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MICROPLANE MODEL M4 FOR CONCRETE.
I: FORMULATION WITH WORK-CONJUGATE DEVIATORIC STRESS

By Zdeněk P. Bažant,1 Fellow, ASCE, Ferhun C. Caner,2 Ignacio Carol,3

Mark D. Adley,4 and Stephen A. Akers5

ABSTRACT: The first part of this two-part study presents a new improved microplane constitutive model for
concrete, representing the fourth version in the line of microplane models developed at Northwestern University.
The constitutive law is characterized as a relation between the normal, volumetric, deviatoric, and shear stresses
and strains on planes of various orientations, called the microplanes. The strain components on the microplanes
are the projections of the continuum strain tensor, and the continuum stresses are obtained from the microplane
stress components according to the principle of virtual work. The improvements include (1) a work-conjugate
volumetric deviatoric split—the main improvement, facilitating physical interpretation of stress components; (2)
additional horizontal boundaries (yield limits) for the normal and deviatoric microplane stress components,
making it possible to control the curvature at the peaks of stress-strain curves; (3) an improved nonlinear
frictional yield surface with plasticity asymptote; (4) a simpler and more effective fitting procedure with se-
quential identification of material parameters; (5) a method to control the steepness and tail length of postpeak
softening; and (6) damage modeling with a reduction of unloading stiffness and crack-closing boundary. The
second part of this study, by Caner and Bažant, will present an algorithm for implementing the model in structural
analysis programs and provide experimental verification and calibration by test data.
INTRODUCTION

The classical approach to the constitutive modeling of con-
crete, in which the material model is formulated directly in
terms of stress and strain tensors and their invariants, has led
at the beginning of the computer era to important advances.
But, at present, this approach has probably entered a period
of diminishing returns, in which a great effort yields only mi-
nor and insufficient improvements to the constitutive model.
Much more promising and conceptually transparent is the mi-
croplane model, in which the constitutive law is formulated in
terms of vectors rather than tensors—as a relation between the
stress and strain components on a plane of any orientation in
the material microstructure, called the microplane (Bažant
1984; see Appendix I). Microplanes of many spatial orienta-
tions, related to the strain and stress tensors by a kinematic
constraint and a variational principle, are considered. The mi-
croplane model can be seen as a consequence of the hypothesis
that the free energy density of the material is a sum of the free
energy densities expressed as functions of the strain vector on
planes of various orientations (Carol et al. 1999).

The background of the microplane modeling approach, de-
scribed in more detail in Bažant et al. (1996a), can be traced
back to a pioneering idea of the great G. I. Taylor (1938)
dealing with plasticity of polycrystalline metals. Taylor’s idea
was formulated in detail by Batdorf and Budianski (1949) and
became known as the ‘‘slip theory of plasticity.’’ This theory
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was soon recognized as the most realistic constitutive model
for plastic-hardening metals. It was refined in a number of
subsequent works (e.g., Kröner 1961; Budianski and Wu 1962;
Hill 1965, 1966; Lin and Ito 1965, 1966; Rice 1970). It was
used in arguments about the physical origin of strain hardening
and was shown to allow easy modeling of anisotropy as well
as the vertex effects for loading increment to the side of a
radial path in stress space. All the formulations considered that
only the inelastic shear strains (‘‘slips’’), with no inelastic nor-
mal strain, were taking place on what is now called the ‘‘mi-
croplanes.’’ The theory was also adapted to anisotropic rocks
under the name ‘‘multilaminate model’’ (Zienkiewicz and
Pande 1977; Pande and Sharma 1981, 1982; Pande and Xiong
1982).

All these models assumed the planes of plastic slip in the
material (in those studies called the ‘‘slip planes’’ and here
called the ‘‘microplanes’’) to be constrained statically to the
stress (‘‘macrostress’’) tensor sij (i.e., the stress vector on each
‘‘microplane’’ was the projection of sij). The elastic strain was
not included on the slip planes but was added to the inelastic
strain tensor on the continuum level (macrolevel). Strain soft-
ening was not of interest in the aforementioned studies, but
even if it were, it could not have been modeled (Bažant 1984)
because under the static constraint a strain-softening consti-
tutive law for the microplane makes the material unstable even
if εij is prescribed.

PREDECESSORS OF PRESENT MODEL

The original objective was to model strain softening leading
to fracture and to include inelastic volume changes, especially
dilatancy due to shear. In the first microplane model presented
at a 1983 Tucson conference, labeled M10 (Bažant 1984), this
objective was found to require four new features departing
from the basic characteristics of the previous slip theory mod-
els for metals and rocks: (1) The static ‘‘micro-macro’’ con-
straint was found to cause instability of the microplane system
in postpeak strain softening, and to cure it, it was found nec-
essary to impose a kinematic ‘‘micro-macro’’ constraint in
which the strain vector on each microplane is the projection
of the strain tensor εij [the possibility of such a constraint had
also been suggested by G. I. Taylor (1938), but remained unex-
plored up to 1983]. (2) As a consequence of the kinematic
constraint, it was found necessary to include the elastic strains
on the microplane level, and not as added strains on the mac-



rocontinuum level. (3) Instead of a simple superposition of the
inelastic strains on all the slip planes, as used in the previous
models, it was found necessary to introduce a variational prin-
ciple (principle of virtual work) in order to relate the stresses
on the microplanes of all possible orientations to the macro-
continuum stress tensor (and thus ensure equilibrium). (4)
While the previous models considered only plastic slips, model
M10 introduced normal inelastic strains on the microplanes,
which made it possible to simulate not only plasticity but also
multidirectional distributed tensile cracking (for more detail,
see Appendix I).

The neutral term ‘‘microplane’’ was coined to reflect the fact
that the model is not restricted to plastic slip (the prefix ‘‘mi-
cro,’’ of course, does not imply actual simulation of the mi-
crostructure geometry, but merely alludes to a separate char-
acterization of the inelastic deformations on planes of various
orientations within the microstructure).

Each microplane was endowed in model M10 with a 2D
inelastic constitutive law based on a loading surface relating
the normal and shear strain components on the microplane,
and also with a loading potential (with a nonassociated flow
rule for the inelastic stress decrements). However, the use of
multidimensional loading surfaces on the microplane level was
later found to be an unnecessary complication for data fitting,
contrary to the simple philosophy of the microplane model.
Therefore, the subsequent microplane models involve on the
microplane level only simple one-to-one relations between one
stress component and the associated strain component, with no
cross dependencies. Except for pure friction, macroscopic
cross effects such as dilatancy are automatically generated by
interactions among various microplanes, which seem to be ad-
equately captured by the kinematic constraint, as comparisons
with tests later demonstrated. No test data have been fit with
model M10.

The subsequent development at Northwestern of practically
applicable and experimentally calibrated microplane models
for concrete can in retrospect be divided into four stages, re-
sulting in models now labeled as M1 through M4. All these
models have the aforementioned four features.

Model M1 (Bažant and Oh 1983, 1985), in view of the lack
of success in using M10 to describe both tension and triaxial
compression, was focused only on tensile failure. It simulated
smeared multidirectional tensile cracking and postpeak tensile
softening of concrete, which it represented as well as, or better
than, any other multidirectional smeared cracking model or
continuum damage model. Model M1 considered only the nor-
mal microplane stresses, defined as nonlinear hardening-soft-
ening functions of the normal microplane strains. When the
microplane shear stress components are absent, Poisson’s ratio
n is fixed as 1/4 (or 1/3) in three (or two) dimensions, respec-
tively, while for concrete n ' 0.18. Therefore, Poisson’s ratio
was adjusted by coupling in series with the microplane system
an elastic element exhibiting only a volumetric strain. For cal-
culating the macrostresses from microplane stresses, optimum
Gaussian integration on a spherical surface was introduced and
some new effective integration formulae developed (Bažant
and Oh 1986).

In tandem with the crack band concept, model M1 is ca-
pable of representing well all the fracture tests of notched con-
crete specimens, including the size effect, and was also ex-
tended to fit well the basic data on dilatant shear on preexisting
cracks in concrete (Bažant and Gambarova 1984). For the
modeling of compression, a compressive strength limit on the
normal microplane strain could not be imposed because com-
pression failure would then also occur under hydrostatic pres-
sure or uniaxial strain loading. Model M1 nevertheless did
exhibit failure under uniaxial compression (it was triggered
when lateral expansion due to the Poisson effect caused tensile
failure on the microplanes roughly parallel to the direction of
compression). However, the compression strength was far too
high and a snapback occurred immediately after the peak
stress. To avoid it, an attempt was made to include shear
stresses on microplanes, but the test data for uni-, bi-, and
triaxial compression with volume expansion still could not be
fit.

Model M2 (Bažant and Prat 1988a) and its several exten-
sions (Bažant and Ožbolt 1990, 1992; Carol et al. 1992; Ožbolt
and Bažant 1992, 1996), achieved the goal of simultaneous
modeling of tensile and compressive failures by introducing a
volumetric-deviatoric split of the normal strains and stresses
on the microplanes. While the tensile failure is basically a
uniaxial behavior, describable simply by a scalar relation be-
tween the normal stress and strain, compression failure is a
triaxial phenomenon, in which failure is triggered by lateral
expansion and by slip on inclined planes. The volumetric-de-
viatoric split helps to control these triaxial aspects. With this
split, compression failure can be triggered not only by lateral
expansion due to the Poisson effect, but also by lateral expan-
sion due to high inelastic deviatoric strain on the microplanes
parallel to the direction of compression or by slip on inclined
microplanes.

Another advantage of the volumetric-deviatoric split is that
Poisson’s ratio can have any value between 21 and 0.5, as
transpired from the relations of Young’s modulus and Pois-
son’s ratio to the microplane elastic constants worked out in
Bažant and Prat (1988a) (if only elastic normal and shear
strains on the microplane level, with no split, are considered,
then only Poisson’s ratios between 21 and 0.25 can be ob-
tained).

An explicit reformulation of model M2 was presented by
Carol et al. (1992). An efficient implementation of model M2
in a large dynamic explicit finite-element program was de-
scribed by Cofer and Kohut (1994). A nonlocal generalization
of model M2 was developed to prevent spurious excessive
localization of damage in structures and spurious mesh sen-
sitivity (Bažant and Ožbolt 1990; Ožbolt and Bažant 1992,
1996).

Model M2 was able to fit well the basic types of test data
for uni-, bi-, and triaxial compression, axial-torsional tests, and
tensile tests, but the long softening tails were not represented
well (in retrospect, one problem was the lack of work-conju-
gacy of volumetric stress). A similar representation of test data
was also achieved by a more complicated variant, M2h, of
model M2 (Hasegawa and Bažant 1993), which, instead of the
volumetric-deviatoric split, used the normal strains in direc-
tions parallel to the microplane to simulate lateral expansion
in compression failure.

Model M3 [Bažant et al. (1996a,b); see also Bažant and
Planas (1998), Sect. 14.1] introduced the concept of stress-
strain boundaries (or softening strain-dependent yield limits)
on the microplane level. In this concept the microplane re-
sponse is elastic until any of the boundaries is reached. If any
of the boundaries is exceeded, the stress is made to drop at
constant strain to the surface. Aside from simplicity and clar-
ity, the advantage of this approach is that several independent
boundaries for different stress components can be defined as
functions of different strain components. This is helpful for
simultaneous modeling of tensile, compressive, and shear soft-
ening.

A softening stress-strain curve for shear employed in model
M2 was replaced in model M3 by a strain-independent linear
frictional-cohesive yield surface relating the normal and shear
stress components on the microplane. Introduction of an ad-
ditional softening tensile stress-strain boundary for tension in
Model M3 corrected a problem with the volumetric-deviatoric
split in model M2 found in numerical simulations by M. Jir-
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ásek (1993). Model M2 gave excessively large positive lateral
strains in the tail of softening under uniaxial tensile stress. This
was caused in M2 by localization of tensile strain softening
into the volumetric strain, while the deviatoric strains on the
strain-softening microplanes went into unloading.

Model M3 was also extended to moderately large finite
strains. A method of scaling the parameters of the model to
achieve the desired peak stress and strain at peak stress was
formulated, the model parameters being divided into a few
adjustable ones and many nonadjustable (or fixed, hard-to-ad-
just) ones, common to all concretes. A simplified way to filter
out the size effect from test results and to delocalize the data
from test specimens that suffered localization of damage has
been formulated. The model was implemented in a large dy-
namic finite-element program by Cofer and Kohut (1994).

Model M4, which is mathematically formulated in the first
part of this study. A number of further improvements are made,
including a work-conjugate definition of the volumetric-devia-
toric split [based on Carol et al. (1998)], improved formula-
tions of boundary surfaces, frictional yield limits and damage,
sequential identification of material parameters by data fitting,
and a capability to control various response features by ma-
terial parameters (see also Appendix I). Formulation of a nu-
merical algorithm, experimental calibration, and application
examples are relegated to the second part of this study (Caner
and Bažant 2000). Two follow-up papers further extend model
M4 to strain-rate sensitivity or creep and to arbitrarily large
finite strain. A thermodynamic formulation based on potentials
is formulated in two other studies (Carol et al. 2000; Kuhl and
Carol 2000).

A series of microplane models have also been developed for
the creep of anisotropic clay (Bažant and Kim 1986; Bažant
and Prat 1987) and for the inelastic behaviors of soil (Prat and
Bažant 1991) and rock (Prat et al. 1997). They share many
features with the models for concrete.

REVIEW OF BASIC RELATIONS OF
MICROPLANE MODEL

The classical constitutive models represent properly invari-
ant equations directly relating the components sij and εij of the
stress and strain tensors s and « (the Latin lower-case indices
refer to the components in Cartesian coordinates xi; i = 1, 2,
3). The microplane constitutive model is defined by a relation
between the stresses and strains acting on a plane called the
microplane, having an arbitrary orientation characterized by
its unit normal ni. The basic hypothesis, which ensures stabil-
ity of postpeak strain softening (Bažant 1984), is that the strain
vector on the microplane [Fig. 1(a)] is the projection of «,

→εN

i.e., = εijnj. The normal strain on the microplane is εN =εNi

that isn ε ,i Ni

ε = N ε (1)N ij ij

where Nij = ninj (repetition of the subscripts, referring to Car-
tesian coordinates xi, implies summation over i = 1, 2, 3).

The shear strains on each microplane are characterized by
their components in directions M and L given by orthogonal
unit coordinate vectors and of components mi, li, lying

→→
m l ,

within the microplane. Vector mi may, for example, be chosen
to be normal to axis x3, in which case m1 = 1 m2

2 2 21/2n (n n ) ,2 1 2

= 1 m3 = 0, but m1 = 1 and m2 = m3 = 0 if n1
2 2 21/22n (n n ) ,1 1 2

= n2 = 0. A vector mi normal to x1 or x2 may be obtained by
permutations of the indices 1, 2, and 3. The orthogonal unit
vector is generated as = 3 To minimize directional

→ → →
l m n.

bias, vectors are alternatively chosen normal to axes x1, x2,
→
m

or x3. The shear strain components in the directions of and→
m

are εM = mi(εijnj) and εL = li(εijnj), and by virtue of the sym-
→
l
metry of tensor εij,
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FIG. 1. (a) Microplane Model Ensuing by Separate Homogeni-
zation of Slips and Openings on Weak Planes a1, a2, . . . of Vari-
ous Orientations a, b, g, . . . within Representative Volume of
Material; (b) Explanation of Shear-Dilatant Cross Coupling En-
gendered by Interaction of Microplanes (after Bažant and Gam-
barova 1984); (c) Strain Components on Microplane; (d) Exam-
ple of 21-Point Optimal Gaussian Integration Formula (Circled
Points at Vertices and Midedges of Icosahedron Represent Di-
rections of Microplane Normals; Optimal Weights Were Calcu-
lated in Bažant and Oh 1996)

ε = M ε ; ε = L ε (2a,b)M ij ij L ij ij

in which Mij = (minj 1 mjni)/2 and Lij = (linj 1 ljni)/2 (Bažant
and Prat 1988a,b).

Because of the foregoing kinematic constraint relating the
strains on the microlevel (microplane) and macrolevel (contin-
uum), the static equivalence (or equilibrium) of stresses be-
tween the macro and micro levels can be enforced only ap-
proximately. This is done by the principle of virtual work
(Bažant 1984) written for surface V of a unit hemisphere;

2p
s dε = (s dε 1 s dε 1 s dε ) dV (3)ij ij N N L L M ME3 V

This equation means that the virtual work of macrostresses
(continuum stresses) within a unit sphere must be equal to the
virtual work of microstresses (microplane stress components)
regarded as the tractions on the surface of the sphere. The
integral physically represents a homogenization of different
contributions coming from planes of various orientations
within the material as depicted in Fig. 1(b) [for a detailed
physical justification, see Bažant et al. (1996a)]. Substituting
dεN = Nijdεij, dεL = Lijdεij and dεM = Mijdεij, and noting that
the last variational equation must hold for any variation dεij,
one gets the following basic equilibrium relation (Bažant
1984):

Nm3 (m)s = s dV ' 6 w sij ij m ijE O2p m=1V

with s = s N 1 s L 1 s Mij N ij L ij M ij (4)

As indicated, the integral in numerical calculations is approx-
imated by an optimal Gaussian integration formula for a spher-



ical surface (Stroud 1971; Bažant and Oh 1986) representing
a weighted sum over the microplanes of orientations with→

n ,m

weights wm normalized so that (m wm = 1/2 (Bažant and Oh
1985, 1986). The most efficient formula that still yields ac-
ceptable accuracy involves 21 microplanes [Bažant and Oh
(1986); Fig. 1(c)]. In explicit dynamic finite-element pro-
grams, integral (4) must be evaluated at each integration point
of each finite element in each time step. The values of (m)N ,ij

and for all the microplanes m = 1, . . . , N are com-(m) (m)M , Lij ij

mon to all integration points of all finite elements and are
calculated and stored in advance.

The most general explicit constitutive relation on the mi-
croplane level may be written as

ts (t) = ^ [ε (t), ε (t), ε (t)] (5a)N t=0 N M L

ts (t) = & [ε (t), ε (t), ε (t)] (5b)L t=0 N M L

ts (t) = * [ε (t), ε (t), ε (t)] (5c)M t=0 N M L

where ^, &, and * are functionals of the history of the mi-
croplane strains in time t. Despite our avoidance of tensors,
the number of possibilities is enormous. Lacking a complete
micromechanical model, one must partly rely on intuitive un-
derstanding of the physical mechanism involved. To a large
extent, this is an art.

MICRO-MACRO WORK CONJUGACY OF
VOLUMETRIC-DEVIATORIC SPLIT

Although not absolutely necessary, it is very helpful for in-
tuitive understanding to define the deviatoric strains on the
microplanes:

ε = ε 2 ε ; ε = ε /3 (6a,b)D N V V kk

where εV = volumetric strain (mean strain), the same as for all
the microplanes. Defining εS = spreading strain (or lateral
strain) = mean normal strain in the lateral directions lying in
the microplane, the volume change may be written as 3(εN 2
εD) = εN 1 2εS, which clarifies the physical meaning

2
ε = (ε 2 ε ) (7)D N S3

The question now is how to define the volumetric and de-
viatoric stresses sV and sD on the microplanes. It will be con-
venient to use the work-conjugate volumetric stress, that is,
such a stress that sVdεV would be the correct work expression.
So we define the volumetric stress on the microplanes by the
variational equation

2p skk
dε = s dε dV (8)mm V VE3 3 V

Substituting dεV = dεkk/3 and noting that *V dV = 2p, we
obtain for the volumetric stress on the microplanes:

s = s /3 (9)V kk

Subtracting (8) from (3), we get

2p skk
s 2 d dε = [s dε 1 s dε 1 s dε 1 s dεij ij ij D D D V V D L LS D E3 3 V

1 s dε ] dVM M (10)

where sD = sN 2 sV and dεD = dεN 2 dεV. Noting that
the deviatoric stress tensor = sij 2 (skk/3)dij, and thatDsij

*V sDdεV dV = *V sVdεD dV = 0, we have

3Ds dε = (s dε 1 s dε 1 s dε ) dV (11)ij ij D D L L M ME2p V
The kinematic constraint means that the microstrains (a
short for the strain tensor components on the microplane) are
calculated as the projections of the strain tensor (macrostrain).
So, we have dεN = Nijdεij, which leads to dεD = dεN 2 dεV =
(Nij 2 dij /3)dεij and dεL = Lijdεij with dεM = Mijdεij. Substitution
of these relations into (11) and addition of the volumetric
strain yield the result:

Ds = s d 1 s (12a)ij V ij ij

d3 ijDs = s N 2 1 s L 1 s M dV (12b)ij D ij L ij M ijE F S D G2p 3V

With the volumetric-deviatoric split, the elastic stress-strain
relations on the microplanes may be written in the rate form
as

˙ ˙ ˙ ˙ṡ = E ε ; ṡ = E ε ; ṡ = E ε ; ṡ = E ε (13a–d )V V V D D D M T M L T L

where EV , ED , and ET = microplane elastic moduli whose re-
lationship to the macroscopic Young’s modulus E and Poisson
ratio n is EV = E/(1 2 2n); ED = 5E/[(2 1 3m)(1 1 n)]; and
ET = mED (Bažant and Prat 1988a,b); here m = parameter that
may be chosen. It is best chosen as m = 1 (Bažant et al. 1996a).
The reasons: (1) It makes it possible to characterize damage
by a purely geometric fourth-rank damage tensor (a tensor
independent of the material stiffness properties); and (2) it
causes the so-called ‘‘true’’ microplane stresses (‘‘true’’ in the
sense of continuum damage mechanics) to obey a static con-
straint to the macroscopic true stress tensor (Carol et al. 1991;
Carol and Bažant 1997).

The term 2dij /3 in (12) was absent from the previous ver-
sions of the microplane model. This term (the need for which
was established in Carol et al. 1998) ensures that always Dskk

= 0, even when *V sD dV ≠ 0.
For purely elastic deformations, *V sD dV = 0, and so this

term has no effect on the values of The reason is thatDs .ij

d ddij ijkl(E ε ) dV = 2 E n n 2 ε dV = 0 (14)D D D k l klE E S D3 3 3V V

where *V nknl dV = (2p/3)dkl.
For inelastic deformations, though, *V sD dV ≠ 0, and so

the term 2dij /3 in (12b) does have an effect. In the special
case that the tensile and compressive stress-strain boundaries
(strain-dependent yield limits) on the deviatoric strain are sym-
metric or nearly symmetric, the effect of this term on isDsij

very small (but generally nonzero).
It is interesting that if a 2D (planar) microplane model with

symmetric tensile and compressive boundaries were consid-
ered, this term would have no effect at all. This is clear by
considering the Mohr circle for a 2D deviatoric strain. Two
mutually orthogonal microplanes correspond on the circle to
normal strains of equal magnitude and opposite sign, and so
the contributions of the corresponding stresses must cancel
each other if the tensile and compressive boundaries are sym-
metric. In three dimensions, though, the symmetry of the
boundaries only mitigates the effect of this term but does not
suffice to wipe it out, as can be checked by simple numerical
examples.

The stronger the asymmetry of the tensile and compressive
deviatoric boundaries, the greater is the effect of the new term
2dij /3 in (12b) on This makes it possible to exploit theDs .ij

asymmetry of the tensile and compressive deviatoric bounda-
ries for controlling dilatancy and pressure sensitivity of devia-
toric deformations [Fig. 1(d)]. In the previous microplane
model M3, the absence of the term 2dij /3 had to be compen-
sated by empirical dependence of deviatoric deformations on
sV, which can now be omitted.

The absence of the term 2dij /3 in (12b) from model M2
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and M3 can cause violations of thermodynamic restrictions,
particularly negative dissipation during a closed strain cycle
(Carol et al. 1999). Such violations can be significant for
model M2, but are negligible for model M3, for two reasons:
(1) The volume change, being limited by the normal and vol-
umetric boundaries, is always small; and (2) the compressive
and tensile deviatoric boundaries are almost symmetric in M3.

MICROPLANE MODELING OF INELASTIC BEHAVIOR

The constitutive model will now be defined on the micro-
plane level. All the material parameters except the standard
cylindrical compression strength and Young’s elastic mod-f9c
ulus E are dimensionless. They are divided into the fixed
(hard-to-adjust, constant) parameters, which are denoted as c1,
c2, . . . , c17 and may be taken as the same for all concretes,
and the free (easy-to-adjust) parameters, which are denoted as
k1, k2, k3, k4 and reflect the differences between various con-
cretes. Their roles and identification will be discussed in the
next section.

As introduced in model M3, all the inelastic behavior is
characterized by the so-called stress-strain boundaries on the
microplane level. These boundaries may be regarded as strain-
dependent yield limits. In general, they exhibit strain softening
[in detail, see Bažant et al. (1996a)]. Within the boundaries,
the response is incrementally elastic, although the elastic mod-
uli may undergo progressive degradation as a result of damage.
Exceeding the boundary stress is never allowed. Travel along
the boundary is permitted only if the strain increment is of the
same sign as the stress; otherwise, elastic unloading occurs.
These simple rules for the boundaries suffice to obtain on the
macrolevel the Bauschinger effect, as well as realistic hyster-
esis loops during cyclic loading. Despite the abrupt drop of
slope when the stress reaches the boundary, the macroscopic
response is quite smooth, thanks to the fact that different mi-
croplanes enter the unloading and reloading regime at different
times.

Experience with data fitting has shown that the stress at each
of the normal, volumetric, and deviatoric boundaries can be
assumed to depend only on its conjugate strain, that is, the
boundary stress sN depends only on εN, sV only on εV, and sD

only on εD (Fig. 2). Apparently, the inelastic cross effects
between nonconjugate strain and stress components on the
macroscale (e.g., between s11 and ε22 or ε12) are adequately
captured by interactions among various microplanes engen-
dered by the kinematic constraint. A few boundaries are strain
independent, and thus they degenerate into yield surfaces. This
is the case, for example, for the shear boundary, which de-
scribes frictional interaction between two different stress com-
ponents–the normal stress and the shear stress [Fig. 2(A
and a)].

Horizontal Boundaries (Yield Surfaces)

In the previous models M1 and M2, a smoothly curved in-
elastic stress-strain relation was introduced on the microplane.
Although cross dependencies between nonassociated compo-
nents were avoided, this was somewhat unwieldy and did not
allow independently controlling the peak stress and the steep-
ness of postpeak descent. Furthermore, in model M3, the adop-
tion of the simple concept of stress-strain boundaries, with a
sudden transition from elastic behavior inside the boundary to
softening on the boundary, caused the peaks of the macro-
scopic response curve to be too sharp compared to the test
data (the data generally display smooth rounded peaks).

These shortcomings are remedied in the present model M4.
The roundness of the stress peaks in unconfined compression
and in tension suggests the existence of a certain limited ca-
pacity for yield. To capture it, the present model features ad-
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FIG. 2. (A, B, C, D, E) Stress-Strain Boundaries Plotted at
Large Scales; (a, b, c) Boundaries from (A, B, C) Replotted at
Small Scales (for E 5 25 GPa and Reference Values k1 5
0.000245, k2 5 110, k3 5 12, k4 5 36)

ditional horizontal boundaries for the tensile normal stress and
the tensile and compressive deviatoric stresses on the micro-
planes [Figs. 2(B), (C), (b), and (c)]. These additional bound-
aries are strain independent and represent microplane yield
limits.

In contrast to the softening boundaries used exclusively in



M3, the additional horizontal boundaries (yield limits) give a
very different distribution of the inelastic strains over the mi-
croplanes. When the softening boundary becomes active, all
the inelastic strains tend to localize into very few microplanes,
even into just one of them, while most microplanes unload.
On the other hand, for the horizontal boundaries, such local-
ization among spatial orientations does not take place; rather,
the yielding gradually spreads over many microplanes, and no
microplanes unload. The capacity of simultaneous yielding
(but not simultaneous softening) of many microplanes causes
the peak of the stress-strain curve to be smoothly curved, even
though the transition from elasticity to yielding on the micro-
plane is sudden. By extending the range of the horizontal
boundaries, it is possible to generate a plateau of any length
on the macroscopic stress-strain curves.

Imposition of separate horizontal boundaries (yield limits)
further improves the hysteretic loops under cyclic loading. Af-
ter a loading cycle, the stress-strain path goes from the elastic
regime into the leftward extension of the horizontal boundary
and then follows that boundary until the softening boundary
is reached (Fig. 2). In M3, the microplane stress-strain path
went, after a load cycle, from the elastic regime directly into
the steep softening boundary (which was extended leftward to
high stress values). This caused the peaks of the hysteretic
loops to be too high and too sharp.

Normal Stress Boundaries (Tensile Cracking,
Fragment Pullout, Crack Closing)

In the original model M1, the macroscopic tensile strain
softening was controlled on the microplane level of strain soft-
ening of the normal stress, which worked perfectly. In model
M2, this was replaced by separate strain softenings of the vol-
umetric and deviatoric stress components on the microplane.
In retrospect, this was not surprising because there were two
independent simultaneous softening processes, in which case
the strain softening must be expected to localize into one of
them (Bažant and Cedolin 1991). It did localize into the vol-
umetric softening while the deviatoric stress unloaded, thus
causing excessive lateral expansion, as discovered by M. Jir-
ásek (1993). No similar problem occurred in compression be-
cause only one component, the deviatoric one, underwent
strain softening in model M2, while the other, volumetric one
did not.

In model M3, in which the concept of stress-strain boundary
was introduced (chiefly to facilitate the handling of hysteresis),
this problem was corrected by controlling the tensile strain
softening through a strain-softening boundary on the total nor-
mal stress component on each microplane, which was the same
as in M1. The normal stress boundary was imposed in addition
to deviatoric boundaries. This successful aspect of model M3
is retained here. The tensile normal boundary is given as

^ε 2 c c k &N 1 2 1bs = F (ε ) = Ek c exp 2 (15)N N N 1 1 S Dk c 1 ^2c (s /E )&1 3 4 V V

where subscript b refers to the stress at the boundary; param-
eter c3 controls mainly the steepness of the postpeak slope in
uniaxial tension. The Macaulay brackets, defined as ^x& =
Max(x, 0), are used here and in several subsequent formulas
to define horizontal segments of the boundaries, representing
yield limits. The normal boundary in small and large ranges
of normal strain is shown in Fig. 2(B and b). Physically, its
initial descending part characterizes the tensile cracking par-
allel to the microplane, while its tail characterizes the frictional
pullout of fragments and aggregate pieces bridging the crack
from one of its faces.

In addition, the closing of cracks after tensile unloading
needs to be represented by a crack-closing boundary, defined
simply as = 0 for εN > 0; it prevents entry of the quadrantbsN

of positive εN and negative sN on the microplane level (al-
though in terms of uniaxial stress on the macrolevel, this quad-
rant can be entered because of microplane interactions and
deviatoric stresses).

Deviatoric Boundaries (Spreading, Splitting)

The compressive deviatoric boundary controls the axial
crushing strain of concrete in compression when the lateral
confinement is too weak to prevent crushing. The tensile de-
viatoric boundary simulates the transverse crack opening of
axial distributed cracks in compression and controls the vol-
umetric expansion and lateral strains in unconfined compres-
sion tests. Both boundaries have similar shapes and similar
mathematical forms:

Ek c1 5b 1for s > 0: s = F (ε ) = (16)D D D D 21 1 (^ε 2 c c k &/k c c )D 5 6 1 1 18 7

Ek c1 8b 2for s < 0: s = F (2ε ) = 2 (17)D D D D 21 1 (^2ε 2 c c k &/k c )D 8 9 1 1 7

In the previous model M3, the tensile deviatoric boundary was
too high. This caused the lateral expansion in postpeak soft-
ening response under uniaxial compression to be much too
high (almost double the measured expansion). The deviatoric
boundaries in small and large ranges on normal strain are
shown in Fig. 2(C and c). Because εD = (2/3)(εN 2 εS), the
deviatoric boundaries physically characterize the splitting
cracks normal to the microplane, caused by lateral spreading,
and their prevention by lateral confinement.

Frictional Yield Surface

The shear boundary physically represents friction. It is a
nonlinear frictional yield condition consisting of a dependence
of the shear yield stress sT = on the normal stress2 2s 1 sL MÏ
sN [Fig. 2(A and a)]. Properly, a frictional boundary should
be applied to the resultant shear stress Alternatively, to→

s .T

reduce the computational burden, the frictional boundary can
be applied, not to the resultant shear stress but to the com-→

s ,T

ponents sL and sM separately. In the latter case, a circular yield
surface sT = const. is replaced by a square yield surface in the
(sL, sM) plane. The drawback is that the resultant shear stress
at yield varies between sT and depending on the ran-s 2,TÏ
dom choice of L and M directions, which represents a certain
infringement on the objectivity of modeling. On the macro-
scale, however, the effects of the random choices of L and M
directions average out, and almost the sole consequence is that
the actual shear yield stress in terms of sT is, on the average,
11% higher than the shear yield stress imposed in terms of sL

and sM [because cos a da/(p/4) = 1.11]. The latter is alsop/4*0

more sensitive to rigid-body rotations of the integration points
on the unit hemisphere than the former.

In the previous model M3, the frictional yield condition
consisted of a linear relationship (proportionality) between the
shear and normal stresses on the microplane. Such proportion-
ality, however, gives far too high stresses in the case of very
high hydrostatic pressures.

The new frictional boundary is nonlinear. It is a hyperbola
starting with a finite slope at a certain finite distance from the
origin of the tensile normal stress axis. This distance is grad-
ually reduced to zero, with increasing damage quantified by
the volumetric strain. Thus, when the volumetric strain is
small, the boundary provides a finite cohesive stress, which
then decreases to zero with increasing volumetric strain.

As the compressive stress magnitude increases, it ap-
proaches a horizontal asymptote. With this feature, the triaxial
compression test data can be fitted more easily and closely
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[not only for the classical data, but also for the recent U.S.
Army Engineer Waterways Experiment Station (WES) data
cited later]. A vertically shifted parabola with a horizontal axis
and a dependence of the frictional shear stress on the volu-
metric rather than tensile stress, which was used in M3, has
also been tried, but with less satisfactory results.

The distinction between virgin loading and repeated load-
ing, which was used in M3 to make the response for initial
virgin loading linearly elastic, is in the present model unnec-
essary because such response can be ensured by accounting
for a finite cohesion value for small volumetric strains. The
new friction boundary is expressed as

0E k k c ^2s 1 s &T 1 2 10 N Nbs = F (2s ) = (18)T T N 0E k k 1 c ^2s 1 s &T 1 2 10 N N

where

E k cT 1 110s = (19)N 1 1 c ^ε &12 V

If ^εV& is large, c10 = = initial slope of the bound-[ds /ds ]T N s =0N

ary, and sT = ETk1k2, which represents a horizontallims `→N

asymptote. Note that the foregoing expression involves a finite
cohesion, which can be calculated by setting sN = 0, assuming
εV < 0. When εV >> 0, the friction boundary actually passes
through the origin; hence the cohesion becomes zero. This is
possible because the resistance to slip on one microplane at
sN = 0 is provided by the normal stresses acting on other
microplanes that are inclined with respect to that microplane.
Because the shear stresses at the postpeak softening tail of the
uniaxial (unconfined) compression test must lie on the fric-
tional boundary (no unloading in shear), and all the microplane
stresses must approach zero, a frictional boundary with zero
cohesion (i.e., sT = 0 when sN = 0) is needed for making the
axial stress at the tail approach zero. If the cohesion were finite
(i.e., if sT > 0 when sN = 0), the tail would approach a finite
asymptotic value in contradiction to experiments.

The existence of a horizontal asymptote means that, at very
high confining pressures (larger than the standard compression
strength), concrete becomes a plastic but frictionless material
(the friction being characterized by the boundary slope at
yield, which approaches 0). That this is indeed so has recently
been confirmed by a new type of experiment—the so-called
‘‘tube-squash’’ test (Bažant et al. 1999)—in which a thick,
highly ductile steel alloy tube is filled with concrete and
squashed to about half of its initial length. Very high pressures
develop, and shear angles above 707 are achieved in this test.
Yet no cracks or voids are visible on a cut through the de-
formed material, and cohesion is not lost (the uniaxial com-
pression strength of the cores drilled out from the deformed
material is still about 30% of their virgin strength). Such plas-
tic behavior occurs in concrete near the nose of a penetrating
missile or explosively driven anchor.

Volumetric Boundaries (Pore Collapse,
Expansive Breakup)

The inelastic behavior under hydrostatic pressure (as well
as uniaxial compressive strain) exhibits no strain softening, but
progressively stronger hardening caused primarily by collapse
and closure of pores. It is simulated, the same as in M3, by a
compressive volumetric boundary in the form of a rising ex-
ponential [Fig. 2(D)]. A tensile volumetric boundary needs to
be imposed, too. These boundaries are

εVb 2for s < 0: s = F (2ε ) = 2Ek k exp 2 (20)V V V V 1 3 S Dk k1 4

E k cV 1 13b 1for s > 0: s = F (ε ) = (21)V V V V 2[1 1 (c /k )^ε 2 k c &]14 1 V 1 13
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Although some data (particularly WES data) would be better
fitted by a bilinear boundary, the exponential boundary better
fits the majority of data.

Data fitting showed that the normal tensile boundary (15)
alone cannot prevent unreasonable lateral strains in postpeak
softening under uniaxial (unconfined) tension. Without the ten-
sile volumetric boundary shown in Fig. 2(E), the slipping on
microplanes inclined by about 457 can make an excessive con-
tribution to axial extension, and since this slipping occurs at
no change of volume, the material wants to develop transverse
contraction, possibly very large. This is resisted by elastic vol-
umetric stresses and can be prevented only by limiting these
stresses with a tensile volumetric boundary. The tensile normal
boundary cannot prevent this because the total axial tensile
strain may still remain below that boundary, being offset by a
negative deviatoric strain of large magnitude in the axial di-
rection, caused by the slipping on inclined planes. That ex-
plains the need for the tensile volumetric boundary (21),
whose physical meaning may be seen as an expansive breakup
(due to cracking in all directions caused by volume expan-
sion).

Unloading and Stiffness Degradation

The effect of closing of tensile cracks has already been de-
scribed by the crack-closing boundary for normal stress. Fur-
thermore, to model unloading, reloading, and cyclic loading
with hysteresis, it is necessary to take into account the effect
of material damage on the incremental elastic stiffness. The
unloading can be defined in the microplane model separately
for each strain component on the microplane, that is, some of
εV , εD , and εT may be unloading, while others may be loading
or reloading. The unloading criterion for any component is the
negativeness of the work of that stress component. Thus un-
loading occurs if the sign of

s Dε , s Dε , s Dε (22)V V D D T T

becomes negative. This means that work is being recovered
from the material by that strain component during unloading.

For virgin loading as well as reloading of any component,
the incremental (tangential) moduli are constant and equal to
the initial elastic moduli EV , ED , and ET , with the exception
of compressive hydrostatic reloading. As experiments show,
the response in such reloading never returns to the virgin load-
ing curve given by the compressive hydrostatic boundary. Af-
ter the reloading straight line of slope EV becomes parallel to
the boundary slope for the same εV , the response moves par-
allel to the boundary curve; this may be described as =reloadEV

max[EV , 2dF (ε )/dε ].V V V

Unloading is assumed to occur when the work rate (or˙sε
increment sDε) becomes negative, and this unloading criterion
is considered separately for each microplane stress component.
The following empirical rules for the incremental unloading
moduli on the microplanes have been developed, with good
results:

for εV # 0 and sV # 0:

c s15 VUE (2ε , 2s ) = E 1 ε (23)V V V V VS Dc 2 ε c c E15 V 15 16 V

for εV > 0 and sV > 0:

UE (ε , s ) = min[s (ε )/ε , E ] (24)V V V V V V V

U SE = (1 2 c )E 1 c E (25)D 17 D 17 D

S Swhere if s ε # 0: E = E , else E = min(s /ε , E ) (26)D D D D D D D D

U SE = (1 2 c )E 1 c E (27)T 17 T 17 T



S Swhere if s ε # 0: E = E , else E = min(s /ε , E ) (28)T T T T T T T T

here c15, c16, c17 = fixed dimensionless parameters, and super-
script S denotes the secant modulus; c17 controls the unloading
modulus, which would be the virgin elastic modulus for c17 =
0, and the secant modulus for c17 = 1. The values c15 = 0.02,
c16 = 0.01, and c17 = 0.4 were found to work well.

Eq. (23) for hydrostatic compression reflects the experi-
mental observation that, for unloading that starts from some
pressure much higher than the uniaxial compression strength,
the unloading slope is initially higher than the virgin bulk elas-
tic modulus but becomes smaller than that after the pressure
has been reduced much below the uniaxial compression
strength.

The property that one microplane strain component may be
unloading while another is loading is an advantage compared
to the classical theory of plasticity. Such behavior is admissible
because the microplane stress and strain components are not
tensors and thus do not have to satisfy any tensorial invariance
conditions. When some microplane strains on some micro-
plane are unloading, while other microplane strains on the
same microplane or another microplane are simultaneously
loading (or reloading), residual stresses balancing each other
(with a zero macroscopic resultant sij) are being accumulated
and locked up in the kinematically constrained microplane sys-
tem. Their strain energy is thus also being locked up and ac-
cumulated. This simulates accumulation of strain energy in the
microstructure of material, which is known to be the physical
source of fatigue. Thus it transpires that the microplane model
ought also to be effective for a physically realistic modeling
of fatigue based on the energy stored in residual stresses, al-
though checking this aspect is beyond the scope of this study.

CLOSING COMMENT

The behavior of concrete under uni-, bi-, and triaxial load-
ings displays a rich assortment of diverse characteristic fea-
tures. The range of various types of multiaxial test data is
probably broader than for any other materials. Consequently,
the optimal fitting of test data and calibration of model coef-
ficients is the most difficult task in the development of a mi-
croplane model for concrete. This task, as well as the numer-
ical algorithm and formulation of conclusions, is left for the
second part of this study (Caner and Bažant 2000).

APPENDIX I. ADVANTAGES AND BASIC FEATURES
OF MICROPLANE MODEL

It might be useful to give the following summary of the
advantages of microplane model compared to the classical ten-
sorial models.

1. The constitutive law is written in terms of vectors rather
than tensors. The modeler need not worry about ten-
sorial invariance because it is automatically satisfied by
combining the responses from microplanes of all pos-
sible orientations.

2. The inelastic physical phenomena associated with sur-
faces, such as slip, friction, tensile cracking, or lateral
confinement on a given plane or its spreading, can be
characterized directly in terms of the stress and strain
on the surface on which they take place. This contrasts
with tensorial models in which, for instance, a relation
between the invariants I1 and J2 is regarded as friction,
although it is only a poor overall measure of friction,
unable to capture frictional slip on any particular plane.

3. In computational practice, macroscopic tensorial plas-
tic-damage models with only one or two loading sur-
faces are generally used. For such models, most mate-
JO
rials appear to exhibit large apparent deviations from
the normality rule for the plastic strain increments.
Aside from friction, the reason is that in reality many
simultaneous yield (or loading) surfaces intersect at
every point of a plastic loading path in the stress space
[e.g., Bažant (1978, 1980)]. However, the classical mul-
tisurface plasticity proposed by Koiter in 1953 seems
next to impossible to fit to more extensive test data.
The microplane model is equivalent to infinitely many
simultaneous (active or inactive) loading surfaces of all
possible orientations, at least one for each microplane.
This enables the model to automatically capture these
apparent deviations from normality, including those
caused by dilatancy in frictional slip (Bažant and Gam-
barova 1984).

4. Unlike the classical plasticity models used in compu-
tational practice, the microplane model captures the so-
called vertex effect, that is, the fact that an apparent
vertex (or corner) exists at every point of the yield sur-
face detected by radial loading. In the classical models,
the incremental stiffness for a loading increment par-
allel to this surface (called ‘‘loading to the side’’) is the
initial elastic stiffness, but the real stiffness is much
smaller, being close to the secant stiffness. Since several
simultaneous loading surfaces are used on each micro-
plane, and many exist among the set of microplanes,
the vertex effect, that is, a reduced stiffness to the side
(Bažant 1980), is automatically exhibited by the micro-
plane model (F. C. Caner’s ongoing, yet unpublished,
tests show that the tangent torsional stiffness of a con-
crete cylinder uniaxially precompressed to strain
20.45% is only 35% of the initial elastic torsional stiff-
ness, which is correctly predicted by the present micro-
plane model, but not any plasticity model).

5. Extension to strain softening requires making the yield
surfaces dependent on the strains. In the classical ten-
sorial approach, this means that the yield surface in the
stress space must parametrically depend on the invari-
ants of the strain tensor. To this end, stress-bounding
surfaces in the 18-dimensional space of all the com-
ponents of sij and εij combined would need to be con-
sidered. In the microplane approach, it suffices that the
yield limit for a microplane stress component be made
to depend on only one strain component on that micro-
plane.

6. The interaction of microplanes due to the kinematic
constraint suffices to provide all the main cross effects
on the macrolevel, such as the pressure sensitivity of
inelastic shear strain and the dilatancy. It is therefore
possible to use on the microplane level simple one-to-
one stress-strain laws relating a stress component to its
associated strain component, as data-fitting experience
confirms (beginning with Bažant and Gambarova 1984)
[Fig. 1(d)]. Microplane friction, though, is an exception
—a yield surface in terms of two (but not more than
two) microplane stress components is needed.

7. A vast number of combinations of loading or unloading
on various microplanes is possible, and some micro-
planes unload even for monotonic loading on the
macroscale. This is an important source of path depen-
dence in the microplane model and allows simple yet
physically realistic representation of the Bauschinger
effect at reverse loading and of hysteresis under cyclic
loading. The richness of these combinations makes pos-
sible the use of path-independent stress-strain relations
for loading on each microplane.

8. During unload-reload cycles, residual stresses on mi-
croplanes (i.e., self-equilibrated stresses in balance with
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a zero stress tensor of the continuum) are being auto-
matically locked up within the microplane system, and
their strain energy gradually accumulated, thus weak-
ening the response. This naturally models fatigue, as
well as hysteresis during cyclic loading.

9. With the microplane approach, anisotropic materials are
not appreciably more difficult to model than isotropic
materials. It suffices to use either orientation-dependent
model parameters or an orientation-dependent weight
function in the integral of the variational principle ex-
pressing the micro-macro relationship.

10. When the stress-strain boundaries on the microplanes
include a horizontal segment (nonsoftening yield sur-
face), the yielding spreads during loading over many
microplanes and does so gradually (until some micro-
plane enters a strain-softening regime, after which the
inelastic behavior quickly localizes into only one or a
few microplanes). This gradual spread of yielding over
many microplanes automatically produces on the mac-
rolevel a rising stress-strain curve with a gradually di-
minishing slope, even if the transition from elastic re-
sponse to yielding on the microplanes is abrupt. So one
need not bother with the modeling of strain hardening
on the microplane level (unless some precise shape of
hardening stress-strain curve is to be matched).

11. The philosophies of the microplane approach and finite
elements blend well. While the latter represents a spatial
discretization (with respect to distance), the former can
be regarded as an angular discretization (with respect to
orientations). In both, the principle of virtual work is
used in analogous ways, suitable for explicit temporal
integration. The microplane concept also blends well
with the nonlocal concept. While the latter captures in-
teractions of damage at distance, the former captures
interactions among angular orientations. While the non-
local integral of the latter prevents spurious localiza-
tions in space, the kinematic constraint of the former
prevents spurious localizations among orientations (Ba-
žant and Planas 1998, Sec. 14.1).

12. The inherent conceptual simplicity of the model, gained
by dealing with stress and strain components rather than
tensors and their invariants, facilitates understanding
and intuition. This is important since modeling of com-
plex materials is as much an art as a science.

The penalty to pay for these advantages is an increase in
computational work and storage requirements, which is about
10-fold within the constitutive subroutine compared to the
classical plasticity models. This is due to the need to deal with
stress components on all the microplanes, whose number must
be at least 21 for acceptable accuracy (Bažant and Oh 1996).
This penalty, however, becomes relatively less burdensome for
very large structural systems in which the computational work
is dominated by solving the system rather than the material
subroutine. Thanks to the rapid rise of computer power, the
microplane model is no longer computationally forbidding.
Concrete structures discretized with several millions of finite
elements are being analyzed today at WES with the wave code
(hydrocode) EPIC containing an explicit microplane consti-
tutive subroutine developed at Northwestern.

An appealing aspect of the microplane model with a kine-
matic constraint is that it can be cast in the form of continuum
damage mechanics. In that case, the damage variable is a
fourth-order tensor, which represents the reduction of the
stress-resisting cross-section area fraction in the material and
is independent of microscopic material stiffness characteristics
(Carol et al. 1991; Carol and Bažant 1997).

It may be noted that the microplane model is a necessary
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consequence of mathematical homogenization (smearing) ap-
plied separately for various orientations. In concrete, the major
contribution to inelastic strain comes from the slip and opening
on weak planes within the microstructure, typically lying in
the thin contact layers between aggregate pieces [Fig. 1(b)].
This slip and opening may be considered to conform kine-
matically to the strain of the macroscopic continuum at point
A lying at the center of the representative volume of material
[Fig. 1(c)]. One may now isolate within the representative vol-
ume of the material all the weak planes a1, a2, and a3 whose
normals have orientations with spherical coordinate angles be-
tween (f, u) and (f 1 df, u 1 df). Macroscopic homoge-
nization (smearing) of the slips and openings on the weak
planes a1, a2, and a3 yields a continuum that exhibits at point
A the corresponding homogenized inelastic strains on plane a
of the same orientation (f, u). Considering all the possible
orientations, one thus obtains by such separate homogenization
processes a number of planes of many orientations [Fig. 1(c)],
all of them located at A and all with strains constrained kin-
ematically to the same continuum strain tensor.

Fig. 1(d) (after Bažant and Gambarova 1984) explains how
the microplane model automatically generates dilatancy in
shear. The shear strain in a band prevented from expanding
causes normal tensile and compressive strains at microplanes
inclined by 6457. Because the microplane strength of concrete
is much smaller in tension than in compression, the compres-
sive normal stress vectors on microplanes inclined by 457 are,
at large shear strain, much larger than the tensile normal stress
vectors on microplanes inclined by 2457, causing a large com-
pressive normal stress resultant s across the band. If this re-
sultant is not opposed by a restraint against lateral expansion
of the band, the band will expand. This represents dilatancy.
Thus the constitutive law for a microplane need not involve
any cross coupling between the normal stress and shear strain
on a microplane.
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Carol, I., Prat, P. C., and Bažant, Z. P. (1992). ‘‘New explicit microplane
model for concrete: Theoretical aspects and numerical implementa-
tion.’’ Int. J. Solids and Struct., 29(9), 1173–1191.

Cofer, W. F., and Kohut, S. W. (1994). ‘‘A general nonlocal microplane
concrete material model for dynamic finite element analysis.’’ Comp.
and Struct., 53(1), 189–199.
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