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Finite Strain and Its Rate’

It is shown that there exist approximations of the Hencky (logarithmic) finite strain
tensor of various degrees of accuracy, having the following characteristics: (1) The
tensors are close enough to the Hencky strain tensor for most practical purposes and

coincide with it up to the quadratic term of the Taylor series expansion; (2) are easy
to compute (the spectral representation being unnecessary); and ( 3) exhibit tension-
compression symmerry (i.e., the strain tensor of the inverse transformation is minus
the original strain tensor). Furthermore, an additive decomposition of the proposed
strain tensor into volumetric and deviatoric (isochoric ) parts is given. The deviatoric
part depends on the volume change, but this dependence is negligible for materials
that are incapable of large volume changes. A general relationship between the rate
of the approximate Hencky strain tensor and the deformation rate tensor can be

easily established.

Introduction

The Hencky strain tensor H (Hencky, 1925, 1928), which
is also called the logarithmic strain tensor, the true strain tensor
or the natural strain tensor (Nadai, 1937; Davis, 1937), is not
the simplest finite strain measure to use. Many investigators
nevertheless considered the Hencky strain measure to be attrac-
tive (e.g., Hill, 1970; Freed, 1995). Certain advantages, which
overcome the shortcomings of the updated Lagrangian descrip-
tions in finite-strain plasticity, have been pointed out by Hei-
duschke (1993a, b. c, 1996).

The Hencky strain measure has four advantageous properties:

I The strain tensor for the inverse transformation is sym-
metric in the sense that it is equal to minus the strain
tensor for the original transformation; and in particular
the compression and tension are symmetric in the sense
that the normal strain corresponding to principal stretch
A is equal to minus the normal strain component corre-
sponding to principal stretch 1/\.

2 The trace of the strain tensor for isochoric deformations
(i.e., deformations at constant volume) vanishes.

3 Subsequent co-axial strains are additive (which means
that, after one deformation, the new configuration can be
taken as the reference state for computing the additional
strain for a further deformation.

4 In consequence of the additivity, the strain tensor can. in
particular, be separated into volumetric and isochoric
strain tensors that are additive and independent even if
both the shear strain and the volume change are large.

The last property is very useful for generalizing to finite strain
the existing smail-strain complex constitutive laws for pressure-
sensitive frictional dilatant materials such as concrete or soil. If
the volume change is small, this property can be approximately
attained for any finite strain tensor by introducing a certain

' Dedicated to Franz Ziegler, Professor at the Technical Uni-
versity Vienna, on the Occasion of his 60th Birthday.
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special definition of the volumetric and deviatoric finite strain
tensors (BaZant, 1996). But the error of the approximate addi-
tive volumetric-deviatoric split becomes significant if the vol-
ume change is large.

Although the Hencky strain tensor is used in some commer-
cial finite element codes, it has, unfortunately, three serious
computational disadvantages which have so far prevented wide-
spread practical applications:

1 The conjugate stress tensor is in general very difficult to
calculate.

2 The general relationship between the rate of Hencky strain
tensor and the deformation rate tensor is very complicated
(Hill. 1968; Stéren and Rice. 1975: Gurtin and Spear,
1983: Hoger, 1987). A recent claim that a simple relation
can be established (Freed. 1995) has turned out to be
invalid.

3 The computations of the Hencky strain tensor, which need
to be based on the spectral representation (e.g.. Malvern
1969; Ogden 1984) and require calculating the principal
strains and principal directions. are still quite expensive
in very large finite element programs in which the finite
strain may have to be computed as many as 10* to 10°
times.

The increments AH, instead of being calculated from the rate
of H. can of course be calculated directly by taking the differ-
ence of two subsequent tensors H evaluated by spectral repre-
sentation. But such an approach poses high demands on com-
puter time. In the case that two or three principal strains are
equal, a choice of the principal direction vectors among infi-
nitely many possible such vectors must be made in a manner
consistent between two successive states, and this causes further
complications.

If the elastic part of strain is small, which is usually true for
plastic and brittle materials, the aforementioned disadvantage 1

® Freed presented an elegant and powerful new approach. but his final expres-
sion for H in Eq. (31). which is F~'d F, is not symmetric (the notations are
defined later in this paper). This was pointed out and demonstrated by Rice
(1996). Another demonstration: E = F'dF:sod = FTEF” = F-(F'F +
FEYF~" = (F7F + FF')/2 = sym(FF ). Therefore. F'd F = F' F~'X
= GX where X = F7d F. which is symmetric. and G = F~'F " = (F'F)™', also
symmetric. But tensor GX is generaily not symmetric.
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can be circumvented by adopting a nonconjugate strain measure.
This of course requires certain caution in order to ensure the
nonnegativeness of dissipation (BaZant, 1997). The purpose .of
this article is to present a new class of easy-to-compute ﬁplte
strain tensors (recently proposed by BaZant, 1995) which satisfy
property 1 exactly and properties 2—4 approximately but clpsely
enough, while at the same time avoiding the aforement.xoned
disadvantages 2 and 3. As for disadvantage 1, the conjugate
stress tensor will be much easier to calculate for the proposed

class of tensors.

Finite Strain Tensors With Symmetric Inverse

Most of the finite strain tensors practically used in the past
belong to the class of Doyle-Ericksen tensors (e.g.. Ogden,
1984: Bazant and Cedolin, 1991, Section 11.1) defined as:

1
for m=0: E™=—(U"-1I),
m

for- m=0 E°=H=IhU (N

Here m is a real parameter, and U is the right stretch tensor,
defined by the polar decomposition F = RU of the deformation
gradient F, with R being the rotation tensor. For m = 2 this
expression yields the classical Green's Lagrangian finite strain
tensor E; for m = 1 the Biot strain tensor e = U — I (I being
the unit tensor): and for m = 0 the Hencky (logarithmic) strain
tensor H. Incremental stability formulations and objective stress
rates that are associated with the tensors form = —1 and m =
—2 have also been used (see Table 11.4.1 in BaZant and Cc?do-
lin, 1991). The dependence of E‘™' on parameter m is continu-

ous because :

H = liml(U”’—I) (2)
m—0 M
Let us now replace m by —m in Eq. (1):
Em=la-um (3)
m

Evaluating (1) and (3) for various m, one may note that th'e
deviations from In U are of opposite signs anfi similar magni-
tudes. Thus, the average of these two expressions, namely the

tensors

1

B'™ = — 4
2m

(U -U™)

(Bazant, 1995) should be much closer to H. It is also obvious
that

In U = lim = (U™ = U™) (5)
m—0 20T

and the convergence to H should be much faster.

The replacement of U with U~ 'in (4) merely changes the
sign of B, and so the compression-tension symmetry (prop-
erty 1) is satisfied exactly. So the Hencky strain tensor is not
the only one with this advantageous property.

The two simplest special forms of tensor B‘™ are:"

for m=1 B=3(U-U™" (6)
for m=% B=(U"-U") @)
Noting the binomial series expansion:
Ur=(I+e)"
(8)

—1+ (’;) ; (;")ez+ (’;) .o
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we obtain the Taylor series expansion:

L6 (k160

B(m) =

m+2 ., m+1 ,
=e —ze° + e’ — e
N 6 4

(9)

For m — 0, the expansion of B‘™ coincides with the expansion
of H, which reads:

H=an=ln(I+e)=e—;-e2+§e3—-§e‘+...(IO)

For any m, this expansion coincides with the Taylor series
expansion (10) of Hencky strain up to the quadratic term. On
the other hand, this expansion coincides with the Taylor series
expansion of the Doyle-Ericksen strain tensors (1) for m = 0
only up to the linear term.

For the purpose of the analysis of critical load at the stability
limit, only the quadratic term of the Taylor series expansion
matters (see, e.g., Chapter 11 in BaZant and Cedolin, 1991).
Therefore, the solutions of the critical loads of initially stressed
bodies based on finite strain tensors H and B'™ will be identical.
The same will be true for the associated objective stress rates
or increments, and for the associated tangential elastic moduli.
However, the postcritical behavior and the stability conditions
at the critical state will differ because they depend on the higher-
than-quadratic terms of the potential energy expression.

Numerical Comparisons

According to the spectral representation, every finite strain
tensor can be expressed (in cartesian components) in the form:
3

Ey = £ f(\)nkn] where \, are the principal stretches (princi-
P p p

=1

pal values of U), nf (k = 1, 2, 3) are the components of the
unit vector of principal direction /, and f(X\) (for A > 0)is a
smooth monotonically increasing function such that f(1) = 0
and f’'(1) = 1. Since all the strain tensors are coaxial, the
judgment of how close the tensors B‘™ approximate the Hencky
tensor H can be made by comparing the values of f(A) for
the maximum principal stretch Ay, and the minimum principal
stretch Agin-

For various values of A = Apu O Ayi,, Table 1 gives the
corresponding principal values H,, E,, B, and B, of tensors H,
E, B and B (where H, = In \). Table 1 also gives (in percent-
ages) the relative deviations of these values from the maximum
or minimum principal Hencky strain, i.e. from In A = In Ap,,
or In A\, which are defined as

5= 1, s =Ll

In A inA

B, B,
bp=—-—1, bg=-—"—1, 11
7 Ina T (11)

where ¢y = A — 1. For B (m = 1) and principal stretches
between % and % these deviations are seen to be at least an order
of magnitude smaller than the deviations of e, and even much
smaller than those of E. For B (m = %). these deviations are
at least two orders of magnitude smaller than the deviations of
e. The deviations from In A within this very broad range are
seen to be under 2.8 percent for B and under 0.7 percent for B,
which is less than the errors that inevitably arise from imperfect
knowledge of the constitutive relation when the strains are cal-
culated from the stresses.
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Table 1 Principal strains corresponding to various principal stretch values, and their percentage deviations from the

corresponding principal Hencky (logarithmic) strains

A H, E, B, B B, B b, b¢ bs bg &g 6
1.005 .0050 .0050 0050 .0050 .0050 .0050 .2498% .5004% .0004% .0001% .0000% .0000%
1.01 0100 0100 0100 .0100 0100 .0100 4992% 1.002% 0017% .0004% .0001% .0000%
1.03 0296 .0304 .0296 0296 0296 .0296 1.493% 3.015% 0146% .0036% .0012% .0001%
1.05 .0488 0512 .0488 .0488 .0488 0488 2.480% 5.042% .0397% .0099% .0031% .0002%
1.1 .0953 .1050 .0955 .0953 .0953 .0953 4.921% 10.17% 1515% 0379% (0117% .0008%
1.3 2624 3450 2634 2631 2626 2624 14.34% 31.50% 1.151% .2871% .0763% .0053%
1.5 4055 6250 4167 4082 4060 4055 23.32% 54.14% 2.763% .6864%  .1336% .0096%

2 6931 1.5000 7500 7071 6924 L6931 44.27% 116.4% 8.202% 2.014% —.1024% —.0034%
4 1.386 7.500 1.875 1.500 1.227 1.378 116.4% 441.0% 35.25% 8202% —11.46% —.6164%
8 2.079 31.50 3.938 2.475 2355 1.998 236.6% 1415.% 80.35% 19.02% -88.67% —3.914%
1/1.005 -.0050 —-.0050 —-.0050 -.0050 -—.0050 —.0050 -.2490% -—-.4971% .0004% .0001% .0000% .0000%
1/1.01 -0100 -.0099 -.0100 -.0100 -.0100 -.0100 —-.4959% -.9885% .0017% .0004% .0001% .0000%
1/1.03 ~0296 —.0287 -.0296 -—.0296 -.0296 —.0296 ~-1.463% -2.898% .0l46% .0036% .0012% .0001%
1/1.05 ~0488 ~—.0465 —.0488 —.0488 —.0488 —.0488 -—2400% -—-4.724% .0397% .0099% .0031% .0002%
/1.1 -0953 -.0868 -.0954 —.0953 -—.0953 -—.0953 -—4.618% -8953% .1515% .0379% .0117% .0008%
1/71.3 ~2624 -2041 -2654 —2631 -.2626 -—.2624 ~-12.04% -22.19% 1.151% .2871% .0763% .0053%
1/1.5 -4055 -2778 -—4167 -—.4082 —.4060 —.4055 ~17.79% -31.49% 2.763% .6864% .1336% .0096%
12 —6932 -=3750 -.7500 -.7071 -—-.6924 -—.6931 -2787% ~4590% 8.20% 2014% -.1024% —.0034%
1/4 -1.386 —.4688 -1.875 -1.500 -1.227 -1378 -4590% ~—66.19% 3525% 8.202% —11.46% —.6164%
1/8 —2079 -—.4922 ~3938 —2475 -2344 -—1998 -57.92% -76.33% 8935% 19.02% —88.67% —-3.914%

Improved Approximation by Linear Combination of
B (m)

It may be expected that a linear combination of tensors B™
for various m values should provide an even better approxima-
tion of H. Let us consider the tensors

B™m = kB(m) + (l __.'k)B(n) (12)

where k is a constant. These tensors are almost as easy to
calculate as B and B™.

At first thought, it might seem that the best linear combination
is that which makes the fourth term in the Taylor series expan-
sion the same as for the Hencky tensor, i.e., equal to —e*/4.
This is achieved for k = (n? + 2)/(n® — m*). For m = } and
n = 1, this yields k = 4 and | — k = —3. However, it turns
out that this makes the approximation of H better only for
very small strains (le;| < about 1 percent), for which the
approximations by B and B are already extremely close. For
larger strains, the approximations become worse.

Therefore, the optimum approximation has been determined
numerically from the condition that the magnitude of the maxi-
mum percentage deviation of the uniaxial strain from In X within
the range 0.5 < X < 2 be minimized. The results are the follow-
ing two tensors:

B = B“'? = 1.307B'" - 0.307B'®

= 0.6535 (U - U™Y) + 0.07675(U* — U*) (13)
B = B'V* = [.326B'V? - 0.326B'"
= 132600 = U~"*) + 0.163(U""' - U) (14)

in which B'? = E = Green’s Lagrangian strain tensor, B'"’ =
e = Biot strain tensor, and U? = F’F = C = Cauchy-Green
deformation tensor. Tensors B and B are almost as easy to
calculate as B'" or B"'?’, respectively. i
_ Table | gives the principal values B, and B, of the tensors
B and B. As we see. B is better than B approximately for the
range % < X\ < 3, and B much better than B for the entire range
calculated, i.e. § < A < 8, and its deviation from the Hencky
strain does not exceed about 2 percent within this large range.
This should suffice for most imaginable practical applications.
However, the tensors B and B are not monotonic, because
of the negative sign in Eq. (13) and ( 14). Therefore, unlike all
the other tensors we have considered. they are not usable as
measures of finite deformations for an unbounded range. The
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tensor is monotonic (and thus usable) if every principal stretch
\ lies within the following range:

for B: 0.2232 < \ < 4.4807 (15)
for B: 0.05453 < A < 18.340 (16)

The practical applicability range is somewhat narrower than
this range.

Trace of Strain Tensor at Isochoric Deformations

For constitutive modeling of complex material behavior, it is
advantageous if the trace of the finite strain tensor for isochoric
deformations (deformations at constant volume) is zero. This
property is satisfied only by the Hencky strain tensor, i.e., Hy
= (Tr H)/3 = 0 (Tr denotes the trace of a tensor, and subscript
v denotes the volumetric component of the tensor).

The symmetric tensors proposed here have the advantage that
their trace for isochoric deformations is negligibly small for
most practical purposes. To check it consider the following two
isochoric right stretch tensors, which represent the extreme
cases between which other isochoric deformations lie:

A 0. 0
vr=(0 1/xn 0 (17)
0. 0 1
n 0 O
u=|o 1\, 0 (18)
0, 0. 1M\

U® represents a biaxial isochoric strain, and U* a triaxial iso-
choric strain. .

The volumetric components Ey, ey, By, Bv, ?v, B, defined as
1 of the trace of the tensors E, e, B, B, B, B, are calculated
in Tables 2 and 3 for the biaxial and triaxial isochoric strains. To
indicate how close the volumetric components are to vanishing,
Tables 2 and 3 aiso give the percentages of these volumetric
components compared to the principal Biot strain e, = -1,
defined as follows:

B
T T - R !
e e, e
B B
rg=t~1, rg=—"b=1 m=—=1 (19)
-3 € €
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Table 2 Volumetric strains corresponding to various biaxial isochoric stretches, and their ratios (in percentages) to the

principal Biot strains

A Ey ey By B, Ev Ev re Te rs rs T rs
1.005 .000008 .00002 0 0 0 0 .166% 337% 0 0 0 0
1.01 .00168 .00170 0 0 0 0 16.7% 16.96% 0 0 0 0
1.63 .00834 .00850 0 0 0 0 27.8% 28.32% 0 0 0 0
1.05 .01501 . .01543 0 0 0 0 30.02% 30.86% 0 0 0 0
1.1 .03168 .03335 0 0 0 0 31.67% 33.35% 0 0 0 0
1.3 .09834 1133 0 0 0 0 32.78% 37.78% 0 0 0 0
1.5 1650 2067 - 0 0 0 0 33.00% 41.34% 0 0 0 0
2 3317 .4983 0 0 0 0 33.17% 49.83% 0 0 0 0
1/1.005 .000008 .00002 0 0 0 0 .166% 337% 0 0 0 0
1/1.01 .00168 .00170 0 0 0 0 16.7% 16.96% 0 0 0 0
1/1.03 .00834 .00850 0 0 0 0 27.8% 28.32% 0 0 0 0
1/1.05 .01501 .01543 0 0 0 0 30.02% 30.86% 0 0 0 0
1/71.1 .03168 .03335 0 0 0 0 31.67% 33.35% 0] 0 0 0
1/1.3 .09834 1133 0 0 0 0 32.78% 37.78% 0 0 0 0
/1.5 .1650 2067 0 0 0 0 33.00% 41.34% 0 0 0 0
172 3317 4983 0 0 0 0 33.17% 49.83% 0 0 0 0

For a close approximation of the Hencky strain tensor, these
values should be as small as possible. In the range % <A<2,
By at isochoric deformations does not exceed 2.9 percent of the
maximum principal stretch A; B, does not exceed 0.7 percent
of \; By does not exceed 0.1 percent of \; and B, does not
exceed 0.05 percent of . In the range } < A < 4, B, does not
exceed 0.4 percent of . In the range % < X\ < 8, By does not
exceed 3 percent of A.

Efficient Computation of Increments of Proposed Ten-

sors

The use of tensor B in large finite element programs requires
efficient computation of the right stretch tensor U and of its
inverse U™'. This can be achieved by calculating first in each
load step or time step the increments AR of the rotation tensor
R according to the Hughes-Winget (1980) algorithm (used,
e.g.. in ABAQUS; Hibbiu et al., 1995) or another similar
algorithm by Rashid (1993). Then U can be effectively evalu-
ated as

U =RF (20)

where F = 0x/9X = deformation gradient, and X and x are
the initial and final coordinate vectors of material points. This

procedure is computationally much more efficient than calculat-
ingU = \/E as a matrix square root by spectral representation;
C = F'F. Besides, R often needs to be calculated anyway,
even if U is not needed. The dots in singly contracted tensorial
products are omitted in this paper, as in (20).

Since the Hughes-Winget algorithm is only approximate, an
error may accumulate after many steps and U? might not repre-
sent C with sufficient accuracy, that is, the difference of the
norms A = |C| — |U?| might exceed a certain small tolerance
Ay. The value of U obtained from (20) may then be improved
by adding a small correction AU, such that (U + AU)* = C
or U? + 2UAU + (AU)? = C. The term (AU)? is second-
order small and can be neglected. This yields the correction:

AU = {UY(C - UY) (21)

If the corrected value U «— U + AU still does not satisfy the
given tolerance, one may again substitute this corrected U into
(21) and calculate a second correction. However, this is usually
unnecessary because the convergence is very fast.

An alternative algorithm in which the use of R is unnecessary
is also possible if the loading steps are very small. The known
old value of U for the beginning of the loading step can be
substituted into (21), along with the current new value of F.

Table 3 Volumetric strains corresponding to various biaxial triaxial stretches, and their ratios (in percentages) to the

corresponding principal Biot strains
A BE B, B, B-v gv Ev re Te s rg s ra

1.005 .0000 .0000 .0000 .0000 .000000 .000000 .124% .249% .0001%  .00003% .00001% .00000%
1.01 .0000 .0000 .0000 .0000 .000000 .000000 .248% .4967% .0004% .00010% .00003% .00000%
1.03 .0002 .0004 0000 .0000 .000000 .000000 .732% 1.471% .0036%  .00090% .00028% .00002%
1.05 .0006 .0012 0000 .0000 .000000 .000000 1.200% 2.421% 0097%  .00242% .00076% .00005%
1.1 .0023  .0047 .0000 .0000 .000003 .000000 2.308% 4.697% .0361% .00902% .00278% .00019%
1.3 .0180 .0381 .0008 .0002 .000048 .000003 6.013% 12.69% 2519%  .06278% .01589% .00112%
1.5 0443 0972 .0028 .0007 .000114 .000008 8.866% 19.44% S5612%  .13923%  .02287% .00166%
2 .1381 3333 .0143  .0035 —-.000500 -.000027 13.81% 33.33% 1.430% .34951% —.05004% —.00265%
4 6667 22500 .1250 .0286 —.052484 -.002832 22.22% 75.00% 4.167%  95318% —1.74948% —.09441%
8 1.9024 10.2083 .4875 .1002 —.596779 —.002612 27.18% 145.83% 6.965%  1.4309% -8.52541% —.37314%
1/1.005 .0000 .0000 .0000 .0000 .000000 .000000 —.125% —.250% .0001%  .00003% .0000% .00000%
1/1.01  .0000 .0000 .0000 .0000 .000000 .000000 ~-.250% —.498% .0004%  .0001% .0000% .000000%
1/71.03  .0002 .0004 .0000 .0000 .000000 .000000 —.746% -1.485% .0037%  .0009% .0003% .000002%
1/71.05 .0006 .0012 .0000 .0000 .000000 .000000 —1.240% -2.460% .0102% .0025% .0008% .000056%
/1.1 0022 0044 .0000 .0000  —.000003 .000000 -2.460% —-4.848% .0397% .0099% .0031% .000213%
1/1.3 0165 .0320 —.0008 -.0002 -.000048 -.000003 ~7.162% -—13.85% .3275% .0816% .0207% .001452%
1715 .0387 .0741 -.0028 -.0007 -.000114 —-.000008 —-11.62% ~—22.22% ~.8418% .2089% .0343% .002490%
172 L1095 .2083 -.0143 -.0035 .000500 .000027 -—21.90% -—41.67% 2.860% .6990% —.1001% —.005305%
1/4 4167  .8438 —.1250 —.0286 .052484  .002832 ~55.56% —112.50% 16.667% 3.8127% —6.9979% —.377653%
1/8 9273 21693  -.4875 -1.002 596779 .026120 ~105.98% -247.92% 55.719% 11.4474% -68.2032% —2.985126%
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Equation (21) thus yields the first estimate of the increment
AU for the current loading step. The first estimate of U for the
end of the current step is U — U + AU. To further improve
the estimate, the updated U may be substituted again into (21).
Further updates are usually not needed if the loading step-is
small.

A similar procedure may also be used for efficient computa-
tion of UY? from U, which is needed for the tensor B =
B'"?. Let Uyg and U,. be the values of U for the beginning
and the end of the current loading step or time step. Let UL;
= A, whose value is known. We need to find the increment
AA such that (A + AA)* = Usw or A2 + 2A0A + AA® =
Upew. If the step is small, A A * inay be neglected, and this yields
the approximation:

AA =JAT'AU, AU =U,, - Uu (22)

This can be further improved by iterations. To this end, U,y
and U,.,, are redefined as the values for the end of step before
and after the current iteration, and A is the redefined value of

oid - Substituting into (22) the updated value A — A + AA
and using the redefined AU, one can obtain an improved ap-
proximation.

Additive Volumetric-Deviatoric Split

Many types of constitutive equations require that the strain
be decomposed into its volumetric and deviatoric parts. This
decomposition has traditionally been expressed in the multipli-
cative form U = FpUy where U, = J'°I = isotropic tensor,
describing the volumetric deformation, and F, = J~'°U =
strain tensor describing the deviatoric ,deformation, which is
isochoric (causes no change of volume) (Flory, 1961; Sidoroff,
1974, see Bazant, 1996),and J =det F = det U = det Uy =
Jacobian of the transformation. However, the available small-
strain constitutive models for concrete or soils use an additive
volumetric-deviatoric decomposition. They cannot be easily
generalized to finite strain using the multiplicative volumetric-
deviatoric decomposition.

As recently shown (BaZant, 1996), the finite strain tensors
of the Doyle-Ericksen class can be decomposed into volumetric
and deviatoric parts also in an additive manner. The volume
change vanishes for purely deviatoric deformations and the de-
viatoric part vanishes for purely isotropic deformations. The
additive decomposition was successfully used in a generaliza-
tion of the microplane model for concrete to moderately large
strains (BazZant et al., 1996a. 1996b). It will now be shown that
the additive decomposition is also possible for the tensors B'™
proposed here.

According to the definition of tensor B'™' in Eq. (4), the
volumetric strain is characterized by the following isotropic

tensor:

BYY = = (U7 - Up™) = = (/™ = J"")1 (23)
2m 2m

£

Subtracting now this tensor from the total strain tensor B'™,
we obtain the additive deviatoric part:

Blom) = Btmy —_ Blvm)

= L m o IrTe-my __ L mi3 __ y-mi3
Py (U ™ I « JTN

= L (JM/JFE/J —_ j-m/JFEMIJ) — __1_ (j"'lj _ ]""”)I
2m 2m

- "L [Jm/J(FrS/J - I) —_ j—mlj(Fanll — I)] (24)

This strain tensor has the property that it vanishes for purely
volumetric deformation. for which Fp = I. and therefore it can
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be regarded as a measure of the deviatoric (isochoric) deforma-
tion. The tensor B vanishes for a purely deviatoric (isochoric)
deformation, and therefore it can be regarded as a measure of
purely volumetric deformation.

One feature, shared with the additive deviatoric tensor pro-
posed by Bazant (1996), should now be noted. The additive
deviatoric tensor is not independent of the volume change, char-
acterized by J, except if m = 0 (i.e., in the case of Hencky
strain). This would. of course. be an undesirable feature for
constitutive modeling. However, for dilatant pressure-sensitive
materials such as concrete or soil, this feature has only a negligi-
ble effect.

These materials can exhibit only very small volume changes
while being capable of very large shear (or isochoric) strain if
the hydrostatic pressure is very high. For pressures equal to
about 10X the uniaxial compressive strength, recent, yet unpub-
lished test results at Northwestern University show that Portland

-cement concrete can sustain normal Biot strain of 35 percent

while still remaining compact and retaining about % of its origi-
nal uniaxial compressive strength. However, the accompanying
volumetric strain is small, of the order of —! percent. In the
compressive uniaxial strain tests of concrete, a pressure as high
as —2070 MPa (—300,000 psi) has been achieved, but the
corresponding volumetric strain was only about —3 percent and
the porosity was reduced to only about % (Bazant et al., 1986).
In most practical applications, the volume changes of concrete
are much less, well below 1 percent in magnitude. So we can
reckon that the value of J'> — 1 is practically always less than
0.003. The change of the additive volumetric parts of Green’s
Lagrangian strain tensor proposed by BaZant (1996) is then less
than about 0.6 percent in magnitude, which is quite negligible
compared to the uncertainty in the constitutive equation. For
the additive volumetric part of the Biot strain tensor proposed
by Bazant (1996), the correction is less than 0.3 percent, which
is even more negligible.

For the improved linear combination tensors B> given by
Eq. (12), their volumetric and deviatoric parts are likewise

defined as:

vam‘n) = _lf_ (Jm/] —_ J—m/3)I + | k(Jn/J - j—n/S)I.
2m 2n

BADm.m = Blm.nb — Blvm.n) (25)
For B™"', the dependence on J is much weaker than it is for
B, and is negligible (within the aforementioned ranges of
\) for all practical purposes, even for highly compressibie

materials.

Rate of Proposed Approximate Hencky Tensor

In contrast to the Hencky strain tensor. a general relationship
between the rate of one of its aforementioned approximations
and the deformation rate tensor d (velocity strain) or the rate
of the right stretch tensor can be easily established. The incre-
ment AU for a given time interval Ar may be calculated from
d using the Hughes-Winget algorithm. as already explained.
Then U = AU/Ar where the superior dot denotes the time
rate. The rate of one of the approximate Hencky tensors then
follows by using the following relations:

%(U:) =UU + CU (26)
d =1 Bl 81 et o]
Z(U y=-U""CUC (27)
g(U‘:) =-U-'CU?-U"UU' = =C~'CC™! (28)
1

APRIL 1998, Vol. 120 / 135



s~ute also that d(U?)/dt = € = 2E and E = F'd F. By inver-
sion, d = F7EF ~'. Consequently,
d=1F7(UU + UO)F! (29)

So the deformation rate tensor d corresponding to any given
U inay be evaluated from (29) and, at the same time, the rates of
the approximate Hencky tensors may be evaluated from (26) -
(28).

If d is given, then (29) represents a system of three linear
algebraic equations for the components of U, which may replace
the use of the Hughes-Winget algorithm.

Conclusions
1 There exist approximations of the Hencky (logarithmic)
finite strain tensor that

(a) exhibit tension compression symmetry (i.e., the strain
tensor of the inverse transformation is minus the origi-
nal strain tensor),

(b) coincide with the Hencky strain tensor up to the qua-
dratic term of the Taylor series expansion,

(¢) are close enough to the Hencky strain tensor for most
practical purposes, and

(d) are easy to calculate, and in particular the spectral repre-

sentation of tensor is not needed.

Approximations of various accuracy are given by Egs.
(6), (7). (13), and (14).

2 The more accurate approximations (13) and (14) are not
monotonic and thus the ranges of their usability as mea-
sures of finite strain are not unpounded. However, the
range is sufficiently broad for most practical purposes,
especially for tensor (14).

3 A general relationship between the rate of the approxi-
mate Hencky strain tensor and the deformation rate tensor
can be easily established.

4 The proposed strain tensor can be decomposed into volu-
metric and deviatoric (isochoric) parts in an additive
manner. The deviatoric part depends on the volume
change but this dependence is negligible for materials that
are incapable of large volume changes.
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