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Abstract-A probabilistic model for the randomness of the progressive crack growth in a quasi-brittle 
material such as concrete is presented. The model consists of a Markov chain adapted to R-curve beha- 
vior. It yields the crack propagation probability in any loading step as well as the probability of failure 
at any stage of the fracture process. The R-curve is obtained from the given test data on the effect of 
structure size on the maximum loads. The standard deviation of the peak load is the minimum statisti- 
cal information required. According to the available test results, this standard deviation is approxi- 
mately a linear function of the crack propagation distance. The parameter estimation method is 
formulated and some applications are illustrated. 0 1997 Elsevier Science Ltd 

1. INTRODUCTION 

WHILE THE fracture properties of all materials are random at least to some extent, the random- 
ness is quite pronounced for highly heterogeneous materials such as concrete or other quasi- 
brittle materials, including various composites, rocks and ceramics. The previous investigations 
of fracture in concrete structures concentrated mainly on the deterministic and statistical beha- 
viors at the maximum load[l+. A realistic theory is needed to predict the probabilistic nature 
of the steps in the crack growth process before the maximum load. This requires following the 
incremental jumps of the fracture process in a probabilistic manner. 

A theoretical model for progressive crack growth is also an important topic in the reliability 
evaluation of existing concrete structures, in which two kinds of problems need to be solved. (1) 
If a given structure with a crack of a certain length has survived under the current loading level, 
then what is the failure probability for a given load increment? This problem is frequently 
encountered when the load in a building is to be changed or a traffic load heavier than the daily 
load must travel through a bridge. (2) If the structure has survived the given load increment, 
what is the probability that an existing crack in the structure grows by a certain length under 
the load increment? To answer these questions, a stochastic process model for crack growth is 
required. 

There are many probabilistic models for random crack growth, such as the Markov chain 
models of Bogdanoff and Kozin [5] or Yuasa et al. [6], as well as other models [7]. These models, 
however, were mainly concerned with fatigue crack propagation in metals. But fatigue is a 
phenomenon of secondary interest for concrete structures, while crack growth under monotonic 
loading is of primary interest, and in any cases needs to be analyzed first. The simplest and 
most effective deterministic model for the monotonic crack growth in concrete is the R-curve 
(resistance curve) model. The model used in the present study takes into account the nonlinear- 
ity of monotonic fracture growth caused by the existence of a fracture process zone of a non- 
negligible size. 

For monotonic loading, the weakest-link model has already been combined with the R- 
curve behavior, see Refs[8-101. But these models took into account only the randomness of ma- 
terials properties in the direction of specimen thickness. Another interesting probabilistic model 
has been developed by Chudnovsky and Kunin [l l] and Mull and Chudnovsky [ 121, who 
assumed the surface energy of the material to be a random field. In this model, the crack propa- 
gates only from the weakest point in front of the crack tip. Experimental evaluation of the par- 
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Fig. 1. Random crack growth in concrete. 

ameters characterizing the random field of surface energy is required; however, this turns out to 
be a difficult problem for certain kinds of materials, such as cement-based materials. 

The purpose of this paper is to develop a probabilistic model for quasi-brittle material such 
as concrete that can evaluate the probabilities of the crack growth under a given increment of 
loading as well as the probabilities of failure for a given increment of loading. The method will 
consist of a Markov chain model combined with the R-curve concept. The parameter estimation 
method for the model parameters will be formulated, and some applications will be presented. 

2. MARKOV CHAIN MODEL FOR RANDOM CRACK GROWTH 

The application of the Markovian hypothesis to damage evolution problems for fatigue 
cracks has been justified by many other authors[5-71. The Markovian approach is based on the 
similarity between the process of progressive crack growth at monotonic loading and the process 
of random walk. Consider a crack of initial length a0 and a crack extension of length c, as 
shown in Fig. 1. Only one of the possible crack paths is drawn in the figure, and the straight 
line indicates the mean crack path. As an example, taking the mean path as one realization of 
many possible crack paths, suppose the crack tip is at position i for the given applied load X. 
Then, for an infinitesimal load increment AX, the crack tip may at random either stay at point i 
or jump forward to point i + 1. The same happens for the next loading increment AX. The ran- 
dom nature of the crack propagation is due to the randomness of material resistance to crack 
propagation, which is caused primarily by the heterogeneity of the material. If the fracture re- 
sistance of the material were of deterministic nature, then for any AX there would be a corre- 
sponding increment of crack extension, AC. 

For a material with probabilistic properties, the crack propagation is a nondecreasing ran- 
dom process, because the crack tip can only stay fixed or move forward, but cannot move back. 
So, the nature of this process is the same as that of a one-way random-walk process. This pro- 
cess is illustrated in Fig. 2, where the state point can only stay still or move ahead at each stage. 
As one can see, such a process can be described by the Markov chain model. 

Fig. 2. One-way random walk model. 
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The Markov chain model is a stochastic model commonly used to analyze many kinds of 
accumulative damage processes[5]. In this paper, the damage of concrete is considered to be the 
crack. A typical set of sample curves of progressive crack growth is shown later in Fig. 5, where 
a, called the damage state, is an observable measure of the crack, which can be represented by 
the crack length or the crack mouth opening displacement (CMOD); a is a discrete variable 
(a = 1,2,...,B); B denotes the failure state, and X denotes the load (or a load parameter pro- 
portional to the load, such as the nominal stress). 

The basic simple relations for the Markov chain model will now be introduced for the read- 
er’s convenience (details can be found in Refs [5,13]. The well-known basic evolution equation 
for the Markov chain model is 

px =po!- (1) 

where x is an integer, denoting the value of X (which is thus allowed to take only discrete 
values), and po is the vector of initial state probability 

,po = (711, Jr29 **., rr~, 0) with c~j = 1 (2) 

in which rtj is the probability that damage state j is initially occupied. Equation (1) means that 
the probability of crack advance depends only on the current state, i.e. is independent of the 
preceding states (the history). In the present study, we always assume that initially rri = 1, with 
all other nj = 0, which means the crack or damage always starts from state 1. This assumption is 
close to reality when a problem such as concrete structures with existing major cracks is under 
consideration. _PO is the vector of the damage state probability 

_p” = (PX(l), P,(2), * * * 9 Pm) (3) 

in which p&) is the probability that damage state j is occupied at loading level X; ,P is the prob- 
ability transition matrix 

PLB 
P&B 
P3.B 

0 PB-LB-I PE-I,B 

(4) 

with 
n 

c pij=l, i=1,2 ,..., B-l (5) 
j=l 

where pi,i is the probability of remaining in state i during one loading step, pij is the probability 
that, in one loading step, the damage goes from state i to state i. This is the so-called multi- 
jump model since the crack tip can jump j - i elements in one loading step. From eq. (4) one 
can see that there are [(& + B)/2] - (B - 1) - 1 independent parameters needed to establish a 
transition matrix for a multi-jump model. These, however, are too many for experimental cali- 
bration. 

A commonly used simplification is to limit the multi-jump model to a unit-jump model. In 
that case, eq. (4) becomes 

; 

PI.1 PI,2 0 * *. 0 
0 P2.2 P2,3 . . . 0 

_p= 0 0 P3.3 *** 0 . (6) 0 0 0 PB-LB-I PB-LB 
0 0 . . . 0 1 I 

Then we have only (B - 1) + 1 - 1, i.e. B - 1, parameters to be evaluated in eq. (6). For 
convenience, we rewrite eq. (6) in the form 
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where pi is the probability of remaining in state i during one loading step, and qi is the prob- 
ability that in one loading step the damage moves from state i to state i + 1. 

A simpler model can be obtained if the process is assumed to be state independent. Then 
eq. (7) becomes 

p q 0 . . . 0 
0 p q . . . 0 

_p= 0 0 p . . . 0 

[ 1 00 0 P 4 
0 0 . . . 0 1 

(8) 

where p + q = 1. As one can see, only two independent parameters, namely p and B, need to 
be evaluated. 

Another concept that needs to be introduced is the failure rate function or hazard function, 
which is useful for reliability analysis. The definition of the hazard function is 

h,(x) = 1 - ?) 
I;,@ - 1) 

in which function F,(x) is defined as 

F,(x) = 1 - F,(x) (10) 

F,(x) = P{X<x} = p,(B) (11) 
where px(B) is the probability that the failure state B occurs at the loading level x; F,(x) and 
I?,(x) are the failure probability and the survival probability at loading level x, respectively. The 
physical meaning of the hazard function is that h,(x)Ax is the probability that the specimen fails 
in the loading increment [x, x + Ax] given that it has survived through the loading (0, x]. As is 
clear from eqs (l)--(1 l), the transition matrix _P is the fundamental characteristic of the Markov 
chain model; it characterizes all of the statistical structure during the loading history. 

Let the random variable XI,B denote the load at failure that is reached by starting in 
damage state 1 from the initial value X = 0. Then the mean and the first few central moments 
of X,,a are found to be[5] 

B-1 

EtXI,BJ = x(1 + rj) 
j=l 

(12) 

E-I 

Var {XI,,) = Crj(l + rj) 
j=l 

(13) 

B-l 

/13{Xi,EI = C’j(l + rj)(l + 2rj) (14) 
j=l 

B-l B-l 

b4{Xl,B) = Crj(l + rj)(l + 2rj))(l + 3rj) + Crf(l + rj) + 3[Var {X*,B)]2 
j=l j=l 

(15) 

where 
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(16) 

3. CRACK PROPAGATION IN CONCRETE 

For concrete specimens, unfortunately, a precise measurement of the distance of crack 
propagation (i.e. the crack tip location) appears to be impossible because of tortuosity of the 
crack path, crack bridging and insufficient accuracy of the techniques for measuring the crack 
tip location. It has been attempted to overcome this problem by doing the calculations for an 
effective crack length defined in terms of linear elastic fracture mechanics (LEFM), that is, on 
the basis of the measured compliance. But the problem persists since it is unclear which one 
among several possible definitions of the effective crack length should be used (e.g. equal load- 
point compliance or equal crack mouth opening compliance). In fact, there are only very limited 
test results available for the load-crack extension relationship, while a large amount of test data 
is available for applied loads or failure loads in terms of CMOD or load-point displacement. 
So, instead of dwelling on how we should define the crack tip location and how precisely we 
should measure the crack extensions, we will pay more attention to the statistical scatter of the 
failure load. 

First consider the simplest case, eq. (8). One of the advantages of using a state-independent 
model is that we do not need to know the crack length at-the maximum load. From eqs (8), (12) 
and (13), one can find the mean of the maximum load, Xmax, and its standard deviation, smax, 
which suffice to determine the two parameters r (r = p/q) and B (failure state) of the model 
because 

-?,,, = (B- l)(l +r> (17) 

dlax = (B - l)r(l + r). (18) 

Therefore 

s2 r=s 
x mm 

(19) 

(20) 

But this two-parameter model does not define the evolution of the cumulative damage pro- 
cess, because r and B characterize just the mean and the standard deviation of the load at the 
failure state but tell us nothing about the states between the initial state and the failure 
state. Figure 3(a) illustrates that different mean curves can reach the same final state. Two 
sets of sample curves in Fig. 3(b) and Fig. 3(c) may have the same r and B but represent 
completely different damage evolution (amax is the crack length corresponding to the maxi- 
mum load). Therefore, in the two-parameter model there are no parameters that can take 
into account the shape of the damage evolution curves. 

To determine damage evolution before the peak load, that is to single out the unique 
mean curve representing a specific damage evolution, one must use a state-dependent process, 
i.e. Equation (7), in which parameters rj (j = l,..., B - 1) and B determine the shape of the 
mean curves. Figure 4 shows the two curves of load vs damage level determined by the two 
mean sample curves, for which either rl < r2 < . ..rB _ I or r1 > r2 > . ..rB_ 1. Within the two 
curves in Fig. 4, there are (B - I)! sample curves characterized by rl, r2, . . . . rB _ 1 in all poss- 
ible different orders (combinations). Determination of the parameters rj (j = l,...,B - 1) and B 
requires knowledge of the mean curve and the standard deviations during the entire damage 
evolution process. 
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Fig. 3. Damage evolution. 

In the case of real engineering problems, the maximum load and its deviation are the data 
most likely to be available, especially the failure loads measured on small specimens. So, a deter- 
ministic equation must be employed as the mean curve. One must realize that the deterministic 
equations obtained from fracture mechanics handbooks cannot be easily used for this purpose. 
The equation must be calibrated from the maximum load test results and averaged over all the 
specimens of different sizes. For quasi-brittle materials for which the dependence of the nominal 
strength on the specimen size is transitional between the strength theory and linear elastic frac- 
ture mechanics, the size effect law proposed by Bazant [14] provides a suitable deterministic 
basis for the aforementioned purpose. 

X 
4 r,<r*<...<rs, 

Fig. 4. Two bounds for damage evolution. 
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4. DETERMINISTIC R-CURVE 
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The deterministic equation for the nominal stress may generally be written in the form 

(21) 

where 2 represents the mean nominal stress (which is proportional to the applied load), EC is 
the initial elastic modulus, R(a - ao) is the R-curve which represents the energy required for 
crack growth as a function of the crack extension c (c = a - a,,), F(a/d) is a geometry-dependent 
function available for many different geometries of specimens from fracture mechanics hand- 
books (e.g. Ref. [15]), a is the current crack length, and a0 is the initial crack length, that is, the 
length of the traction-free crack (or notch). The R-curve can be obtained using the following 
size effect law (proposed by BazBnt[l4]): 

(22) 

wheref, is the tensile strength, d is the characteristic dimension, and A and do are two constants 
which can be identified by linear regression of the test results. flN =c,,P,,/(bd) is the nominal 
strength of the specimen; P, is the maximum load; b, d are the width and height of the beam; 
and c, is a convenience factor which can make bN match some formula for maximum stress; in 
a beam, for example, the maximum elastic bending stress for a simply supported beam is 
matched by choosing c, = 1.5L/d, where L is the span of the beam and L/d is constant for geo- 
metrically similar specimens. The size effect law is useful for materials for which linear elastic 
fracture mechanics are not valid [14]. The main consideration leading to eq. (22) is that the 
crack tip is surrounded by a large fracture process zone, which is typical for all quasi-brittle ma- 
terials, such as concrete, rock, ice and toughening ceramics. Once the parameters A& and do in 
eq. (22) are known, the R-curve can be obtained[l] as follows: 

R(a-ao)=Gfs (23) 

c g’(ao) g(v) y +cro _- -- cr - &o) [ g’(Y) 1 

do&o) cf = g’(w)) 

(24) 

in which cxo=ao/d, g(a0) is the nondimensionalized energy release rate obtained from handbooks, 
y is a working variable, Gf is the fracture energy equal to the critical energy release rate for 
an infinitely large specimen, and cr is the effective fracture process zone length for an infinite 
size of specimen. By choosing a series of y values, the corresponding c values are obtained 
from eq. (24) and then, substituting each c into eq. (23), the corresponding R-curve values 
are calculated. Equation (21) will then represent the mean curve of the nominal stress as a 
function of the crack length. 

5. MEASUREMENTS OF STANDARD DEVIATION OF NOMINAL STRESS BEFORE 
FAILURE LOAD 

Consider now the standard deviation of load or nominal stress from the mean curve (that 
is the variance at each damage state) before the maximum load. The literature search has shown 
that there has not been much research on the statistical analysis of crack propagation for con- 



600 YUNPING XI and Z. P. BAZANT 

Crete. In order to determine the standard deviation, three-point bend tests of many concrete 
beams have been conducted in the laboratory. A detailed description of the tests can be found 
elsewhere[l6,17], only the relevant information will be presented in the present paper. 

The geometry of the beams is shown later in Fig. 8. Beams of four different sizes were 
tested with beam depths of 5.08, 7.62, 10.16, and 15.24 cm (2, 3, 4, and 6 in). The thickness of 
all the concrete beams was 6.35 cm (2.5 in). This ratio was chosen mainly due to the restriction 
of the support span of the loading system. The ratio of the notch length to the beam depth was 
0.25 for all specimens. The ratio of the total length of beam to the span was 1.2. In this way, all 
the beams are geometrically similar. 

The aggregates used in the concrete consisted of gravel and river sand. The maximum 
aggregate size was 1.9 cm (3/4 in). The volume ratio of coarse to fine aggregate was 2, which 
was kept the same for all beams. In this manner, the effect of aggregate size on the fracture 
properties was eliminated. The water-cement ratio was 0.5 for all the beams. All specimens 
were tested after 14 days of curing in a fog room. 

The three-point bend beam tests were performed with an Instron close-loop control testing 
system with crack mouth opening displacement (CMOD) control. The loading rate was con- 
trolled such that the beams reached their maximum loads in about 10 min. To examine the effect 
of aggregate contents, four different volume fractions were used: 0.45, 0.55, 0.65, and 0.75. Four 
sizes of beams were tested for each volume fraction of aggregate, and three specimens for each 
size, and thus 48 beams in total were tested. Since the aggregate volume fractions V, = 55% and 
65% are commonly used in the construction industry, the results of those beams with V, = 55% 
and 65% are used in the present study. The typical load-CMOD curves with V,= 55% are 
shown in Fig. 5. 

To normalize the curves in Fig. 5, the load is divided by the average load and the CMOD 
is divided by the CMOD at the maximum load. Also, only the curves before the peak loads are 
shown since the present study concerns only the deviation in the ascending part of the curves. 

From the normalized CMOD-load curves, the variance at different loading levels is com- 
puted as shown in Fig. 6. The basic trend observed from Fig. 6 is that, with increasing CMOD, 
the variance increases with certain fluctuation. At the initial state at which CMOD = 0, the var- 
iance can be considered to be zero, the small deviation at the initial state as shown in Fig. 6 is 
due to the pre-load before switching from the load control to the CMOD control in the loading 
process, which can also be seen in Fig. 5. 

On the other hand, the R-curve approach described in the last section requires the crack 
extension c or the crack length a. This means that the variance at state j should be expressed as 
a function of the crack length a. However, as stated previously, the technique for testing frac- 

& 0.8 
t 

9 0.4 
a 
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Va P 55% 
t = 14 days 

01”“““““.““‘, 
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CMOD/(CMOD at the peak lad) 

Fig. 5. Sample curves of CMOD - various loads. 
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Fig. 6. Scattering of the load vs CMOD/(CMOD at peak load). 

ture under crack length control is not available. Based on the statistical analysis of the measured 
CMOD-load curves and as a first approximation, we assume that the deviation of the load in 
terms of the crack extension would be similar to the CMOD-load curves. Then, an additional 
assumption may be introduced to set up the model, that is, the standard deviation of the load 
prior to the maximum load may be assumed to be a linear function of the crack extension (or 
crack length) c = a - ao, i.e. 

2 = C”i - ad 2 

’ bnax - uo) Irmx (27) 

where amax can be obtained from eq. (21); &,, represents the variance of the maximum load, 
which is size dependent but may perhaps be considered for larger specimens to be approximately 
size independent. From eq. (27) the standard deviation of the entire process of crack propa- 
gation may be predicted solely from the standard deviation of the maximum loads of specimens, 
s,,,. This is very advantageous for practical applications because s,,, is often the only infor- 
mation available. 

6. MARKOV CHAIN MODEL COMBINED WITH R-CURVE 

Based on eqs (21) and(27), we can derive the expression for the parameters in eq. (7) and 
damage state BP First, we divide the damage states from 1 to B - 1 into m groups as follows: 
l,..., B,-1; B, ,..., B2-1; and B, _ , ,..., B- 1. Then we assume rr for l,..., Bt-1; r2 for B, ,..., B,-1; 
and r,,, for B, _ 1 ,..., B- 1. For m = 1, eqs (12) and(13) become 

21 =(BI - l)(l +rl) 6’8) 

4 = (Bl - l)(l + rl)rI (29) 

where 21 is a given value and at, corresponding to 21, is given by eq. (21). After evaluating S: 
from eq. (27), B1 and rl can be solved from eqs (28) and (29). Then, for m = 2 

22 = (BI - l)(l + rt) + (Bz - BI)(I + r2) (30) 

S: = (BI - l)(l + rl)rl + (B2 - Bt)(l + r2)r2 (31) 

Bz and r2 can now be solved. Continuing in this manner, we find the formula for any state j: 
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(32) 

(33) 

For j = 1 we have 

Xl 
-- 1. 

” = B, _ 1 (35) 

After all the parameters, rj and Bj, have been determined, the Bj need to be taken as integers 
and then eqs (1) and (7) can be used to calculate the damage state probability. Up to this point, 
we are able to answer the two questions posed in the Introduction of this paper. The first ques- 
tion is that, if a given structure with a crack of certain length survived under the current loading 
level, what is the failure probability for a given load increment? Now, the probability of reach- 
ing damage state j at stress level x is 

F.&j) = Rx(j). (36) 

When j = B, eq. (36) becomes eq. (ll), which is the failure probability at load level x. The sec- 
ond question is that, if the structure survives the given load increment, what is the probability 
that an existing crack in the structure grows by a certain length under the load increment. Now, 
the hazard function is 

h,(x,j) = 1 - 1 --MA 
1 -px-lW 

(37) 

This equation gives the probability that damage would develop from state j to state j + 1 if 
stress X increased from x to x + 1. When j = B, eq. (37) becomes eq. (9). 

7. NUMERICAL EXAMPLE 

Consider now, as an example, a notched three-point bend beam specimen of high strength 
concrete. The details of the tests can be found in ref. [2]. Based on the measured maximum 
loads of specimens of different sizes and eqs (21)-(26), the R-curve can be obtained and is 
shown in Fig. 7, and then the relation of the effective crack extension to the nominal stress can 
also be obtained and is shown in Fig. 8. From Fig. 8, the maximum nominal stress 
X nlax = 66 psi, and the crack extension at the maximum load c,,,=O.274 in. The coefficient of 
variation of the maximum loads obtained from the test was about 15%. Therefore, the variance 
of the maximum loads, s’,,, = (0.15 x 66)2 = 98.01. This value is used in eq. (27) for calculating 
the variances during the loading process. 

The next step is to calculate damage state Bj by using eqs (32)-(35). First, one can assume 
a value for the total number of damage states B (70 for example), and the increment of the 
loading step can then be obtained by dividing the maximum load by B. At each loading step, 
the corresponding crack length (or crack extension) can be obtained by eq. (21) with the 
obtained R-curve, and the result is shown in Fig. 8. Secondly, using the obtained crack length at 
each loading step, aj, and eq. (27), the variance of the load at each loading step, sf, can be cal- 
culated. Then the parameters Bj and rj can be determined from eqs (32) and (33) m which Xj is 
the load at loading step j. Since Bj must be integers, sometimes one perhaps has problems such 
as Bj= Bj _ 1, which leads to an infinite value of rj as one can see from eq. (33). Computational 
experiences show that this problem may be avoided by reducing the assumed value of B and 
repeating the above described calculation until each Bj has different values. In this example, the 
proper value of B is 32. This means that when the load increases from 0 to 66 psi, c is changing 
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Fig. 7. R-curve. 

from 0 to 0.274 in, and Bj is changing from 1 to 32. The relationship of Bj and the crack exten- 
sion c (real damage state) obtained in this way is shown in Fig. 10. 

The final step is to apply eq. (1) to calculate the probabilities for every loading step and 
every crack length. The result can be presented as a three-dimensional graph with the crack 

B= 0.215 
d,, = 2.03 
E, = 2.2x1 06 psi 

I I 1 

0.10 0.20 0.30 0. 

Crak exteasion c (in.) 

Fig. 8. Three-point bend fracture test. 
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Fig. 9. Relation of the number of states in the crack extension process to the length of the crack exten- 
sion. 

extension c and the nominal stress X in a two-dimensional square mesh and the probability as 
the third dimension. The graph is shown in Fig. 10 in which the crack extension c is replaced by 
a sequence of integers called No. of state (No. of state = 1,2,...,66). The real crack length c can 
be obtained by c = (No. of state)c,,,/X,,,. For example, when No. of state = 66, c = c,,, 
(since X,,, is 66 psi). The introduction of No. of state is just for the purpose of a better three- 

Fig. 10. Relation of the probability, nominal stress, and number of states in the crack extension 
process. 
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dimensional graphic presentation, because No. of state and the nominal stress X form a uniform 
square mesh. 

One can see from Fig. 10 that when, for example, the nominal stress is 65 psi, which is near 
the maximum value of 66 psi, the probability of the occurrence of No. of state = 65 is very 
high, more than 90%. This is because No. of state = 65 represents the crack extension c = (No. 
of state)c,,,lL,, =0.27 in, which is almost the failure state. On the other hand, the probabil- 
ities of the occurrence of the lower damage states at the same nominal stress level are almost 
zero (as one can see from Fig. 10 for No. of state from 1 to 60, which corresponds to crack 
extension from 0.004 to 0.25 in). This must be true in reality, because at such a high loading 
level the probabilities of short crack extensions should be very small. 

Figure 11 shows the cumulative density function for the maximum load, which is obtained 
from Fig. 10 by fixing No. of state as 66 (corresponding to Bj= B and c = c,,,). All the statisti- 
cal information known prior to the present analysis has included only the statistics at the failure 
load, as shown in Fig. 11. By applying our analysis, we now know all the statistical information 
not only about the failure state but also about the process from the initial state up to the failure 
state, which is shown by Fig. 10. In the present example, the statistical information consists of 
the probability of the crack extension at each loading level (or at each nominal stress, which is 
proportional to the load), and of the probability of the crack length increment for a given incre- 
ment of loading. 

Another advantage of the present model is that sample curves of loading in terms of 
damage states can easily be simulated by computers. In this manner, the scatter band and the 
trend of damage evolution can be visualized. More importantly, one can see whether the devel- 
oped model gives a realistic picture or not. The increment of the nominal stress, AXj, between 
any two unit jumps of the damage state (as shown in Fig. 12(a)) is governed by a geometric 
distribution with parameter pj Then the sample curves can be generated as shown in 
Fig. 12(b). Figure 13 shows the relationship between the crack extension and the nominal 
stress. As one can see, the generated sample curves resemble the experimentally observed test 
curves quite well. This means that the present model can indeed realistically characterize the 
probabilistic structure for the entire loading history from the initial state up to the failure. 

8. POSSIBLE GENERALIZATIONS 

The foregoing analysis has dealt with the method to obtain the probabilistic structure prior 
to the maximum load by combining the Markov chain model with the maximum-load infor- 
mation alone, that is, with the R-curve determined solely from the maximum-load data. This 
approach is advantageous when the test data available for statistical analysis is limited. But 

Nominalstress (psi) 

Fig. 11. Cumulative probability of failure load. 
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Fig. 12. Generated samples of nominal stress and number of states in the crack extension process. 

when a large number of sample curves are available, it would be possible to approach the pro- 
blem in the opposite way, that is to determine the R-curve behavior in the mean sense from the 
sample curves and the Markov chain model. 

Fig. 13. Generated samples of nominal stress and crack extension. 
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There are other possible generalizations. The multi-jump model in eq. (4) could be used to 
simulate the activation energy and then investigate the statistical nature of the rate effect. Also, 
a two-way random walk model could be used to characterize material behaviors after the maxi- 
mum load. But the solutions to all of these problems depend upon the development of the 
method for evaluating the model parameters from the available test data. These might be inter- 
esting topics for further research. 

9. CONCLUSIONS 

(1) The discrete Markov chain model can be used to evaluate the probabilistic structure of 
progressive cracking under monotonic loading in materials characterized by R-curve behavior. 
The crack propagation probability for an existing crack at any loading step before the maxi- 
mum load and the probability of failure at any damage state can be calculated by the present 
method. 

(2) The determination of model parameters in principle requires a large number of sample 
curves, which are difficult to obtain. Normally only the maximum load data are available and 
the number of maximum load samples alone does not suffice to obtain the statistical parameters 
required for the model. The basic idea to circumvent these limitations of the available data is to 
use, as a substitute, the mean curve obtained by fracture mechanics calculations. 

(3) Three-point bend concrete beam tests are performed in order to determine the variation 
of the load along the loading path. The basic trend observed from the test results is that with 
increasing CMOD, the variance of the load increases with some fluctuations. At the initial state, 
at which CMOD = 0, the variance can be considered to be zero. Based on currently available 
test results, we introduce an assumption that the variance is a linear function of the CMOD. 

(4) The R-curve obtained by size effect analysis of the measured maximum loads of geome- 
trically similar specimens of different sizes is employed as the mean curve. In the framework of 
the R-curve model, the variance of the load needs to be considered as a function of the crack 
extension. Based on the statistical analysis of the CMOD-load curves and as a first approxi- 
mation, we assume that the standard deviation of the load in terms of the crack extension 
evolves similarly to that of the CMOD-load curves. As a result, the standard deviation of the 
load prior to the maximum load may be assumed to be a linear function of the crack extension 
(or the crack length). Thus, the standard deviation of the entire process of crack propagation 
may be predicted solely from the standard deviation of the maximum loads of specimens, s,,,. 
This is advantageous for practical applications because srnax is often the only information avail- 
able. 

(5) The probabilistic information on the damage evolution process predicted by the present 
model covers the entire monotonic loading history. 
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