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FRACTURING RATE EFFECT AND CREEP IN MICROPLANE

MODEL FOR DYNAMICS

By Zdeněk P. Bažant,1 Fellow, ASCE, Ferhun C. Caner,2 Mark D. Adley,3

and Stephen A. Akers4

ABSTRACT: The formulation of microplane model M4 in Parts I and II is extended to rate dependence. Two
types of rate effect in the nonlinear triaxial behavior of concrete are distinguished: (1) Rate dependence of
fracturing (microcrack growth) associated with the activation energy of bond ruptures, and (2) creep (or vis-
coelasticity). Short-time linear creep (viscoelasticity) is approximated by a nonaging Maxwell spring-dashpot
model calibrated so that its response at constant stress would be tangent to the compliance function of model
B3 for a time delay characteristic of the problem at hand. An effective explicit algorithm for step-by-step finite-
element analysis is formulated. The main reason that the rate dependence of fracturing must be taken into
account is to simulate the sudden reversal of postpeak strain softening into hardening revealed by recent tests.
The main reason that short-time creep (viscoelasticity) must be taken into account is to simulate the rate de-
pendence of the initial and unloading stiffness. Good approximations of the rate effects observed in material
testing are achieved. The model is suitable for finite-element analysis of impact, blast, earthquake, and short-
time loads up to several hours duration.
INTRODUCTION

Changes of the loading rate affect stress-strain relations for
concrete in two ways: (1) Through the rate dependence of the
growth of the distributed microcracks in concrete, and (2)
through viscoelasticity or creep of the material between the
cracks. For some materials (e.g., ceramics), the former mech-
anism dominates, while for others (e.g., some polymers) the
latter dominates. Analysis of certain recent experiments (Ba-
žant and Gettu 1992; Bažant 1993, 1995; Bažant et al. 1993,
1995; Bažant and Jirásek 1993; Tandon et al. 1995; Bažant
and Li 1997) showed that for concrete both mechanisms are
important, except that the former dominates at the extreme
strain rates under impact. Both mechanisms have been exten-
sively analyzed for concrete.

The literature contains many important studies of the rate
effects in various materials [e.g., Evans (1942); Watstein
(1953); Hughes and Gregory (1972); Sparks and Menzies
(1973); Mindess (1985); Reinhardt (1985); Liu et al. (1989);
Kanstadt (1990); Ross and Kuennen (1989); Sluys (1992); You
et al. (1992); Zhou and Hillerborg (1992); see also the reviews
in Bažant and Oh (1982), and Bažant and Planas (1998). Al-
though this study is focused on stress-strain relations, which
describe a material with many microcracks but no distinct
large cracks, the findings on time dependence of the growth
of a macroscopic crack are relevant too, since the growth of
microcracks must obey the same laws. A large body of knowl-
edge has been accumulated on the time dependence of fracture
of polymers (Williams 1963, 1964, 1965; Schapery 1975,
1978, 1982, 1984, 1988, 1989; Knauss 1970, 1989, 1993a,b;
Bažant and Li 1997) as well as ceramics [e.g., Evans 1942;
Thouless et al. 1983; Evans and Fu 1984].
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In some earlier studies (e.g., Mihashi and Izumi 1977, Zech
and Wittmann 1977; Wittmann 1985), the rate effects in con-
crete were explained by Weibull type statistical effects of
strength randomness. The question of possible statistical ef-
fects, however, is left out of the present study. In a certain
sense, statistical effects are implied in the activation energy
theory (Krausz and Krausz 1988), and other statistical effects
seem to be minor compared to the rate dependence of crack
opening and creep.

In simulations of missile impact and penetration with a
time-independent constitutive law, the microplane model for
concrete has proven to be significantly more successful than
the classical plasticity models. Model M4, which is the last
version of the microplane models developed at Northwestern
University (Bažant et al. 2000a; Caner and Bažant 2000), as
well as the preceding model M3 (Bažant et al. 1996a,b), has
been found at the U.S. Army Waterways Experiment Station
(WES) to be the only constitutive model for concrete that is
able to correctly simulate the deformation and fracturing pat-
terns observed in penetration experiments, including the
smaller entering crater and the larger exit crater. Despite de-
termined efforts at WES, this has not been achieved with the
classical constitutive models expressed in terms of tensorial
invariants and based on plasticity or phenomenological con-
tinuum damage mechanics. The microplane model has also
provided the best results for the blast and groundshock effects
on reinforced concrete structures, predicting correct final de-
flections and cracking patterns. Without the rate effects, how-
ever, model M4 calibrated by extensive static triaxial test data
predicted excessive exit velocities of a missile penetrating a
wall. The model parameters could of course be easily adjusted
to fit the exit velocities, in disregard of static material tests,
but such a model would not have predictive power.

The main reason for the errors in exit velocities in these
simulations has doubtless been the lack of rate dependence of
fracturing. The fracturing is simulated by microplane models
as smeared microcracking, with large fractures modeled as
crack bands. The growth of microcracks is described by frac-
ture mechanics. Rate independent though the theory of fracture
mechanics is, crack propagation nevertheless is always rate
dependent. Cracks cannot form truly instantly, but open and
propagate with a certain finite speed.

The rate dependence of the opening of cohesive cracks, or
the rate dependence of crack length growth, has recently been
shown to be the cause of the reversal of softening into hard-
ening after a sudden increase of the loading rate [tests by Ba-



žant et al. (1995), Tandon et al. (1995); modeled by Bažant
and Jirásek (1993); Bažant and Li (1997)]. This means that
the tangent modulus for loading can suddenly change from
negative to positive as the loading rate is suddenly increased
(or, more generally, the effective tangential stiffness matrix of
the microcracked material can suddenly change from nonpos-
itive definite to positive definite).

One implication of this recently discovered new phenome-
non is that a material that is in strain-softening state can prop-
agate not only unloading waves but also loading waves with
a sufficiently steep front, which is typical of impact (loading
waves with a sufficiently mild front are of course unable to
propagate, except for a limited spreading due to the necessity
of nonlocal behavior of strain softening). This phenomenon is
probably important for simulating crater formation farther
away from the missile because it enables the loading stress
waves to be transmitted through the concrete near the missile
in which strain softening has already begun. As for unloading
waves, they can of course always propagate through a material
that is in a strain softening state because the loading modulus
is always positive. So the modeling of the softening-hardening
reversal appears important to render the simulation of com-
plete cratering possible.

RATE DEPENDENCE OF CRACK OPENING

In similarity to the formulation proposed in Bažant (1993),
justified in more detail in Bažant (1995), and used in Bažant
and Li (1997) and Li and Bažant 1997), the rate dependence
of the opening w of a cohesive crack (also called ‘‘fictitious’’
crack) may be described as

0T s 2 f (w)0 2(Q/R)(1/T21/T )0ẇ = k sinh e (1)0 S DT k N (w)r b

[Fig. 1(a)]; ẇ = dw/dt, t = time; s = cohesive (crack-bridging)
stress; k0, kr, T 0, Q, and R = constants (R = universal gas
constant; Q = activation energy of interatomic bond ruptures;
T = absolute temperature; T0 = given reference temperature;
and Nb(w) = number of surviving bonds across the cohesive
crack per unit area). Function f 0(w) describes the softening
law of the cohesive crack at an opening rate that is at the lower
limit of the range of rates for which (1) is to be applied or
has been calibrated (normally the rate of loading in static ma-
terial tests in the laboratory). The adiabatic heating of concrete
in an impact event probably has a negligible effect on ẇ, and
in that case one may set T ' T0.

Eq. (1) can be imagined to correspond to the rheologic
model in Fig. 1(b), in which a rate-independent cohesive crack
element is coupled in parallel with a nonlinear damper at each
point of the cohesive crack. The sinh-function in (1) ensues
from the activation energy theory or rate-process theory
(Krausz and Krausz 1988) for bond ruptures, as shown for
concrete in Bažant (1993) and in more detail in Bažant (1995).
This function makes the rate effect highly nonlinear, which is
important when many orders of magnitude of the loading rate
are to be modeled.

Various linear stress-displacement relations, analogous to
spring-dashpot models of viscoelasticity, have been proposed
by Kanstadt (1990); Zhou and Hillerborg (1992); Sluys
(1992); and others. But they perform realistically for only one
order of magnitude of the loading rate, while (1) is applicable
over many orders of magnitude.

The ratio s/Nb(w) represents the transmitted stress per bond,
which is what matters for the activation energy theory. Obvi-
ously, Nb must decrease with increasing crack opening w and
must drop to 0 when w becomes so large that s = f(w) = 0.
As an approximation, it seems reasonable to assume that Nb(w)
= Cb f 0(w) where Cb is some proportionality constant.
FIG. 1. (a) Softening Curves of Crack-Bridging Stress versus
Smeared Cracking Strain at Different Rates of Loading Accord-
ing to (1); (b) Rheologic Model Illustrating Eq. (1); (c) Vertical
Scaling of Stress-Strain Boundary; (d) Approximation of Actual
Compliance Function by Tangent Line Corresponding to Effec-
tive Maxwell Model

RATE DEPENDENCE OF MICROPLANE
STRESS-STRAIN BOUNDARIES

The macroscopic strain softening may be imagined to be
the result of the openings on many parallel cohesive cracks.
Denoting by scr their average spacing, one may introduce the
approximation = ẇ/scr 1 ' ẇ/scr where ε = averageε̇ ṡ/E
macroscopic strain normal in the direction normal to the par-
allel cracks; E = Young’s modulus of uncracked material; and

represents the elastic strain rate, which is normally neg-ṡ/E
ligible by comparison if the crack is opening.

Substituting ẇ = and Nb(w) = Cb f 0(w) into (1) and solv-˙s εcr

ing the equation for s, one obtains s = F(ε), where

0 ˙F(ε) = F (ε)[1 1 C asinh(ε/C )] (2)2 1

2(Q/R)(1/T21/T )0 ˙with C = C e ; C = C T/T ; ε $ 0 (3a–c)1 0 2 r 0

and the notations C0 = k0/scr, Cr = krCb and f 0(w) = F 0(ε); C0

and Cr are constants to be determined from tests. When the
temperature is about the same as the temperature in the labo-
ratory tests used for calibration of the present model, which is
about 257C (T0 = 2987K), then C1 = C0 and C2 = Cr, and C1

and C2 become temperature independent, that is, constants.
Since asinh x = ln(x 1 the asymptotic approxi-2x 1 1),Ï

mation for x2 >> 1 is asinh x ' ln(2x). In (2), this occurs if
the loading rate is so large that >> C1. Then (2) takes the2ε̇
form:

0 ˙F(ε) ' F (ε)[1 1 C ln(2ε/C )] (4)2 1

The logarithmic function is normally used for the rate effect
on the yield limit in metal plasticity (discussed later in the
section on numerical implementation in the wave code
‘‘EPIC’’).

Function F(ε) may be interpreted as the stress-strain bound-
ary on the microplane corresponding to strain rate andε̇,
F 0(ε) has the meaning of the static stress-strain boundary that
corresponds to a vanishing strain rate (a boundary that ap-
proximately applies to the small loading rates of static material
tests). The transformation from the static boundary F 0(ε) to
the rate-dependent (dynamic) boundary represents, according
to (2), a vertical scaling of the boundary curve [Fig. 1(c)].

In microplane model M4, there are various types of stress-
strain boundaries controlling the inelastic behavior. On each
microplane, there are boundaries for tensile normal stress sN ;
compressive and tensile volumetric stresses sV ; tensile or com-
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pressive deviatoric stresses sD ; and shear stress sT [Bažant et
al. 2000a, Eq. (5); Bažant et al. 1996a, Eqs. (12), (20)–(22)].
They are denoted as FN , FV , FD , and FT [and are used1 1F , F ,V D

in the microplane stress-strain relations in Eqs. (14)–(20) of
Bažant et al. 2000a, or Eqs. (13)–(19), Bažant et al. 1996b].
Their arguments are the microplane strain components εN ,
εV , εD , and εT , which represent the microplane projections of
the macroscopic strain tensor «.

It is logical to assume that the normal and deviatoric bound-
aries adhere to (2). Thus, with superscript 0 labeling the
boundaries for static loading (vanishing strain rate), one may
write

0 ˙F (ε ) = F (ε )[1 1 c R(g)] (5)N N N N R 2

0 ˙F (ε ) = F (ε )[1 1 c R(g)] (6)D D D D R 2

1 01 ˙F (ε ) = F (ε )[1 1 c R(g)] (7)D D D D R 2

where, however, is replaced by function of˙ ˙asinh(ε/C ) R(g)1

global strain rate measure in view of certain tensorial in-ġ,
variance aspects. The following simple definition is proposed:

1
˙ ˙ ˙ ˙ ˙ ˙R(g) = asinh(g/c ) ' ln(2g/c ) with g = ε ε (8)R1 R1 ij ijÎ2

where the logarithmic approximation of R is admissible only
if >> cR1; cR1, cR 2 are material rate constants, analogous to2ġ
C1, which have been calibrated by test data (they can be con-
sidered as fixed parameters, which need not be adjusted by the
user and are applicable to all concretes); are strain rate com-ε̇ij

ponents with subscripts i, j (=1, 2, 3) referring to Cartesian
components, and repetition of subscripts implies summation;
and is a nonnegative invariant of (note that the square˙ ˙g εij

root of the second invariant of the strain rate tensor would be
inappropriate because the cracking strain involves volume
change).

Eq. (8) means that the rate magnitude is measured not in-
dividually for each microplane and each component, but glob-
ally for all the microplanes, that is, on the macroscale. The
reason is the objectivity of modeling. A microplane strain rate
component such as or does not simply characterize the˙ ˙ε εN D

average opening rate of all the microcracks parallel to that
microplane. Rather, it represents merely the contribution from
that microplane to the overall cracking rate, whose dominant
orientation is in general different. So and consist in effect˙ ˙ε εN D

of the components of this overall cracking strain, but the rate
effect may not be based on the rate of a component. Rather,
it must be based on the rate of overall cracking. For instance,
when the rate of the dominant cracking strain is very high, the
contribution to it from a microplane of a certain inclined ori-
entation could be very small, but if the rate effect were decided
by the rate of this contribution alone, then an almost static
stress-strain boundary would apply on this microplane (be-
cause of very low Thus, different subdivisions into micro-ε̇).
plane components would yield different results, which would
be unobjective. Also note that separate averaging of, for ex-
ample, the shear components on all the microplanes would be
questionable because on one microplane is tied by the kin-ε̇N

ematic constraint to on a microplane inclined to it.ε̇T

Computational experience showed that if the averaging of
rate effect over all the microplanes is omitted, convergence is
impaired and may be lost. Admittedly, such behavior might be
taken into account by (8) very crudely, but the existing limited
data do not permit calibrating some more sophisticated for-
mulation.

No rate effect obviously exists for the tensile crack-closing
boundary. None is introduced for pore collapse described by
the compressive volumetric boundary, which seems to be an
acceptable simplification. The creep effects are of course in-
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cluded. (Note that, even in saturated concrete, there is no anal-
ogy with the ‘‘squeezing’’ of water out of saturated sand be-
cause much of the pore water is in the adsorbed state.)

The rate effect on the (sT , sN) frictional yield surface is not
applied to both sT and sN. Rather, it is introduced as scaling
of the yield surface in the vertical (i.e., sN) direction, which
is simply implemented by a vertical shift of the horizontal
asymptote. Eq. (17) of the preceding paper (Bažant et al. 2000)
is, therefore, adapted as follows:

210c ^s 2 s &9 N N0F (2s , ė) = c ^s 2 s & 1 1 (9a)T N 9 N N S DE k c [1 1 c R(ė)]T 1 8 R0

1
ė = ė ė (9b)ij ijÎ2

where constants ET , k1, c8, and c9 are defined in that paper; cR0

is a rate constant to be calibrated by test data; ėij = 2ε̇ij

= deviator of strain rate tensor; and = ETk1c11/(1 10ε̇ d /3 skk ij N

c12^εV&). In contrast to g in (8), the rate tensor invariant ė is
defined here in terms of the rate deviator tensor because shear
slip is unaffected by the volume change rate.

Since friction is commonly considered as a rate-independent
phenomenon, inclusion of the rate effect for the friction
boundary might seem uncanny. But studies of rocks (e.g., Die-
terich 1978) have shown that the rate effect in frictional slip
is strong. They also showed that it is very intricate (Rice and
Ruina 1983; Ruina 1983; Gu et al. 1984; Rice and Ben-Zion
1996; Ranjith and Rice 1998), such that a strong simplification
is required for the present purposes.

In (9), the same function R as for the normal boundaries is
assumed to apply. This is only partly for the sake of simplicity.
In principle, since the rate effect on the shear boundary is of
a different physical nature, arising from frictional slip rather
than tensile cracking, the rate effect should follow a different
law. However, if the frictional slip is softening (the shear stress
drops with increasing slip), then the slip should localize into
a set of shear cracks. The growth of these shear cracks requires
bond breakages and thus ought to be controlled by activation
energy, too, similar to tensile crack growth. For this reason,
the same function R as before is used for the rate effect in
microplane shear.

Another noteworthy feature of the frictional yield surface is
that, in (9), only sT is scaled according to the strain rate,
whereas sN is not. If sN were too, it would not be vertical
scaling but radial scaling in the stress space (sT , sN). Such a
scaling seems unrealistic because an increase of the strain rate
would increase the value of tensile stress at which an infini-
tesimal shear stress suffices to initiate slip. Anyway, the ex-
isting limited test data do not permit deciding this question
(but it should be pondered in the future). Besides, the differ-
ence between the vertical and radical scalings becomes neg-
ligible once the cohesion is reduced near zero.

Although computations show the frictional rate effect not to
affect the uniaxial (unconfined) compression by more than a
few percent, this rate effect is dominant for very high con-
finement, that is, when all the principal stresses are compres-
sive and of high magnitudes. Recent experiments (Bažant et
al. 1999) demonstrate that, under very high hydrostatic pres-
sures, concrete can undergo, without any visible fracturing,
extreme plastic strains of the order of 100%, with shear angles
up to 707. In problems such as deep missile penetration into
a concrete wall, these enormous plastic strains dominate the
response. Calculations show that if the rate effect associated
with yielding were neglected, the energy dissipation of a pen-
etrating missile would be underestimated. On the other hand,
since test data on the frictional rate effect are lacking at pres-
ent, one must at present resort to calibrating cR0 by matching
the measured exit velocities with finite-element simulations.



For uniaxial (unconfined) tension, the normal boundary con-
trols the tensile strain softening due to cracking. The postpeak
softening in uniaxial (unconfined) compression is controlled
mainly by the tensile deviatoric boundary, although the tensile
normal boundary and the friction yield surface are also im-
portant. Thus, to simulate the strength increase with the rate
of loading, the normal and deviatoric boundaries need to be
scaled with a function of the normal strain rate characterizing
the growth of tensile microcracks. Therefore, the rate effect
given by (2) is applicable to both the normal and deviatoric
boundaries.

On the other hand, the rate effect on the compressive vol-
umetric boundary is neglected because this boundary simulates
neither crack formation nor crack propagation. Since the vol-
umetric tensile boundary comes into play only at very large
volume expansion, its rate dependence is also neglected, for
the sake of simplicity.

More accurately, the stress-strain boundaries F could be
considered as functions of εcr and rather than the totalε̇ ,cr

strains ε and which result by adding the elastic strain orε̇,
strain rate. However, the total strains are more convenient
since they allow explicit expressions for stress as a function
of strain (a great advantage for finite-element codes). The error
in using the total strains of concrete instead of the cracking
strains is negligible because fracture becomes important only
after the cracking strain magnitude becomes much larger than
the elastic strain magnitude. Besides, the replacement of the
inelastic strain rate with the total strain rate is a well-tried
simplification in rate-dependent plasticity of metals, widely
used in computer codes such as the hydrocode EPIC at WES
(discussed later). In those codes, the yield surface might ide-
ally depend on the rate of plastic strain rather than the total
strain, but the latter has proven successful.

The horizontal boundaries are scaled vertically in the same
ratio as the strain-softening boundaries. This tends to shorten
the strain range of the horizontal boundary as the strain rate
increases, which produces a sharper peak. However, the in-
crease in the initial effective elastic modulus with increasing
strain rate tends to lengthen this range and may prevail. Thus,
an increase of loading rate in uniaxial compression may pro-
duce either a rounder or a sharper peak, according to the pres-
ent model.

Since the cracks are closing during unloading, the rate effect
of fracturing might be expected to be weaker (although it
should not disappear entirely because the crack closing is hin-
dered by debris in the cracks). The fitting of the available test
data has nevertheless revealed no need to consider a different
rate effect for unloading.

In numerical calculations, the strain rate is approximated as
= Dε/Dt (where Dt = time step and D denotes the incrementε̇

per step). In an explicit dynamic program such as EPIC, Dε
needs to be taken from the previous time step, which gives
only the first-order accuracy in Dt. In an implicit program with
iterations of the loading step, Dε can be taken from the pre-
ceding iteration, which raises the accuracy to the second order
in Dt. Although the present formulation performs well, future
studies should explore various possible alternatives to the
strain rate measure in (8); for instance, with about the same
degree of partial justification, = 1 dV]1/2, or2 2˙ ˙ ˙g [* (ε ε )V N T

= *V dV with = Also, different might
→˙ ˙ ˙ ˙R(g) asinh(ε/c ) ε uε u. gNR1

be appropriate for normal and shear components on the mi-
croplanes. Practical differences, though, are small because
only the order of magnitude of really maters.˙R(g)

EFFECT OF CREEP

If the rate dependence of crack opening is taken into ac-
count, the creep (or viscoelasticity) of concrete must be taken
into account too. It is natural to do so at the microplane level
as well. The creep should be considered as linearly viscoelas-
tic, despite the fact that the stresses exceed 50% of the strength
of concrete. This is justified by the recent conclusion (Bažant
1993, 1995) that the nonlinear creep at high stresses is nothing
but a manifestation of the rate dependence of the opening of
microcracks and, under very high confinement, also rate-de-
pendent plasticity or friction, both of which are modeled sep-
arately.

The creep is fully characterized by the compliance function
J(t, t9), representing the strain at time t caused by a unit uni-
axial stress applied at time t9, and by the creep Poisson ratio,
which can be taken as constant. The constitutive law, based
on the principle of superposition, consists of a matrix integral
equation over the stress tensor history. For the analysis of im-
pact and penetration, as well as earthquake and short-time
loads lasting less than a day, the aging of concrete may of
course be neglected. In that case, J(t, t9) ' J(t 2 t9) = function
of the time lag t 2 t9. Computationally it is more effective to
approximate the integral-type constitutive law with a Kelvin
chain or Maxwell chain. This leads to a system of first-order
matrix differential equations in time for the partial strains or
stresses of the chain, whose values from the preceding time
step must be stored.

Since longtime creep is not of interest here, the entire Max-
well chain is not needed. Therefore (in similarity to the ap-
proach of Ožbolt and Bažant 1992), the compliance function
may be approximated for the duration of loading (e.g., the
impact event) by a single spring-dashpot Maxwell rheologic
model [Fig. 1(d)]. For uniaxial stress, this model is character-
ized by the following stress-strain relation:

ṡ s
ε̇ = 1 (10)

E h

where E = elastic modulus and h = viscosity.
For an explicit analysis, the approximation of this differ-

ential equation by forward or backward finite-difference for-
mulae is known to lead to an integration algorithm for struc-
tural analysis that is stable only for a sufficiently short time
step Dt. Such conditional stability is often inconvenient. As
shown for the nonaging viscoelasticity of polymers by Zien-
kiewicz et al. (1968) and by Taylor et al. (1970), and for aging
viscoelasticity of concrete by Bažant (1971), an uncondition-
ally stable algorithm can be obtained by exact integration of
the differential equation under the assumption that the strain
rate is constant during each time step and varies only by jumps
at the beginning of each time step.

So we assume that, during each time step Dt, the strain rate
is constant. Under that assumption, the solution of (10)ε̇

within the time step beginning at time ti is

2E(t2t )/hi˙ ˙s(t) = hε 1 (s 2 hε)e (11)i

Setting t = ti 1 Dt and ' Dε/Dt, this may be rearranged intoε̇
the following quasielastic incremental stress-strain relation:

Ds = E 0Dε 2 Ds0 (12)

with the following notations:

2Dt/t11 2 e 2Dt/t1E 0 = E; Ds0 = (1 2 e )s (13a,b)
Dt/t1

where s is the value at the beginning of the time step Dt, and
t1 = h/E = relaxation time of the Maxwell model. Note that,
in computer calculations, an overflow may occur in the fore-
going expressions when j = Dt/t1 is very small; the first terms
of the Taylor series expansions of these expressions must then
be used to calculate E 0 and Ds0. Formulae (13) are of the type
known generally as the exponential algorithm for linear vis-
coelasticity (RILEM 1988).
JOURNAL OF ENGINEERING MECHANICS / SEPTEMBER 2000 / 965



Now the question is what is the optimum approximation of
the compliance function J(t, t9) by the Maxwell model for the
duration of the impact event. As the optimality condition, we
may choose the compliance function of the Maxwell model to
be tangent to J(t, t9) [Fig. 1(d)] at the time t0 1 tch, where t0

= age of concrete at the time of impact and tch is a suitably
chosen characteristic time. The integration of (10) at time tch

for constant stress s = 1 applied at time t0 gives ε = (1/E) 1
(tch/h) and = 1/h. The tangency condition is J(t0 1 tch) = εε̇
and J̇(t0 1 tch) = 1/h where J̇(t, t9) = ­J(t, t9)/­t. So, the actual
compliance curve J(t, t9) and the compliance curve of the Max-
well model are made tangent at time t0 1 tch by setting

1 1
E = ; h = (14a,b)˙ ˙J 2 t J Jch ch ch ch

where Jch = J(t0 1 tch) and As for the char-˙ ˙J = J(t 1 t ).ch 0 ch

acteristic time, it is appropriate to choose tch ' tload/2 where
tload is the load duration of interest (e.g., the duration of an
impact event or earthquake).

The creep Poisson ratio of concrete is approximately con-
stant (being about 0.18). This is fortunate because it means
that the volumetric and deviatoric compliance functions are
proportional to the uniaxial one, J(t, t9), and further, that the
Maxwell-type stress-strain relations for all the microplane
stress and strain components have proportional viscosities and
elastic constants. Thus, according to the approximation (14)
by the Maxwell model, the equation preceding (2) (in step 5
of the algorithm) in Caner and Bažant (2000) [or (13a) on p.
248 of Bažant et al. (1996a), which reads = 1 ED(εD

e is sD D

2 needs to be replaced byiε )],D

ve i is = s 1 E 0 (ε 2 ε ) 2 Ds0 (15)D D D D D D

Here subscript D denotes the deviatoric components of the
microplane normal stress or strain; superscript i denotes the
initial value in the time step; subscript ve denotes the visco-
elastic stress increment, which is a generalization of the elastic
stress increment and characterizes the response away from the
stress-strain boundaries; and the quantities labeled by 0 are
calculated according to the prescription in (13), that is

2Dt/t11 2 e 2Dt/t i1E 0 = E ; Ds0 = (1 2 e )s (16a,b)D D D D
Dt/t1

Similarly, the remaining equations in steps 4 and 9 of the al-
gorithm in Caner and Bažant (2000) [or in (13a) and (14a,b)
in Bažant et al. (1996b)] need to be replaced by

ve i is = s 1 E 0(ε 2 ε ) 2 Ds0 (17)V V V V V V

ve i is = s 1 E 0 (ε 2 ε ) 2 Ds0 (18)M M M M M M

ve i is = s 1 E 0(ε 2 ε ) 2 Ds0 (19)L L L L L L

The equation for sN in step 6 [or (14b) of Bažant et al.
(1996a)] is an equilibrium equation that keeps the same form,
that is, = 1 and so does (17) of that paper, ensuingve ve ves s s ,N V D

from the principle of virtual work.
A more accurate representation of creep applicable to many

orders of magnitude of creep duration could be based on the
Maxwell chain model or the Kelvin chain model, with the
algorithm described in RILEM (1988) or Bažant (1995). But
in that case it would be necessary to introduce for each inte-
gration point of each finite element additional internal varia-
bles, corresponding to the partial stresses or strains in these
models. Their values would have to be stored, and the pro-
gramming would be more involved.

It might seem that consideration of creep (or viscoelasticity)
is unimportant for the extremely short duration of impact.
However, experimental data on the nonlinear triaxial stress-
strain relations of concrete at the loading rates of impact do
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not exist and seem next to impossible to acquire. Thus, the
knowledge of creep is essential for correlating the behavior
under impact to the existing experimental data basis, obtained
at the usual strain rates of static laboratory tests, and in par-
ticular for determining the effective elastic modulus (dynamic
modulus) for the given loading rate (the dynamic modulus for
the strain rates of impact can be as much as 50% higher than
that in static laboratory tests, the difference being due to
creep). The short-time creep must be considered to properly
distinguish among the material properties applicable at the
different strain rates prevailing for earthquake, blast, ground-
shock, and impact loadings.

NUMERICAL IMPLEMENTATION IN
WAVE CODE ‘‘EPIC’’

The present rate-dependent version of microplane model M4
has been implemented at WES in the hydrocode EPIC. Various
questions of numerical implementation and algorithms had to
be resolved for this purpose.

The rate effect is lagged by one time step, that is, the rate
factor for the current step is based on the previously converged
step, in order to achieve efficient explicit step-by-step calcu-
lations. But this is not the only reason. Because the strains are
accumulated when the stress increments are prescribed, the
strain rate to be entered as the argument of the rate function
may change abruptly from one iteration to the next. This may
cause spikes in the response and may result in convergence
loss for small enough increment sizes. The lagging of the rate
factor allows the boundaries to be kept fixed throughout the
iterations in each loading step, which helps convergence. As
the increment size is reduced, the error due to the lagging of
the rate of loading is decreased.

From the programming viewpoint, the lagging of the rate
effect by one step means that there are two more double-pre-
cision variables to store, along with all the other stored history
variables for every integration point of every finite element.
This requires an approximately 2.35% increase in the allocated
memory with respect to the model M4 without rate effects.

NUMERICAL SIMULATION AND CALIBRATION BY
TEST DATA

In fitting the data, the creep effect can be calibrated sepa-
rately. This is done by matching the data for the initial elastic
modulus at different rates. Then coefficients cR1 and cR 2 may
be identified by matching the peak and postpeak behavior for
uniaxial stress at different strain rates. For lack of material test
data, cR 0 had to be chosen, and it has been chosen as cR 0 = 1.
All the available test data fits were optimized under the re-
striction that cR1 and cR 2 be the same for all the data. The result
was cR1 = 1026/s and cR 2 = 0.011.

For lack of creep data, model B3 (Bažant and Baweja
1995a,b,c, 1999) was used to predict all the creep properties
other than the overall creep multiplier q1 from that model,
which is determined in this case by optimally fitting the initial
elastic moduli of experimental data containing rate-of-loading
effects. For this purpose, the following typical parameters were
assumed for the B3 model: age of concrete at loading, t0 = 28
days; aggregate-cement ratio by weight, a/c = 7; specific ce-
ment content, c = 300 kg/m3; and water-cement ratio by
weight, w/c = 0.50. The characteristic times for rates of load-
ing = 0.2/s, 3.3?1023/s, 3.3?1025/s were determined to be tchε̇
= 0.015 s, 0.9 s, and 90 s, respectively. The values given for
tch approximately correspond to half of the loading duration
for each experiment. The optimum value of creep coefficient
q1, = 21 MPa21 is found to give the best initial elasticoptq1

moduli for different rates of loading.
The experimental data on the rate-of-loading effects on con-



crete are not abundant in the literature. Moreover, all the data
are incomplete for the purpose of calibrating a model such as
M4. The most complete data set in the literature is probably
that of Dilger (1978).

Fig. 2(a) shows the fits of the complete stress-strain curves
in uniaxial compression obtained, for different strain rates, by
Dilger et al. (1978). The specimen loaded at the highest strain
rate failed just after reaching the peak load. The solid lines are
the simulations and the data points the measured values. The
delocalization of data was not necessary in this case.
The inertial and wave propagation effects were neglected in
data fitting because the shortest test duration, which was 0.03
s, was 10 times longer than the travel time of elastic waves
across the specimen, which should have sufficed for the wave
energy to get dissipated. Figs. 2(b and c), in which the duration
is about 0.003 s, serve merely to demonstrate the model per-
formance; no data exist for this rate, but if they did, the inertia
effects would have to be taken into account in fitting. The fit
shown in Fig. 2(a) indicates that the model is capable of rep-
resenting the loading rate effects well.
FIG. 2. (a) Fit of Stress-Strain Curves Measured by Dilger (1978) at Various Strain Rates; (b and c) Simulation of Effect of a Sudden
Change of Strain Rate, Taking Fracturing Rate into Account, but with or without Effect of Creep; (d) Fit of Main Data from Literature on
Effect of Strain Rate on Compression Strength and on Secant Elastic Modulus E (E 5 27.6 GPa, k 1 5 0.000104; k 2 5 200; k 3 = 10; k 4f 9c
= 150 Was Used)
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Figs. 2(d and e) show the experimental data obtained by
various researchers for the effect of strain rate on the com-
pression strength and on the apparent (dynamic) Young’sf9cdyn

modulus Edyn in compression, normalized by the values f9cstat

and Estat corresponding to the typical ‘‘static’’ loading rate of
laboratory tests. Corrections for strain localization were
deemed unnecessary for these data. The curves of model M4
are seen to fit well.

Fig. 2(b) shows how a sudden 1,000-fold change of the
loading rate affects the postpeak tensile response of model M4.
This effect is an important check on the capability of the
model to simulate the behavior of the fracture process zone.
Qualitatively, the curves in the figure are in good agreement
with the recent tests of notched fracture specimens by Bažant
et al. (1995) and Tandon et al. (1995), which revealed that a
sudden increase of the loading rate in the postpeak softening
range reverses softening to hardening. The rehardening is then
followed by a second peak and a rapid approach to the re-
sponse (dashed) curve that would apply if the new rate were
constant from the beginning. A sudden decrease of the loading
rate was found in these tests to cause a temporary stress re-
laxation with an almost vertical downward slope. The predic-
tions of model M4 agree well with this behavior. Fits of actual
data, however, are not attempted in Fig. 2(b) because they
would require nonlocal finite-element analysis with model M4,
which is beyond the scope of this paper.

Previous simulation of the behavior in Fig. 2(b) by a rate-
dependent cohesive crack model (Bažant and Li 1997) showed
that creep (or viscoelasticity) alone gives no reversal of soft-
ening to hardening and thus cannot explain the effect of a
sudden increase of the loading rate. To explain it, one needs
to describe the dependence of the crack-bridging cohesive
stresses on the crack-opening rate according to the activation
energy theory. These test results and their previous analysis
with the cohesive crack model indicate that viscoelasticity of
the material alone would be an insufficient hypothesis, and the
activation energy theory for fracturing must be introduced. On
the other hand, the fracturing rate effect alone suffices to de-
scribe the data on the sudden change of loading rate. This is
demonstrated by the simulations in Fig. 2(c), in which the
creep effect is omitted. As seen, the predicted slope change
after a sudden change of loading rate is still realistic. But with-
out creep, there is no effect on the initial apparent elastic mod-
ulus (initial slope of the curves).

It would make no sense to simulate the response to a 1,000-
fold change of loading rate of the opposite case in which the
fracturing rate effect is removed and the creep is the only
source of rate effect. The reason is that the approximation of
the compliance function by a single Maxwell unit can capture
the creep effects only within one order of magnitude of load-
ing rates.

CONCLUSIONS

1. Two types of rate effect in nonlinear triaxial behavior of
concrete may be distinguished: (1) Rate dependence of
fracturing (growth of microcracks), which is caused by
the rate-dependent process of bond ruptures at crack tips
and is controlled by activation energy; and (2) linear
creep (or viscoelasticity), which occurs in the bulk of the
material.

2. Both types of rate dependence are easily implemented in
microplane model M4. This makes model M4 suitable
for analyzing dynamic problems of concrete structures,
including impact, blast, and earthquake effects.

3. Model B3 for predicting concrete creep can be used to
characterize short-time creep effects, manifested for in-
stance in the difference between the static and dynamic
moduli of elasticity. For the purposes of dynamic loading
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and short-time static loading, the creep can be approxi-
mated by a nonaging Maxwell spring-dashpot model
whose response at constant stress is tangent to the com-
pliance function of model B3 for a time-delay charac-
teristic of the structural response.

4. An effective explicit algorithm for step-by-step finite-el-
ement analysis is formulated. Good convergence is
achieved even for sudden changes of the loading rate.

5. In the case of a sudden increase of strain rate in the
postpeak regime, the model gives a reversal of softening
to hardening, as required by recent test data. This feature
is caused not by creep but by the rate dependence of
fracturing. On the other hand, the rate dependence of the
initial stiffness and the unloading stiffness is caused not
by the rate dependence of postpeak fracturing, but by
creep. The peak stress and postpeak softening are af-
fected by both phenomena.

6. Good agreement with the experimentally observed rate
effect on concrete is achieved.

APPENDIX I. ALGORITHM FOR EVALUATING E AND
h FROM MODEL B3

For dynamics and short-time static loading, the drying creep
is negligible, and only the basic creep (creep at no moisture
exchange) needs to be considered. In that case, one needs to
specify for model B3 [Bažant and Baweja (1995a,b,c,) and
(improved version) (1999)] the following parameters: Age of
concrete at loading t0; average standard cylindrical compres-
sion strength specific cement content c; water-cement ratiof̄ ;c

w/c by weight; and aggregate-cement ratio a/c by weight. Fur-
ther, one must set the characteristic time tch, using tch ' tload/
2, and choose the time increment Dt. Also note that the time
unit in the following formulae of model B3 is 1 day, and so
a conversion from seconds to days will be necessary for pa-
rameters tch and Dt. Otherwise, SI units (MPa) are used.

1. Compute E28 = in MPa, q2 = in20.9¯ ¯4,734 f 185.4 cfÏ Ïc c

MPa21, and q4 = 20.3(a/c)20.7 in MPa21. Compute q1 =
0.6 ?106/E28 in MPa21 and q3 = 0.29(w/c)4q2 in MPa21;
(however, it is much more realistic to carry out a short-
time test of given concrete in order to update q1 and q2).
Set t = t0 1 2tch in days. Then compute r = 1 8;0.121.7t 0

Z = ln(1 1 (t 2 t0)
0.1); and Qf = 120.5 2/9t (0.086t0 0

Calculate integral Q of model B3, either by4/9 211.21t ) .0

numerical integration by interpolation from the table
given by Bažant and Baweja (1995a,b,c, 1999), or more
simply but less accurately from the empirical approxi-
mation Q ' QfZ/(Zr 1 r 1/rQ ) .f

2. Compute the compliance function for the characteristic
time, J = q1 1 q2Q 1 q3 ln(1 1 (t 2 t0)

0.1) 1 q4 ln(t/t0)
in MPa21. But if short-time test data on the initial effec-
tive elastic modulus of the given concrete at different
loading rates are available, calculate the ratios q2/q1, q3/
q1, and q4/q1. Then calculate J = 1 (q2/q1)Q 1optq [11

(q3/q1)ln(1 1 (t 2 t0)
0.1) 1 (q4/q1)ln(t/t0)], where inoptq1

MPa21 is the optimal value that fits the test data the best
[if extensive short-time creep data for the given concrete
are available, then it is possible to update both q1 and q2,
by linear regression, in which case only the ratios q3/q2

and q4/q2 are based on model B3; see Bažant and Baweja
(1995b, 1999)]. In applications to dynamics, in which
tch << 1 day, the logarithmic terms are negligible and
may be omitted, and one may set at the outset q3 ' 0
and q4 ' 0.

3. Similarly, compute = 1 q3/q1)/(t 2opt 20.5J̇ q [0.1((q /q )t1 2 1

t0 1 (t 2 t0)
0.9) 1 (q4/q1)/t] in (MPa day)21 and Ep = 106/

[J 2 and t1 = h/Ep.
6˙ ˙t J], and evaluate h = 10 /J,ch

4. For finite-element analysis: (a) If Dt/t1 $ 100, set C0 =
0; otherwise, calculate C0 = exp(2Dt/t1), and if Dt/t1 #
0.001, calculate C1 = 1 2 Dt/(2t1); or, otherwise, cal-



culate C1 = (1 2 C0)/(Dt/t1). These approximations are
necessary to avoid overflow in (16), but double-precision
arithmetic is still needed in (16), unless the limits on Dt/
t1 were narrowed and more than two terms of Taylor
series expansion were used. (b) Compute the new value
of effective Young’s modulus, E = C1Ep, for the current
time step. (c) Calculate = EDεX 1 where sub-i11 is C s ,X 0 X

script X stands for D, V, M, or L and superscript i is the
time index.
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