect 
law for a typical three-point-bend specimen (span-to- 
height ratio = 4). The empty  points (circles) in the size 
effect regression plots in Figures 3 and 4 show the data 
points f rom various published size effect tests based on 
the original size effect method  (Type I) and the regres- 
sion lines of these empty  points. The solid (black) points 
are the mean experimental  results for extrapolation to 
zero size (Type II method,  Figure 3) and for notchless 
specimens (Type III method,  Figure 4). The fact that the 
solid points are rather close to the regression lines of the 
empty  points validates the one-size method.  The one- 
size method  graphically means passing a regression 
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FIGURE 2. Surface of the universal size effect law for notched 
and notchless specimens. 

line (not shown) through the solid point and the group 
of the empty  points for one size D only. Obviously,  if 
this is the largest size for each of these test series, this 
regression line would  be almost the same as the regres- 
sion line of the empty  points, and thus nearly the same 
Gy and cf values will be obtained as with the original 
multisize effect method.  

Appendix 2. Other Kinds of Size Effect 
Weibull Statistical Size Effect 
Until about a decade ago, the size effect observed in 
concrete structures has been universally explained by 
randomness  of strength and calculated according to 
Weibull theory. Recently, however ,  it has been shown 
[35] that this theory cannot apply  when  large stable 
fractures can grow in a stable manner  prior to maxi- 
m u m  load. The main reason is the redistribution of 
stresses caused by stable fracture growth prior to maxi- 
m u m  load and localization of damage into a fracture 
process zone. If the Weibull probabili ty integral is ap- 
plied to the redistributed stress field, the dominant  con- 
tribution comes from the fracture process zone whose 
size is nearly independent  of structure size D. The con- 
tribution from the rest of the structure is nearly vanish- 
ing, which means the fracture cannot occur outside the 
process zone. Because this zone has about  the same size 
for specimens of very  different sizes, the Weibull-type 
size effect must, therefore, disappear  for large sizes. 

A general ized vers ion of Weibul l - type theory,  in 
which the material failure probabili ty depends  not on 
the local stress but  on the average strain of a character- 
istic vo lume of the material, has been shown to yield 
realistic size effect and also to approach the original size 
effect law as its deterministic limit [35]. 

For concrete, Weibull-type size effect might  be taking 
place only in very  large structures that fail right at crack 
initiation, for example, in very  deep notchless plain 
concrete beams. Because for beam depths  such as D = 
10D b the stress redistribution in the boundary  layer, 
under lying eq 12, is still significant, the beam depth  
beyond  which the Weibull-type size effect could begin 
to dominate  must  be at least D = 100D b. Hardly  any case 
satisfying this condition exists in concrete practice. Be- 
sides, good practice requires designing structures so as 
not to fail at crack initiation. As for notched specimens, 
the Weibull size effect should, in theory, be approached 
for very  small sizes, but  the sizes for which this occurs 
appear  to be too small compared  to the aggregate size. 

The Question of Possible Role of Fractal 
Nature of Crack Surface or Microcrack Array 
Although the surface roughness of cracks in concrete 
can be described, within a certain range, by means of a 
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FIGURE 3. Size effect linear regression 
plots of typical published test data 
(empty points), their regression lines, 
and predictions by Type II method for 
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fractal curve, it appears according to Ba2ant that the 
fractality cannot play any significant role in the law of 
crack propagation and especially not in the observed 
size effect on 0% Two reasons have been offered for this 
viewpoint [33,34]: 

1. The size effect curve derived from the first and 
second law of thermodynamics disagrees with 
test data. 

2. Distributed microcracking and plastic-frictional 
slips dissipate a major part of energy at the frac- 
ture while the microcracks that eventually become 
the final macrocrack surface exhibiting fractal fea- 
tures dissipate only a negligible portion of energy. 

Since fractal curves such as von Koch's have been 
cited as paradigms of fractal cracks [36,37], it should 
further be noted that such curves generally exhibit re- 
cessive and spiraling segments that prevent kinematic 
separation of surfaces. However, this objection can be 
removed by considering self-affine fractal curves. 

To circumvent the aforementioned criticism, it has 
been suggested [37] that the size effect may be caused 
by a different type of fractality, namely a lacunar (rar- 
efying) fractal character of the distribution of micro- 
cracks in the fracture process zone (for which the fractal 
dimension is less than the Euclidean dimension). How- 
ever, it can be shown that this type of fractal hypothesis 
can lead to nothing else than the Weibull-type size ef- 



136 Z.P. Ba2ant Advn Cem Bas Mat 
1996;4:128-137 

2 0  

1.5 

i 

~1.0  

0.5 

0.0 

1.8 

:0 
m 
v 

>"0.6 

0.0 
0 

I I I 

• n o t c h l e s s  s p e c i m e n  
O n o t c h e d  s p e c i m e n s  

2 2 
Y=Ec n /(g'G N )X / -  
X=Dg/g' 
a;=l.4, 7~=1.0 ~ / ~  

D=15 cmc%6 i ~ / /  

Gf=29 N/m 
cf=0.64 cm- 

high strength concr. (3PB) 
Gettu I Bazant land Karr 1990 

I 2 3 4 
X (cm) 

2.0 

1.5 
T 

>, 

0.5 '  

I I 

0 j 
J 

D=15 cm (6 i n /  

J °  
~ Gf=24 N/m 

cf=0.7 cm 

c o n c r e t e  ( g P B ,  u s u a l  rate) 
B a z a n t  a n d  Gettu, 1992 

I I 

1 2 
X (em) 

0.0 
0.0 

1.5 

0.0 
0 

.;----1.0 
i 

~ 0 . 5  

D=30 cm (12 in. 

° /  
(3 

/ ~  Gf=35.7 N/m 
cf=1.33 cm 
c o n c r e t e  (3PB) 

Bazant a n d  P f e i f f e r ,  1987 
I I I 

1.5 3.0 4.5 6.0 
X ( e m )  

I i 

D=15 cm (6 i n . ) ~  

cf=2 em 
c o n c r e t e  ( 3 P B ,  f a s t  rate) 
B a z a n t  a n d  Gettu, 1992 

I I 

1 X ( )-era -2 3 

2.0 m i [ i i 

1,5 D=30 cm (12 in.) ~ .  

I 

~ O  Gf=37.5 N/m 
0.5 ~/ .~y cf=0.67 cm 

I . . , ~  - concrete (EC) 
Bazant and P f e i f f e r ,  1987 

O0 q i 5 i 

o % (ore 3) 4 

+ L o c a t i o n  o f  

b l a c k  p o i n t  

if k= 1 w e r e  

a s s u m e d  

FIGURE 4. Size effect linear regression 
plots of typical published test data 
(empty points), their regression lines, 
and predictions by Type III method for 
notchless specimens. 

fect, with the fractality effect implied only in the values 
of Weibull parameters (which cannot be predicted theo- 
retically but must be calibrated by experiment). The 
reason is that if microcracks controlled failure, the fail- 
ure would have to occur right at the start of macro- 
scopic fracture growth, without any stable crack 
growth. Because the concrete structures of interest ex- 
hibit large stable crack growth, such a failure mode is 
an unrealistic hypothesis. 

Diffusion Size Effects 
Diffusion phenomena such as water transport (drying) 
and heat transport caused by hydration and by envi- 

ronmental fluctuations engender time-dependent size 
effects, which must be avoided in fracture testing. To 
eliminate these size effects, all the specimens should 
have the same thickness. The drying size effect is also 
eliminated if the specimens are sealed during their cur- 
ing and the test is made right after stripping the seals. 

Wall Effect 
The wall effect is due to the fact that (1) the surface layer 
of concrete has a different aggregate content and size 
distribution than the interior, (2) the fluctuating mi- 
crostresses normal to the surface are nonzero in the 
interior but zero on the surface, and (3) out-of-plane 
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shear lips can deve lop  at the surface ending of crack 
front edge. This has no appreciable  influence on the 
observed  size effect if the thickness of all specimens  is 
the same. 
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