S1ZE EFFECT IN PENETRATION OF SEA ICE PLATE WITH

PART-THROUGH CRACKS.

II: RESULTS

By Zdengk P. BaZant,' Fellow, ASCE, and Jang Jay H. Kim*

ABSTRACT: After development of the theory in the part I paper, systems of up to 300 nonlinear equations are
solved in this paper by the Levenberg-Marquardt optimization algorithm. The maximum load is reached when
the circumferential cracks begin to form. Numerical calculations show a typical quasi brittle size effect such
that the plot of log oy versus log k (where oy = nominal stress at maximum load and A = plate thickness) is a
descending curve whose slope is negligible only for » < 0.2 m and then gets gradually steeper, asymptotically
approaching —1/2. The calculated size effect agrees with the existing test data, and contradicts previous plasticity

solutions.

INTRODUCTION

The part I paper (BaZant and Kim 1998) in this issue pre-
sented the theory of a numerical solution of the fracture prob-
lem of penetration of an object through a floating ice plate.
The present paper will use the theory to obtain results on the
size effect and compare them to experimental data. Broader
issues of scaling will also be studied. All the notations and
definitions from the part I paper will be retained.

NUMERICAL CALCULATION OF DEFLECTION,
STRESS, AND CRACK DEPTH PROFILES

To study the vertical depth profile of the radial crack, the
stress distributions and, most important, the size effect, ice
plates with various thicknesses are analyzed numerically. The
schematic picture of the part-through numerical analysis model
of an ice plate is shown in Figs. 1 and 2 of part I. An ice plate
with an angle of 60° between the radial cracks in a star pattern
is chosen as the basic case to solve. This is the angle that was
commonly observed in the field tests by Frankenstein (1963).
Although his experiments were carried out on lake ice, it
seems reasonable to assume that the wedge angle would be
the same for sea ice.

Because the structure is symmetric with respect to any crack
line and the centerline of any wedge, one needs to analyze
only a half wedge, with a 30° central angle. The ice plate is
assumed to have a fixed support on a circle of radius 3L. This
support is far enough from the applied load resultant to ensure
that the region with the crack behaves almost as if the plate
were infinite.

The vertical load is considered to be applied on the plate as
a uniformly distributed load along the edge of a circular hole
of radius 0.1L, where L is the flexural wavelength of ice. This
is done for the sake of convenience, to avoid dealing with the
moment singularity that would occur if the load were concen-
trated. The behavior at the beginning of crack propagation is
of course affected by the presence of the hole, but at radial
distances that matter for the long crack at maximum load
(which exceeds 0.2L for all L), the behavior is nearly the same
as for a plate in which the load is either concentrated or ap-
plied uniformly over the area of the circle. This fact (which is
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a manifestation of the Saint-Venant principle) justifies the as-
sumed mode of loading. The reason that the radius of the hole
is increased in proportion to L is to maintain strict geometric
similarity, which makes it possible to obtain precise informa-
tion on the size effect, free from the effects of shape (or ge-
ometry). The crack profiles are shown in Fig. 1.

The mechanical properties of sea ice vary widely (Sander-
son 1988), depending on the type of ice, temperature, and
salinity. In the present study, the following typical ice prop-
erties are assumed: f; = 0.2 MPa, v = 0.29, E = 1.0 GPa, and
K. = 0.1 MN m™*? (Sanderson 1988), but some other values
are e;lso considered. The specific weight of water, p = 9,810
N/m’.

The mesh used to calculate the compliance matrices has 60
uniformly spaced angular nodes within one-half of the wedge
and 100 nodes on the radial rays. The spacing of the nodes
along the radial ray is dense near the hole and is getting grad-
ually coarser farther away [Fig. 2 of part I]. The reason for
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FIG. 1. Calculated Profiles of Nominal Stresses due to Bend-
Ing Moment and Normal Force, Crack Depth Profiles, and Verti-
cal Shift of Normal Stress Resultant



the variable spacing is twofold: (1) The variation of the com-
pliances near the hole is quite abrupt; and (2) the plastic zone
at the crack tip is too short to get resolved with a coarser
spacing (but even for the fine spacing used, the plastic zone
could not be resolved for thick plates).

Fig. 2(a) shows a few typical load-deflection diagrams plot-
ted as (oy — o,) versus (4 — u,), where u,, o, are the load
point deflection and nominal stress at the elastic limit, i.e., just
before the cracks start to grow. These diagrams terminate at
the maximum load state. The maximum load is calculated un-
der the hypothesis that the initiation of the circumferential
cracks immediately causes softening in the load-deflection di-
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FIG. 2. Plot of: (a) Load-Displacement Diagrams for Plates of
Various Thicknesses; (b) Calculated Radial Crack Length As
Function of Plate Thickness; (c) Calculated Dimensionless Ra-
dial Crack Length As Function of Dimensionless Plate Thick-
ness

agram. This hypothesis is based on the experimental obser-
vations of Frankenstein (1963). The calculated curves shown
in Fig. 2(a) computationally verify the field test results ob-
tained by Frankenstein (1963). However, even if the maximum
load occurred only after some finite growth of the circumfer-
ential cracks, this hypothesis would be on the safe side.

Fig. 1 shows the distributions of stress o, due to bending
moment, stress oy due to normal force, and crack depth b(r)
along the ray with the crack, calculated for various crack
lengths a. The distributions for different loading phases differ.
Initially, as the radial crack extends, o, and oy gradually in-
crease from the first node to the end of the radial crack. Note
that, behind the crack front, the bending moment is positive
and the normal force is negative. The normal force at the tip
of the radial crack is negligible. The crack depth gradually
increases as the crack length increases, and the crack edge has
a descending slope except near the hole when the crack gets
long. As the radial crack becomes sufficiently long, the bend-
ing moment profile changes its shape from a gradually as-
cending profile to a valley-shaped profile with a high peak at
the front. The peak would doubtless become a singularity if
the plastic zone were negligible and if the nodal spacing ap-
proached zero. [Such singularities in the compliance function
of a floating plate with many cracks were identified analyti-
cally by Dempsey et al. (1995a,b).] The normal force contin-
uously increases behind the crack front. The contribution of
the dome effect caused by partial opening of the crack can be
judged by comparing the load-deflection diagrams.

When a = 0.4L, o, at the first node is about 0.75L and oy
is about 0.2L. At that moment, as revealed by Fig. 1, the rate
of the vertical crack growth with the radial crack length a
slows down near the hole, but no crack unloading [stage 4,
Fig. 2(d)] nor shortening (stage S) ever occurs. The slowing
of the vertical crack growth is caused by the development of
significant compressive normal forces in the uncracked portion
of the ice plate thickness. As the radial crack length reaches
about 2.0L, the vertical crack depth near the hole almost halts
its growth and does not exceed the depth beyond about 0.8h
as the radial crack length increases. The circumferential crack
initiates from the radial crack when this limiting vertical crack
depth is closely approached.

In the cracked ice plate, a part of the applied load is carried
by in-plane normal forces, creating a sort of dome effect. The
dome effect is characterized by the distance of the normal
force resultant above the middle plane of the plate, which is
8(r) = —M(r)/N(r). Fig. 1 shows the profiles of 8(r) at various
stages of loading. From these profiles we see that the surface
of 8(r) does not have the simple shape of a dome, but is quite
complicated, with positive and negative peaks near the radial
crack front. The surface 8(r) is above the middle plane in the
central portion of the plane where the normal compressive
forces are high and greatly contribute to the load-carrying ca-
pacity. In the outer region, the surface is below the middle
plane, but does not cause a significant reduction of load ca-
pacity of the plate because in that region the normal forces
and bending moments are very small.

SIZE EFFECT AND INFLUENCING PARAMETERS

The size effect is understood as the size dependence of the
nominal strength oy = P../h* when geometrically similar
structures are compared (P,,, = maximum load). Character-
ization of the size effect is the most important benefit of using
fracture mechanics. Failures governed by criteria expressed
solely in terms of stresses or strains exhibit no size effect (Ba-
Zant 1993; BaZant and Chen 1997; BaZant and Planas 1997);
i.e., the nominal strength is independent of the structure size
when geometrically similar situations are compared. Failures
governed by energy criteria and described by fracture me-
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chanics generally exhibit a strong size effect (BaZant and Chen
1997; BaZant and Planas 1998), provided that a macroscopi-
cally large crack develops prior to the maximum load, as is
the case here. Stable formation of such a large crack before
failure is typical for quasi brittle materials, that is, materials
with a large fracture process zone at the front of a major crack.
In view of the in-situ tests reported by Dempsey et al.
(1995a,b), Mulmule et al. (1995), and Dempsey (1996), the
sea ice on the scale of interest for the penetration problem
must be considered to be a quasibrittle material.

The solution may be regarded as a functional relation among
eight variables: oy, h, G, fi, E, p, v, and a,. However, as
already mentioned, the ratio a/a,, where a = crack length at
breakthrough load P,,, may be assumed to be so large that
the effect of the radius a, of the hole on P, or oy is negli-
gible. Furthermore, E, p, and v influence only the elastic de-
formations of the plate-water system, which are fully charac-
terized by a single parameter, the flexural wavelength L.
Therefore, the solution must be given by some function I1 of
only five variables, II{oy, h, G, f;, L) = 0.

Buckingham’s Il-theorem of dimensional analysis (Baren-
blatt 1979) states that the solution must be reducible to a func-
tion of N, independent dimensionless variables, where N, =
Nuai — Nings Ny = number of all independent variables; and N,y
= number of variables with independent physical dimensions.
Here we have N, = 5 and N4 = 2, with the independent
physical dimensions being the length and the force. So N, =
5 — 2 = 3. We may choose these variables as indicated in the
following form of solution:

Ty h l;

n-® (10’ lo) @
where @ = some function; ly = EG/f;* = K:/f}% and I, =
Elp = LYK’. Here K, = \/EG, = fracture toughness (critical
stress intensity factor); I, = Irwin’s (1958) characteristic size
of the fracture process zone [introduced for concrete by Hil-
lerborg et al. (1976)]; and [/, = second independent length pa-
rams}er. Note that the flexural wavelength L = [[,#/12(1 —
vH4

The foregoing analysis shows that the elastic properties and
specific weight of water influence the solution only through
the ratio /,/l,. As for the fracture characteristics of ice, G, and
f!, they influence the solution only through the value of [, but
not individually. This means that the size effect curve of o/
f: versus h/l, has only one parameter, namely, [,/l,.

A set of size effect curves for various values of [,/l, will,
therefore, characterize all the possible situations. This conclu-
sion is very useful because the values of G, as well as f] for
sea ice exhibit tremendous statistical variability and depend
strongly on temperature, salinity, and the size and spacing of
voids and channels filled with brine. On the other hand, the
value of p is a constant and the value of Young’s modulus E
of ice does not exhibit such a large statistical variability as G,
and f;.

The values of Young’s modulus E measured by ultrasound
range approximately from 4 GPa (5.8 X 10° psi) to 11 GPa
(1.6 X 10° psi). Because of the rate effect (or creep), however,
the effective E value for static loading is much smaller. In the
present computations, the value of E = 1 GPa (1.45 X 10°
psi), the same as considered by Evans (1971), was considered
as the basic value.

According to the review by Sanderson (1988) and the data
of Dempsey et al. (1995a,b), a representative value for the
tensile strength f; of sea ice is 0.5 MPa (72.5 psi). The value
of tensile strength, however, has only a minor effect because
the plastic zone at the crack tip is, at maximum load, very
small. The fracture toughness K, is much more important.

Sanderson (1988, page 91), based on small-scale tests, re-
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ports K.-values ranging from 0.044 MPa m~** to 0.115 MN
m~ 3?2 According to these data and the information from Urabe
and Yoshitake (1981) and Weeks and Mellor (1984), the value
K. = 0.1 MN m™ [the same as considered by BaZant
(1992a,b)] was used in computations. With £ = 1 GPa, the
corresponding value of fracture energy is G, = 10 N/m, which
was used by BaZant (1992a,b). [For comparison, the thermo-
dynamic surface Gibbs free energy of pure ice is about 0.1 N/
m; Ketchum and Hobbs (1969)]. According to Dempsey (per-
sonal communication, 1997), the representative value of the
fracture energy of sea ice is G, = 10~15 N/m.

A higher value of fracture energy is indicated by the size
effect observed in the large-scale in-situ fracture tests of sea
ice recently conducted on the Arctic Ocean near Resolute by
Dempsey et al. (1995a,b). The reader is also referred to Mul-
mule et al. (1995). These tests involved floating notched
square specimens of ice 1.8 m thick, with sides ranging from
D =05 m to D = 80 m, loaded horizontally by a flat jack
inserted into the notch of length 0.3D at a distance 0.02D from
the mouth. The size effect plot of the reported data closely
approaches the linear elastic fracture mechanics (LEFM) as-
ymptote of —1/2. Dempsey et al. (1995a,b) did not report the
fracture energy, but its value can be easily figured out from
the maximum load data they reported. To this end, one needs
to fit the size effect law to their data, determine the location
of the asymptote [as proposed by BaZant and Pfeiffer (1987)
and explained in detail in BaZant and Planas (1997)], and use
the formula for the stress intensity factor (Tada et al. 1985)
for the type of specimen used in these large-scale in-situ tests.
The calculation provides K, = 2.1 MN m™>? and, for E ~ 8.8
GPa, G, = 520 N/m. With f; =~ 2 MPa, the characteristic size
is then I, =~ 0.5 m, and /,/l, ~ 1.8 X 10°% These are the
effective values for the whole thickness of ice whose temper-
ature varies from about —20°C on top to about —1°C in con-
tact with seawater.

The values of fracture energy of sea ice depend on its tem-
perature and on the loading rate. They are also different for
cracks that grow in the floating ice plate vertically (parallel to
grains or columnar crystals, which is called the VH orienta-
tion) or horizontally (normal to the grains, which is called the
HH orientation) (Mulmule and Dempsey 1997).

The values from Dempsey et al.’s tests near Resolute, how-
ever, are pertinent to horizontal propagation of a long full-
through vertical crack. In our problem, the crack propagates
mainly vertically, which doubtless causes the fracture process
zone to be smaller than in Dempsey’s tests, and thus the ef-
fective fracture energy to be lower. Also, the anisotropy of sea
ice is likely to cause the effective fracture energy for vertical
crack propagation to be less than that for horizontal propa-
gation, because the fracture runs along, rather than across, the
vertical hexagonal columnar crystals of sea ice and along,
rather than across, the vertical brine channels. This gives an-
other reason why the fracture energy for the penetration prob-
lem should be considered smaller than in Dempsey et al.’s tests
near Resolute.

In view of the preceding discussion, the representative value
of the characteristic size of the fracture process zone for the
present computations is chosen as [, = 0.25 m, with the ratio
L/, = 45 X 10°. The size effect results for these parameters
and for the failure mode with six cracks in a star pattern are
shown by the data circles in the bilogarithmic plot in Fig. 3(a).

To obtain information on the effect of parameter /,/l,, ad-
ditional computations have been run for the value /,/l, = 3.9
X 10, These are shown by the data squares in Fig. 3(a). It is
immediately apparent from this figure that the difference be-
tween the trends of the data circles and data squares is rather
small. This is not surprising, since !, and [, differ by several
orders of magnitude, which means that they can hardly inter-
act. Therefore, the effect of parameter /,/l, can be neglected.
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FIG. 3. Diagram of: (a) Size Effect Calculated for Fixed Num-
ber of Radial Cracks, n = 6; (b) Size Effect Calculated for Thick-
ness Dependent Number of Radial Cracks Determined from
Crack Initiation Analysis

(Values of /,/l, = 10° have caused convergence problems, ap-
parently because the fracture process zone in that case is too
small to be resolved for large ice thicknesses by the assumed
mesh.)

The calculated data circles in Fig. 3(a) trace a relatively
smooth curve, except for a steep bump in the middle. This
bump appears associated with the rapid rise in ratio a/k seen
in Fig. 2(b,c), which occurs when £ increases from 0.5 m to
1 m. For small thicknesses, approximately & =< 20 cm, the
radial crack length at maximum load remains approximately
constant, which may be explained by the fact that the fracture
process zone (or l;) is not small compared to the plate thick-
ness. In that case, the strength theory must be expected to
apply, and indeed the size effect curve is initially horizontal.
For thick plates, approximately for A = 1 m, the radial crack
length at maximum load in Fig. 2(b,c) is approximately pro-
portional to the flexural wavelength L (or to #**). In that case,
the quasibrittle size effect law should be followed, and it in-
deed is. If a/L did not approach a constant for thick enough
plates, the size effect plot would not approach an asymptote
of slope —1/2.

DEPENDENCE OF SIZE EFFECT ON NUMBER OF
CRACKS

The dependence of the number of cracks on the plate thick-
ness was studied in a second round of computations. For this
purpose, one needs first to understand crack initiation from the
smooth surface of the hole on which the vertical distributed
load is assumed to be applied.

A simple method for determining the spacing of cracks ini-

tiating from the smooth surface of a half-space was proposed
by BaZant et al. (1979) [see also BaZant and Cedolin (1991,
section 12.6)] and was recently refined by Li and BaZant
(1994) and Li et al. (1995). The method involves three con-
ditions: (1) The stress before crack initiation attains the ma-
terial tensile strength; (2) the energy release caused by the
formation of cracks of finite initial length g, is equal to the
surface energy of these cracks determined from the fracture
energy G, of the material; and (3) the cracks of initial length
a; are in a critical state; i.e., their energy release rate is equal
to G,. These three conditions have also been applied by Li et
al. (1995) to the crack spacing in highway pavements. The last
two conditions imply the neglect of possible acoustic radiation
of energy, and possible additional energy dissipation by dis-
tributed damage that is not included in G

From the foregoing three conditions, one can determine the
load level at which the initial cracks form, their initial length
a;, and their spacing. Li and BaZant (1994) deduced from these
three conditions the number n, of radial cracks initiating from
a hole in the ice plate, as indicated in Table 1 of the companion
paper; n. increases from three cracks for ice plates under 0.1
thick, to 36 cracks for ice plates over 5L thick.

Taking the numbers of radial cracks for various ice thick-
nesses from the analysis of Li and BaZant (1994), and running
the present computer program for each of these numbers, we
obtain the size effect plot shown in Fig. 3(b). The numbers of
radial cracks for various size ranges are indicated in the figure.

Comparing this figure with the previous Fig. 3(a) for n, =
6, we see that the effect of the number of cracks is not strong
(which is a similar conclusion to that of the plastic limit anal-
ysis of the penetration problem). The overall curvature of the
size effect plot is only slightly less than in the previous case.
The horizontal small-size asymptotic slope is slightly higher
for the varying wedge angle analysis than for the constant
angle analysis. The average slope between 0.001 m and 0.05
m plate thickness is 6.084 X 107* and 7.744 X 10~ for Figs.
3(a) and 3(b), respectively, and the percent difference between
the slopes is 0.21%. The large-size inclined asymptote, which
has again the slope of —1/2, is slightly lower for the varying
angle case than for the constant angle case. The slopes are
0.502 and 0.463 for Figs. 3(a) and 3(b), respectively, and the
percent difference is 0.08%. The numerical results for varying
numbers of cracks can again be closely described by BaZant’s
generalized size effect law in (2), in which A\, = 2.55, m =
172, r = 1.2, and l, = 0.25 m. This law is shown in Fig. 3(b)
by the continuous curve.

ANALYSIS OF SIZE EFFECT RESULTS

The size effect was initially studied under the assumption
of full-through bending cracks for which the large size behav-
ior was found to be oy x A~*®, as confirmed by the studies of
Slepyan (1990), BaZant (1992a,b), BaZant and Li (1994a,b),
and Li and BaZant (1994). [For long full-through thermal
bending cracks, a similar size effect was found by BaZant
(1992a,b).] The reason why for full-through cracks the as-
ymptotic size effect is not ay < A~"? is because the plate thick-
ness h is actually not a dimension in the plane (x, y) of the
boundary value problem of the infinite floating plate, but
merely a parameter giving the cylindrical stiffness D. No phys-
ical dimension in the plane (x, y) exists (except for the hole,
whose effect is, however, considered negligible). The only di-
mension present is the flexural wavelength L, which depends
on the thickness as L « A**, Thus, for full-through fracture,
the size effect must be expected in the form oy < L™, or oy
o (h**)""? o k™8, This was evidenced by the penetration stud-
ies of Slepyan (1990), BaZant (1992a,b), BaZant and Li
(1994a,b), and Li and BaZant (1994) [and for thermal fracture,
BaZant (1992a,b)].
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A different asymptotic size effect, however, is exhibited by
the present numerical solution. As seen in Figs. 3(a) and 3(b),
the large-size asymptote of the size effect curve has the slope
—1/2, i.e., oy < h™"? for h — oo, which is the standard as-
ymptotic size effect. The reason why the asymptotic size effect
oy « h™¥® does not apply is because the crack is not full-
through, but is growing across the plate thickness, which is a
standard crack propagation problem. Even though the numer-
ical solution is two-dimensional (in the horizontal plane), the
fracture propagates only in the third dimension and its behav-
ior is embedded in the Rice-Levy springs. An interesting the-
oretical question is whether the (3/8)-power law for full-
through cracks can be obtained as a limiting case of the present
solution. The answer is no, because the Rice-Levy springs can-
not simulate the conditions at the tip of a horizontally propa-
gating full-through bending crack.

In a recent simplified solution of Dempsey et al. (1995a,b),
in which the depth of part-through cracks was assumed to be
constant over the entire crack length, the ice was assumed to
follow LEFM, and the case of many cracks was considered,
the size effect was of the type oy * A~ for all A.

As is typical of quasi brittle fracture (BaZant 1984; BaZant
and Chen 1997; BaZant and Planas 1998), the small-size as-
ymptote of the calculated size effect plot in Fig. 3(a) is hori-
zontal and corresponds to a solution according to plastic limit
analysis (strength theory), whose applications to the penetra-
tion problem were reviewed by Kerr (1996) [see also Sodhi
(1995a,b, 1996)]. The present computations show that plastic
limit analysis (strength theory) corresponding to the horizontal
asymptote of the size effect plot, is a good enough approxi-
mation only for ice thicknesses up to about 0.2 m (assuming
that I, = 0.25 m). At the same time, the oy values for the
horizontal asymptote can scatter widely, depending on the type
of ice and the environmental conditions (air and water tem-
perature). This may explain why no size effect was observed
in small-scale laboratory experiments.

The large-size asymptote of the size effect plot, which has
the slope of —1/2 corresponding to LEFM, is seen to be a
good enough approximation for ice thicknesses over 1.0 m.
The value of parameter X\, is chosen so that & = Ay, would
represent the thickness at the intersection point of the two
asymptotes. From the present numerical results, Ay = 2.26. The
ratic B = h/(A\gly) determined in this manner has been called
the brittleness number (BaZant 1987; BaZant and Pfeiffer 1987,
BaZant and Planas 1997). The limit B — = indicates the per-
fectly brittle response, i.e., LEFM, and the limit § — O indi-
cates the perfectly ductile (plastic) response.

The present numerical results, spanning over four orders of
magnitude of ice thickness, can be closely fitted by the gen-
eralized form of BaZant’s size effect law (BaZant 1985; BaZant
and Pfeiffer 1987; BaZant and Chen 1997; BaZant and Planas
1998), shown by the continuous curve in Fig. 3(a)

rq-—12r
Oy _h_
]

Here, the dimensionless parameters found by fitting of the nu-
merical results are B = 1.214; A\, = 2.55; m = 1/2; r = 1.55;
the dimensional parameters used in Fig. 3 are [, = 0.25 m; and
f! = 0.2 MPa (from which K, = f;\/[, = 0.1 MN m™*?). This
approximate law has been derived as the asymptotic matching
between the large-size and small-size expansions of the size
effect (BaZant 1995a,b, 1997).

Eq. (1) can be written as Y = AX + C, where X = /', ¥ =
(on)"Y, A = (Bf))™%, and C = 1/(NoBf,?Y. This means that, if
r is known, the values of Bf] and Ay, can be determined by
linear regression. The regression may be conducted for various
chosen r values such that the optimum r is found.

With the aforementioned dimensionless values of B, \, m,
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and r, (2) can be used as a general approximate prediction
formula, provided, of course, the values of /; and f; are known.

The present numerical results confirm that the (3/8)-power
law previously obtained for full-through cracks is not appli-
cable. The (3/8)-power law would apply when the horizontal
forces are sufficiently small compared to the bending mo-
ments. This would have to happen for a floating plate that is
sufficiently thin and sufficiently fragile so as to fail by fracture
rather than by plastic yielding. Such conditions may be ex-
pected to occur when I, << h << L. But this does not occur in
the realistic range of ice properties.

The (3/8)-power law does, nevertheless, apply to the scaling
of the critical temperature difference that can produce long
thermal fractures running in a stationary state, analyzed by
BaZant (1992a,b). The reason is that, despite the presence of
a large fracture process zone with a part-through crack, there
exists around the front of a long enough crack a control region
that moves with the crack front, remains in a stationary state,
and is so large that ahead of this region there is no deflection
and no damage, while behind this region there is a full-through
crack if the crack is long.

Another interesting plot is that of the radial crack length a
versus ice thickness #, shown in Fig. 2(b). Two values of a
are shown: the length to the front of the plastic zone at the
bottom surface of the plate, and the length to the front of the
open LEFM crack. As can be seen, both crack lengths are very
close and are undistinguishable for large thicknesses. This
means that the plastic behavior is not important for the overall
response, and confirms that a very accurate but complex mod-
eling of the plastic zone at the crack front is not necessary.
The reason that no plastic crack length is seen in Fig. 2(b) for
large plate thicknesses is that the nodal spacing is increased
in proportion to the ice thickness. For thick plates the nodal
spacing becomes larger than the length of the plastic zone.
This is clear from Fig. 2(c), showing the dimensionless crack
length a/L versus dimensionless ice thickness h/L.

COMPARISONS WITH TEST DATA

The present resulits on the number of cracks roughly agree
with the field observations of Frankenstein (1963, 1966) and
Lichtenberger et al. (1974). Frankenstein made extensive ob-
servations on lake ice, which can be assumed to behave sim-
ilarly as sea ice. Despite irregularities in the observed crack
patterns, Frankenstein’s tests clearly show that the number n,
of cracks increases with the ice thickness h.

The aforementioned experimental data on the size effect in
penetration of sea ice were analyzed by Sodhi (1995a,b, 1996)
under the assumption that sea ice is a plastic material. Sodhi
concluded that these data confirm the absence of size effect,
which is characteristic of his solution based on plasticity.

However, this conclusion is due solely to a questionable
statistical treatment of the data. Sodhi (1995a) based his con-
clusion on the plot of P, versus h, as shown in Fig. 4(a).
This kind of plot seems, indeed, to suggest that P,,, is ap-
proximately proportional to A%, which would mean that oy is
constant, free of size effect. However, such a way of reasoning
is deceptive. The main reason is that, implicitly, a strong de-
terministic variation obscuring the size effect, namely, the pro-
portionality of P,,, to 4%, has been superposed on the test data
by Sodhi’s choice of coordinates of the plot.

What a misleading effect such a choice of coordinates can
have is illustrated in Figs. 4(b and c). In Fig. 4(b), we assume
hypothetical perfect data, conforming exactly to BaZant’s size
effect law. Then we plot the same data in the graph of log
P.... versus log h [Fig. 4(c)]. According to Sodhi’s viewpoint
that there is no size effect, one would pass the regression line
of slope 2 shown in the figure. The comparison of this re-
gression line with the data seems now acceptable, indicating
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a relatively low coefficient of variation of the deviations from
the regression line. The comparison would look even more
acceptable if the inevitable random scatter were superposed.
Yet this is the case of perfect agreement with the size effect
law.

A second questionable aspect of Sodhi’s (1995a,b) evalua-
tion of test data is that he correlated in the same diagram the
test results from different test series while implying the
same ice properties. However, the ice properties were most
likely quite different. If the differences in ice properties
among the two test series of Frankenstein (1963, 1966)
and that of Lichtenberger et al. (1974) were taken into
account, the groups of data points for these tests could shift
vertically in the plot in Fig. 4(a). Thus, what looks like a good
agreement with the proportionality of P,,, to K? could be lost
by such vertical shifts. It is probably by chance that the
differences among the ice properties compensated for the size
effect.

Since the size effect is the deviation from the proportionality
of P to K, the only nonobfuscating way that can bring the size
effect to light is to plot the values of o = P/K; i.e., to con-
struct the plot of the measured values of log oy = log(P/h?)
versus log & (rather than a plot of P versus h). Because the
ice properties in different test series were not the same, the
plots intended to check for size effect should be made sepa-
rately for each test series. This is done in Fig. 5(a) for the

three data series reported by Frankenstein (1963, 1966) and
Lichtenberger et al. (1974). Looking at these plots now leads
to a conclusion very different from Sodhi’s: There is a clear
size effect in each test series.

Furthermore, Fig. 5(b) shows the linear regression plots of
1/0% versus A, in which the size effect law (2) with » = 1 is
represented by the regression line. These linear regression
plots make it possible to determine the coefficients of variation
of the slope of the regression line. However, the data are too
few and the size range too narrow to obtain meaningful sta-
tistics.

Finally, Fig. 5(c) shows all three data sets in one plot of
log(GN/B[{ ) versus log(h/\olp), and in another plot of
(Bf{ lan)* versus h/\olp. These unified plots use the optimum
values of Bf; and \ol, obtained by a previous separate regres-
sion of each data set. These two plots [Fig. 5(c)] confirm that
the present theory is in overall acceptable agreement with the
available test results.

In view of the high scatter and limited size range of the
available data, it cannot be claimed, however, that the existing
test results actually prove the present theory. There might exist
another theory that fits these limited data also. The answer to
this question and the verification for large ice thicknesses will
have to await measurements of a much broader size range.
Nevertheless, all the plots in Fig. 5 visually demonstrate the
invalidity of Sodhi’s claim that there is no size effect.
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SOME REMAINING QUESTIONS

Although the present study probably answers the main ques-
tions in the ice penetration problem, several questions still re-
main. Due to temperature variations through the ice plate and
diffusion of brine, the ice plate is not homogeneous. Its bot-
tom, where the temperature is near the melting point, is very
soft and weak, while the top is cold and thus stiff and strong.
The present analysis must be interpreted in the sense of a
certain effective ice thickness that gives about the same bend-
ing stiffness as that of the actual ice plate, and the values of
K, fi, and E must be interpreted as the equivalent effective
properties throughout the thickness. An accurate analysis,
however, would have to take these differences into account.

Another question is the neglect of the rate of loading. Sea
ice exhibits creep, and the effective fracture energy as well as
the strength depend on the rate of crack growth. Regarding
the number of cracks, there is another phenomenon that may
play a role. It could happen that some of the radial cracks
could grow longer than others. A bifurcation of the equilibrium
path, in which a bifurcated solution with unequal crack lengths
may be followed, is a possibility. This problem could be an-
alyzed similarly to the problem of bifurcation and changes of
spacing in the evolution of a system of parallel cooling cracks
in a half-space (BaZant et al. 1979; BaZant and Cedolin 1991,
section 12.6). Analysis of this problem would require aban-
doning the present assumption of symmetry of response.
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Finally, the value of [, might be larger for a thicker ice plate,
because of its higher heterogeneity.

CONCLUSIONS

1. The mechanism of penetration of a floating sea ice plate
involves the growth of radial cracks that cut only through
a part of the ice thickness. The crack depth at maximum
load is about 80% of the ice thickness.

. The nominal strength of the sea ice plate exhibits a
strong size effect. For small ice thicknesses (up to about
0.2 m), the size effect can be neglected. For large thick-
nesses (exceeding about 1 m), the logarithmic size effect
plot approaches an asymptote of slope —1/2, which is
typical of LEFM. The previously derived asymptote of
slope —3/8, which corresponds to full-through cracks,
cannot occur for realistic properties of sea ice.

. The characteristics of an effective numerical model are
as follows: (1) The cracked radial section is subdivided
into vertical strips in which the crack is assumed to grow
upward, independently of the cracks in the adjacent
strips; (2) the cracked vertical strip is modeled by the
Rice-Levy nonlinear softening line spring; (3) a yield
criterion is adopted to decide crack initiation in the ver-
tical strips, and the initial plastic crack growth follows a
nonassociated LEFM flow rule; (4) compliance matrices
are used to characterize the uncracked sector of the ice



plate on the elastic foundation; (5) the Levenberg-Mar-
quardt nonlinear optimization algorithm is used to solve
a large system of nonlinear equations based on the initial
estimate provided by the solution of the previous loading
step; and (6) the maximum load is calculated under the
assumption that the initiation of the circumferential
cracks immediately causes softening in the load-deflec-
tion diagram.

4. The previously established dependence of the number of
radial cracks on the ice thickness does not have a strong
influence on the size effect plot.

5. Dimensional analysis shows that, with some mild sim-
plifications, the dimensionless nominal strength of the
plate depends on only two parameters—the dimension-
less size and the dimensionless elastic modulus of ice.
The latter is further shown to have little influence. Con-
sequently, one dimensionless size effect curve can ap-
proximate the response in general.

6. The existing field measurements of size effect agree with
the present theory well, although their size range is too
limited for actually proving the theory. Sodhi’s opinion
that there is no size effect is invalid for ice plates thicker
than about 20 cm.

7. Until calibration by more extensive test data becomes
possible, based on (1) it is recommended to predict the
static load capacity of the sea ice plate from Fig. 3(b) or,
approximately, from the formula

_ 1.214f' K
T+ (h2.550)" )

Proax

APPENDIX|. LEVENBERG-MARQUARDT
NONLINEAR OPTIMIZATION ALGORITHM

The Levenberg-Marquardt iterative algorithm (Levenberg
1944; Marquardt 1963) combines the best features of the in-
verse-Hessian method and the steepest descent method to min-
imize the sum of squares of m nonlinear functions f; on n-
dimensional vector x (column matrix); f3(x) = =%, f%(x) = min.
In the initial iterations, when the trial values are not close to
the solution, the steepest descent method (or gradient method)
is used

Xooxt = Xga — const. X VF(x) 3)

where f = column matrix of components f;, and the constant
must be chosen small enough. In proximity of the correct so-
lution, the inverse-Hessian method is used to converge rapidly
to the best estimate

Xpost = Xisat T H_l[_sz(x)] (4)

where H = Hessian matrix whose components are the second
partial derivatives of the function. To judge the accuracy, the
algorithm also calculates the standard deviations of the initial
guess of the solution and of the final solution.
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SizE EFFECT IN PENETRATION OF SEA
Ice PLATE WITH PART-THROUGH
CrAckS. |: THEoORY. Il: REsULTS

Discussion by J. P. Dempsey®

A thorough examination of the quasi-static penetration of a
floating elastic-brittle plate via a fracture mechanics approach
has been presented by Bazant and Kim. BaZzant and Kim reach
the conclusion that there is a size effect (in terms of the plate
thickness, h). A few of the assumptions made by these authors
will be examined in this discussion.

The formulation presented by BaZzant and Kim assumes both
that a radial system of part-through cracks is formed and that
the appearance of these radial cracks is accompanied by stable
crack growth. The analysis proceeds by subdividing each part-
through crack into narrow vertical strips (the ith strip being of
length b;, with ligament h — b). In each strip, the crack is
assumed to propagate verticaly, independently of the crack
propagation in the adjacent strips. A simplified form of a co-
hesive crack model is adopted, with the crack initially growing
as a plastic crack.

The assumed stable development of the part-through radial
cracks does not match experimental observations, especially
for thin to moderately thick ice sheets (h < 0.5 m). The initi-
ation of cracks in ice aimost aways leads to unstable crack
growth (DeFranco and Dempsey 1994). The radia cracking
that occurs prior to the formation of circumferential cracks and
subsequent penetration is understood to occur suddenly and to
be through-the-thickness. In other words, a system of through-
the-thickness radial cracks occurs, with rapid radia and
through-the-thickness crack propagation. Even though these
radial cracks are subjected to the dome or arching effect, crack
growth instability in ice is sufficient to allow through-the-
thickness cracks to form (in thick ice sheets, it is plausible to
assume that the through-the-thickness cracking would be pre-
vented by the arching effect). Dempsey et a. (1995) studied
radial cracking with closure for the case of a clamped plate
subjected to a concentrated lateral load. By assuming that the
closure width was a function of the radia crack length only,
Dempsey et a. (1995) obtained an analytical solution that fa-
cilitated a thorough examination of the dependencies of the
closure width, the nucleated radia crack lengths, the energy
release rate, and the penetration load. In particular, the latter
analysis made it clear that radial crack growth instability
would accompany the nucleation of any radial crack system.
A finite-element study of a radially cracked floating plate by
Sodhi (1996) confirmed the broad applicability of the conclu-
sions reached by Dempsey et al. (1995).

An implicit requirement underlying the size effect anaysis
presented by Bazant and Kim is the stable formation of pro-
cess zones (contiguous to each traction-free crack front) that
scale self-similarly with the ice sheet thickness. However, if
sudden and unstable radial crack formation takes place, with
full through-the-thickness crack-face separation and subse-
quent compressive closure (unilateral contact, in other words),
there is no logical way in which one can simultaneously as-
sume the stable formation of process zones; there are, in fact,
no ligaments subjected to bending, but instead pairs of com-
pletely separated crack faces subjected to ever-increasing pres-
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sure due to the arching action. This pressure grows to be of
such magnitude that zones of circumferential microcracking in
the plane of the ice sheet have been observed to occur, at
variable radial distances away from the load. The radial crack
lines have been observed to “whiten’’ with intense micro-
cracking (Frankenstein 1966), and this is consistent with uni-
lateral contact conditions of the receding type (Dundurs 1995),
in which the extent of contact remains invariable with increas-
ing load (in the case of elastic media; creep may dter this
behavior, but not significantly). The issue of crack growth sta-
bility and whether the radial cracks would form stably or un-
stably was bypassed by Bazant and Kim, since they adopted
the radial crack length a as the controlled variable. Their for-
mulation, therefore, does not include a condition related to
crack growth stability. By controlling the radia crack length
numerically, their crack growth simulation is more stable than
could be obtained in ice even under closed loop displacement
controlled loading. For the majority of situations encountered,
the much less stable condition of load control is operative.

For the case of relatively thick ice sheets, it is plausible that
aradia crack system could form that would be comprised of
part-through cracks. These part-through cracks would still
form suddenly and, because of crack growth instability, would
immediately partially close, with conditions of K = 0 along
the crack front. Even on further loading, the remaining liga-
ments would be subjected to the compression induced by arch-
ing, and only during load-up would the crack fronts experience
tension and process zone growth. The stable formation of
crack-tip contiguous—but not necessarily self-similar—pro-
cess zones would be expected to occur, but only for the case
of rather thick ice sheets (thick here is estimated to mean h =
1 m).

If there is a size effect in ice thickness, it is important that
it be determined, especially from the viewpoint of vehicles
landing on, or traveling on, the ice. Safety is of primary con-
cern in this case, and breakthrough is to be avoided. However,
for the case of submarine surfacing, successful breakthrough
is paramount, and a realistic load resistance estimate is all
important. Given that the data in Fig. 5 of the authors paper
do not “visually demonstrate the invalidity of Sodhi’s claim
that there is no size effect,”” one would intuitively favor amore
conservative approach in the latter instance.

Conclusion: A fundamental requirement of a Bazant-type
size effect analysis is the stable and self-similar growth of
crack-front contiguous cohesive-type process zones. Such be-
havior is deemed implausible for the problem at hand. While
a size effect may occur for thick ice sheets, it is unlikely to
be significant for ice thicknesses less than 1 m.
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Discussion by Devinder S. Sodhi*

In their papers, the authors arrive at the conclusion thereis
a size effect on the failure load of floating ice sheets for ice
thicknesses greater than 0.2 m. However, the results of their
analysis are only useful if the assumptions made in their anal-
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ysis correspond to the real situation during vertical loading
and breakthrough failure of floating ice sheets.

PART I

The process of a gradually increasing axisymmetric load on
afloating ice sheet results in the following sequence of events:
(1) elastic deformations; (2) formation of radial cracks; (3)
wedging of radialy cracked segments of ice sheets; (4) for-
mation of many circumferential cracks; and (5) breakthrough
due to large deformation or brittle failure of ice. If the loading
rate is low, we also need to consider creep deformation of ice
aong with elastic deformation. During field tests, it is often
difficult to observe their formation because of snow cover.
During small-scale tests, the formation of radial cracks is a
very short-time event. They propagate to a length of about 2—
3 times the characteristic length and arrest. After the formation
of radial cracks, compressive stresses in the top part of theice
sheet support the load because of the wedging or dome effect.
The compressive stresses cause creep deformation of ice, re-
sulting in further deformation.

The results of linear elastic fracture mechanics analysis are
not immediately relevant to the propagation of cracks in a
creeping material. The results of Slepyan (1990) and Bazant
and Li (1994) are particularly flawed, because the interference
between segments during elastic deflections of wedge-shaped
beams was ignored. Dempsey et a. (1995) presented a for-
mulation of plates having radial cracks with closure. Bazant
et a. (1995) and Bazant and Kim (1998) consider closure of
part-through cracks, and the failure criterion is the formation
of the first circumferential crack. They did not consider the
creep deformation of ice, nor did they consider the formation
of multiple circumferentia cracks, which have been observed
in small-scale and full-scale tests. The authors arrive at aresult
that the dependence of breakthrough load P is proportional to
h*? using the results of field tests by Frankenstein (1963, 1968)
and Lichtenberger et al. (1974). Those field tests were con-
ducted by loading an ice sheet at a constant rate, and some of
these tests lasted for hours. Therefore, it is not reasonable to
use the results of those field tests to support the conjecture
that fracture, while ignoring creep, gives the size effect P; o
h** for ice thickness greater than 0.2 m. Their criterion that
an ice sheet fails when the first circumferential crack formsis
also not correct, because many circumferential cracks form
around the area of load application before final breakthrough
takes place.

PART II

In their analysis, the authors considered a hole of radius
equal to 10% of the characteristic length and assumed the load
to be distributed at the periphery of the hole. Because there is
considerable deformation of material in the area close to the
center, the conclusion they have reached may not be totally
correct.

On page 1320, they state that ** Frankenstein made extensive
observations on lake ice, which can be assumed to behave
similarly as seaice.”” Yet they criticized Sodhi (1995b, 1998)
at the bottom of page 1321 by saying that “‘a second ques-
tionable aspect of Sodhi’s (1995a,b) evaluation of test data is
that he correlated in the same diagram the test results from
different test series while implying the same ice properties.
However, the ice properties were most likely quite different.”’
Nevertheless, the authors plot the data from tests with fresh-
water and seaice in Figs. 5(c and d).

On page 1321, the authors state: **In view of the high scatter
and limited size range of the available data, it cannot be
claimed, however, that results actually prove the present the-
ory.”” Yet the authors state on the bottom of the same page:
“Nevertheless, all the plots in Fig. 5 visually demonstrate the
invalidity of Sodhi’s claim that there is no size effect.”” In
Figs. 5(a and b) of the paper, the authors have not realy
proven the existence of a size effect by fitting curves through
three sets of data having high scatter and a narrow range of
ice thickness.

In Fig. 6, results of small-scale and full-scale tests are plot-
ted in terms of ice thickness versus failure load. This figure
includes the data from ICEX-93 tests, in which ice penetration
forces were measured during uplifting and breakthrough of
floating ice sheets by two submarines (Dane 1993; Sodhi
1998). A line P; = 1,934 h* (where P; isin kN and h isin m),
obtained from the results of small-scale tests, passes through
plots of full-scale data, which have considerable scatter. Be-
cause this line passes through the middle of the full-scale data,
the discusser concluded that there is no size effect for ice
thickness up to 2 m (Sodhi 1995b, 1998). Compilation of field
data by Gold (1971) also supports failure load being propor-
tional to the square of the ice thickness. Accepting the authors’
conclusion that there is no size effect for ice thickness less
than 0.2 m, the discusser has plotted a line representing Py o
h*? in Fig. 6 from a point on the line (P; = 1,934 h?), where
ice thickness is equal to 0.2 m. This line does not fit the data
obtained from full-scale tests on freshwater and sea ice.

The authors raise a point in the paper that the properties of
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freshwater and sea ice may influence the failure load. How-
ever, the discusser considered creep properties of freshwater
and saline ice and did not find much deviation between aline
(P = h?) and the estimated failure loads (Sodhi 19954). The
dependence of failure loads on salinity of ice appears to be a
secondary effect, but its dependence on h? is supported by the
strength failure criterion (Bazant 1993) because of creep de-
formation during wedging action.

On page 1322, the authors state: ** Sea ice exhibits creep,
and the effective fracture energy as well as the strength de-
pends on the rate of crack growth.”” Analysis of this problem
incorporating creep will require abandoning LEFM, on which
they base their present conclusions.
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DEMPSEY’S DISCUSSION

Dempsey’s thoughtful and stimulating discussion is deeply
appreciated by the writers. Citing certain simplifications made
in the paper and revoking his own analytical solution, Demp-
sey states that dynamic fracture propagation instabilities may
cause the size effect to be significant only for rather thick ice
plates, thicker than about 1 m. Dempsey et al.’s (1995) elegant
analytical solution, however, rested on even stronger simpli-
fications, which render his conclusion about the lack of size
effect for not too thick plates unjustified.

Dempsey assumes the cracks to reach through the full ice
thickness, which implies the stress intensity factor K, at the
boundary of the crack closure zone (contact zone) is zero.
Consequently, there is no dissipative mechanism at al in
Dempsey et a.’s solution. No energy is dissipated by the frac-
ture process as modeled. Despite the possibility of dynamic
instabilities described by Dempsey, this seems to be a severe
simplification.

Another drastic smplification in Dempsey et al.’s (1995)
solution is that the depth profile of the open crack along the
radial coordinate is assumed to be uniform from the load point
up to the tip of the radial crack, with a discontinuous jump at
the tip. The numerical solution in the paper, by contrast, re-
vealed that the depth of the opened crack varies strongly with
the radial coordinate and, at the radial crack front, approaches
zero continuously.

The solution in the paper has proven that a static loading
process cannot produce radial cracks that cut through the full
ice thickness. Dempsey argues that full-through cracks are pro-
duced by dynamic instabilities, after which the crack partially
closes because of arching (or dome) action. To support his
view, he citesthe fact that, in field experiments, the top surface
of ice was seen to whiten along the radial cracks. This obser-
vation, however, does not proves Dempsey’s point, in the writ-
ers’ opinion. Cracks actually reaching the surface were not
observed in the field. The observed whitening of the top sur-
face of the ice was more likely caused by distributed cracking,
which occurs in the fracture process zone of seaice. The cor-
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rect interpretation should be that the fracture process zone
reaches close to the top surface. But this is not incompatible
with the notion that the equivalent LEFM cracks reach to
about 85% of ice thickness, as found in the paper.

Dempsey is not right in stating that ‘‘the issue of crack
growth stability ... was bypassed by Bazant and Kim.”” Be-
cause, as shown in the paper, the vertical load increases with
an increasing displacement, it is immediately clear that the
solution obtained is stable (which means that this is a fracture
problem of positive geometry, in fracture mechanics terminol -
ogy). Contrary to Dempsey’s comment, the solution is stable
regardless of whether the radial crack length or the load-point
displacement is controlled. The purpose of using in compu-
tations the crack length control instead of the displacement
control was not to achieve stability of the actual response but
merely to improve the convergence of iterations (or ensure
stability of the numerical algorithm).

In principle, of course, it should not be ruled out that re-
moval of some simplifying assumptions may lead to a signif-
icantly different solution exhibiting dynamic instabilities.
There exist two possible sources of the dynamic instabilities
emphasized by Dempsey: (1) strong inhomogeneity of seaice;
and (2) three-dimensionality of fracture propagation near the
radial crack front, alluded to by Dempsey, which is undescrib-
able by the assumed vertical propagation along an infinitesimal
strip.

At the critical state of the stability limit, a structure is at the
limit of static response (equilibrium). When stability is lost,
the response becomes dynamic (i.e., there must be inertia
forces to satisfy D’Alembert equations of dynamic equilib-
rium). Since the static solution for a homogeneous ice plate is
stable, the only possible cause of unstable crack jumps (in-
evitably dynamic) is periodic inhomogeneity of ice properties.
The value of fracture toughness K., considered constant in the
paper, actually fluctuates randomly along the crack path (with
some dominant wavelength |, representing the dominant spec-
tral component of the random process of K. as a function of
crack path length).

In crack path segments in which K. is decreasing fast
enough, crack propagation may become unstable, dynamic.
But it must be a snap-through instability, with ajump to a new
stable equilibrium state, which must occur in the next crack
path segment in which K. is growing, constant, or not decreas-
ing fast enough. Since every materia is inhomogeneous, such
instabilities occur in all fracture. They get manifested by
acoustic emissions. Yet static LEFM still provides the correct
approximation on the macroscale.

One might think that the rate of energy to form the fracture
should be equal to the rate of stored energy release minus the
rate of the energy radiated by acoustic waves. But the energy
of acoustic emissions in ice may surely be considered negli-
gible compared with the tota energy needed to form the
cracks. In concrete, for example, the acoustic emissions, due
to snap-throughs at each fluctuation of fracture toughness
caused by aggregate pieces, are as strong as in ice, yet it is
generally accepted that the energy they radiate is insignificant
compared with the energy required for concrete fracture. Oth-
erwise, static fracture analysis of concrete would be impossi-
ble. Besides, it would actually be incorrect to subtract the en-
ergy of acoustic emissions, because it is never subtracted
during the measurement of fracture energy. So the fracture
energy value used in fracture calculations already includes the
energy of acoustic emissions.

Dempsey apparently believes that the typical length of the
segments of decreasing K. along the crack’s path (or the dom-
inant spectral wavelength |, or the length of crack front jumps)
is not microscopic, negligibly short compared with the radial
crack length, but relatively long. But unless this length were



comparable to the entire radial crack length (i.e., unless almost
the whole radia crack forms dynamicaly), a static fracture
analysis must still provide at least an approximate overall de-
scription, correct in the energetic sense.

Static approximations to dynamic instability in the form of
a snap-through from one equilibrium state (the initial un-
cracked state) to another equilibrium state (the full-through
crack with partial closure) must generally satisfy Maxwell’s
condition of energy equivalence (whose classical example is
the Maxwell line through the instability in the van der Waals
pressure-volume diagram for the vapor-liquid phase transi-
tion). But even if a dynamic snap-through from an uncracked
state to a full-through crack followed by a partial crack closure
were the actual fracture mechanism, Dempsey et al.’s solution
does not appear to be energy consistent.

The solution in the paper, on the other hand, is energy con-
sistent. Unlike Dempsey et al.’s solution, it guarantees the rate
of release of the stored strain energy and gravitational energy
of sea water to be equal to the rate of energy needed to form
the radial cracks in ice, corresponding to the given vaue of
the fracture energy of ice. Thus, the condition of overall en-
ergy balance is satisfied.

In view of the foregoing considerations, as well as the fact
that no solution with a dynamic instability has yet been pre-
sented, Dempsey’s concern about the dynamic instabilities ap-
pears exaggerated. It is clear from the solution in the paper
that, under the assumptions made, the load is continuously
increasing with the crack length as well as with the load-point
displacement. This guarantees continuous stability up to the
moment of formation of the circumferentia cracks, provided
that the ice is treated as homogeneous.

The second suspected source of error, the three-dimension-
ality, isreflected in Dempsey et a.’s solution to alesser degree
than by the solution in the paper. Dempsey et al.’s assumption
that the depth of open crack along the radial crack is uniform,
with a sudden jump to zero at the radial crack front (a place
where the dynamic crack jumps would have to take place), is
a rather severe simplification of a plausible fracture shape. In
the paper, the open crack depth is variable and at the radia
crack front approaches zero without any discontinuity. The
depth variation is found to be quite significant. Therefore, the
deviation from the actual three-dimensional behavior is evi-
dently greater for Dempsey et al.’s solution.

It is strange that, while questioning the existence of size
effect except in very thick plates, Dempsey ignores the evi-
dence given by Fig. 5in Part Il of the paper. That figure shows
the results of three field tests, and each of them clearly shows,
despite high scatter, that a strong size effect is present even
for a size range beginning with 0.1 m.

In conclusion, the writers remain convinced that the sim-
plifications made in the fracture and size effect analysis of the
paper were not unreasonable and that the numerical solution
presented, with all its approximations, ought to be more re-
alistic than the analytical solution of Dempsey et al., ingenious
and elegant though it may be. In particular, the writers do not
agree with Dempsey that a static analysis leading to *‘ stable
and self-similar growth” would be implausible. Simplified
though the analysis in the paper obviously is, it nevertheless
appears to be a reasonable simplification.

SODHI'S DISCUSSION

Sodhi has made some interesting and thought-provoking
points. However, his severe criticism is unconvincing and, in
the writers' opinion, invalid.

It is true that the neglect of radial crack closuresin Slepyan
(1990) and Bazant and Li (1994) was an oversimplification,
but these early studies, judged as ‘“‘particularly flawed’ by
Sodhi, represented necessary steps in the evolution toward a

realistic fracture analysis and clarified some important aspects
of the scaling problem. Prior to Dempsey et al. (1995) and
Bazant et al. (1995), no fracture studies of ice plate penetration
took the crack closures with the inherent dome effect into ac-
count (some limit analysis studies did, but to treat ice as a
plastic material without softening damage is a much more se-
rious ‘‘flaw,”” in the writers' opinion).

There is no dispute that certain simplifying assumptions
were made in the paper, but the writers believe them to be
reasonable and sufficiently realistic. One simplification wasthe
neglect of creep, which is repeatedly reproached by Sodhi.
However, assuming that creep would not mitigate the size ef-
fect is not baseless.

There used to be a widespread intuitive misconception that
the influence of creep is like that of plasticity, which tends to
increase the process zone size, thereby making the response
less brittle and the size effect weaker. But the influences of
creep and plagticity are very different.

The influence of creep on scaling of brittle failures of con-
crete, which is doubtless quite similar from the mechanics
viewpoint (albeit different in physical origin), was studied in
depth at Northwestern University, along with the effect of the
crack propagation velocity; see, e.g., Bazant and Gettu (1992);
Bazant et al. (1993); Bazant and Planas (1998); and especially
Bazant and Li (1997) and Li and Bazant (1997). The conclu-
sion from these studies, backed by extensive fracture testing
of concrete and rock at very different rates, isthat, unless creep
actually prevents crack formation, creep in the material aways
makes the size effect due to cracks stronger. In the logarithmic
size effect plot of nominal strength versus structure size, it
causes a shift to the right, toward the LEFM asymptote.

In light of these studies, Sodhi’s claim (in hislast paragraph)
that “‘incorporating creep will require abandoning an LEFM
approach’” must be seen as erroneous. The opposite is in fact
true: The slower the loading (or the longer its duration), the
closer to LEFM is the size effect in a cracked structure. The
physical reason, clarified by numerical solutions of stress pro-
files with a rate-dependent cohesive crack model (Li and Ba-
Zant 1997), is that the highest stresses in the fracture process
zone at the crack front get relaxed by creep, which tends to
reduce the effective length of the fracture process zone. The
shorter the process zone, the higher the brittleness of response
is and the shorter the size effect. This explains why experi-
ments on notched concrete specimens consistently show the
size effect to be stronger a a slower loading (BaZant and
Planas 1998). It is highly probable that the same will be ver-
ified for ice, once size effect tests at very different loading
rates are carried out.

From the aforementioned studies, it thus transpires that, in
order to take the influence of creep on the size effect approx-
imately into account, one does not need to abandon equivalent
LEFM, as claimed by Sodhi. It suffices, in the case of very
slow loading, to reduce the value of fracture energy (or frac-
ture toughness) and decrease the effective length ¢; of the frac-
ture process zone. Even these adjustments, however, are im-
portant only when loading durations differing by several
orders of magnitude are considered, which is not the case for
the ice penetration tests cited by Sodhi.

Sodhi also states that considering the load to be applied
along the circumference of a hole of a radius of about 10% of
the characteristic length must have caused the results not to
be “‘totally correct,”’ apparently meaning not totally represen-
tative of the idealized case of a concentrated load applied at
a point. However, the conclusions ought to be essentially cor-
rect. Fracture is at a maximum load driven by the global en-
ergy release from the ice plate—sea water system and is not
very sensitive to local disturbances near the load application
point, where reach is limited according to Saint-Venant prin-
ciple.
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Sodhi’s comments in the second paragraph of Part |l are
taken out of context and result from a misunderstanding of the
criticism in the original paper of Sodhi’s previous way of han-
dling the available data sets. In Figs. 5(c and d) of the paper,
cited by Sodhi, the coordinates are not the actual thickness D
and nomina strength o but their relative values, which are
normalized by the values of \,l, and Bf, only after these values
have already been determined for each data set separately. The
two plots were presented in the paper merely for visual dem-
onstration; they were not used for actually identifying the ma-
terial parameters from the test data. On the other hand, in his
previous works cited from the paper, and again in his present
discussion, Sodhi plots the data from different data sets in the
same plot and actually uses regression in this plot to determine
the parameter values. The criticism of such a procedure stated
in detail in the paper is valid.

Since the relation of the ice properties in various data sets
is not known a priori, an arbitrary vertical or horizontal shift
(in log o) of the group of data points from one data set
against that from another data set is allowed and must be con-
sidered. Just by choosing a suitable vertical or horizontal shift
of the data groups, any desired conclusion can thus be ob-
tained—the presence of a strong size effect, or the absence of
any size effect (in Sodhi’s case). Nothing is thus proven by
Sodhi’s plot. This is the salient point criticized in the paper.

The kind of plot shown in Fig. 6 and discussed in Sodhi’s
fourth paragraph, Part 11, is misleading for two reasons: (1) as
known from Buckingham’'s theorem of dimensional analysis,
general physical laws are correct only if they can be written
in a dimensionless form; and (2) the breakthrough load P,
must obviously depend on ice strength f{. To achieve a di-
mensionless coordinate, the breakthrough load in Fig. 6 must
be divided by f{h?, h being the ice thickness (a division by
f{ amounts to a horizontal shift in the logarithmic scale). But
then it is not a priori clear how thef values for different data
sets relate to each other, because they have not been separately
identified in advance.

Consequently, the relative horizontal positions of the groups
of circles, triangles, diamonds, and squares in Fig. 6 must be
considered as undetermined in advance. This implies that
Sodhi’s plot in Fig. 6 can be valid only for one kind of ice,
not for different kinds simultaneously. Arbitrary vertical shifts
of one data group against another, due to unknown differences
in f{, would have to be considered in Fig. 6 if the break-
through load were normalized by the ice strength. [Here the
shifts are not vertical, as considered in the paper, but rather
horizontal, because Sodhi for some reason inverts the coor-

442 | JOURNAL OF ENGINEERING MECHANICS / APRIL 2000

dinates; the ice thickness (normalized) would normally be the
coordinate and the breakthrough load (normalized) the ordi-
nate.]

The ice thickness h in Fig. 6 should of course aso be nor-
malized to yield a dimensionless coordinate. One way to do
that might be to adopt as the ordinate the dimensionless pa-
rameter hp,/f{, where p, is the specific weight of water (of
dimension N/m®). In that case, the vertical and horizontal shifts
in Fig. 6 are the same and thus the plot looks the same after
the shifts. But p,,/ f{ is not the only possible normalizing factor
for h and is in fact not the most reasonable one.

If fracture plays any role, then either the characteristic
length I, of the cohesive crack model or the effective length
of the fracture process zone in the sense of equivalent LEFM
must somehow appear in the solution. So the ice thickness h
should correctly be normalized by |,. In other words, the or-
dinate h in Fig. 6 should be replaced by the relative thickness
h/l,. With this reasonable normalization of h, the arbitrariness
of the horizontal shifts pointed out in the previous paragraph
remains. Ignoring this kind of normalization of h, which is
implicit to Sodhi’s approach, is tantamount to assuming
a priori that fracture mechanics plays no role in the problem
and that there is no size effect. Given that such a hypothesis
is implied, Sodhi’s use of Fig. 6 to dismiss the size effect
appears to be a circular argument.

Still another noteworthy point, aready made in the paper,
is that the coordinate of the size effect plots should not be the
load P but the nominal strength o = P/h?. The case of no size
effect then corresponds to a horizontal line. The plot in terms
of P superimposes on the size effect the underlying propor-
tionality of P to h* corresponding to the strength theory, which
does not represent a size effect as generally understood. This
obscures the size effect, as demonstrated by Figs. 4(b and c)
of the paper. Sodhi does not question this demonstration, yet
he persists in his discussion in plotting the size effect again in
terms of P rather than oy.
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