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Abstract

A new model for the behavior of polycrystalline shape memory alloys (SMA), based on a stat-
ically constrained microplane theory, is proposed. The new model can predict three-dimensional
response by superposing the e2ects of inelastic deformations computed on several planes of dif-
ferent orientation, thus reproducing closely the actual physical behavior of the material. Due to
the structure of the microplane algorithm, only a one-dimensional constitutive law is necessary
on each plane. In this paper, a simple constitutive law and a robust kinetic expression are used
as the local constitutive law on the microplane level. The results for SMA response on the
macroscale are promising: simple one-dimensional response is easily reproduced, as are more
complex features such as stress–strain subloops and tension–compression asymmetry. A key fea-
ture of the new model is its ability to accurately represent the deviation from normality exhibited
by SMAs under nonproportional loading paths. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction and background

Shape memory alloys (SMA) are materials capable of very large recoverable inelastic
strain (of the order of 10%). For this property they have been extensively investigated
over the past three decades as potential control materials. The source of the distinctive
mechanical behavior of these materials is a crystalline phase transformation between
a high symmetry, highly ordered parent phase (austenite), and a low symmetry, less
ordered product phase (martensite).
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Fig. 1. Pseudoelasticity (a) and shape memory e2ect (b) for a SMA material.

Martensitic structure is obtained from austenite with application of mechanical load
or decrease in temperature. Upon heating or reduction of stress, the austenitic structure
is recovered. This is the cause of the two most signiCcant phenomena that characterize
the mechanical behavior of SMAs: the pseudoelastic response and the shape memory
e2ect (SME). To illustrate the macroscale manifestation of these phenomena, typical
uniaxial stress–strain diagrams for a polycrystalline SMA material are shown in Fig. 1.

In absence of stress, the start and Cnish transformation temperatures are typically
denoted as Ms; Mf ; As; Af . For many materials, Mf¡Ms¡As¡Af . At a temperature
T¿Af , a SMA material behaves pseudoelastically (Fig. 1(a)). Applying stress induces
transformation of austenite into martensite, resulting in inelastic transformation strain.
As the stress is reduced, after an initial elastic response the martensite formed during
the loading process transforms back to austenite, the inelastic strain is therefore recov-
ered, and the stress–strain diagram exhibits the characteristic hysteretic loop shown in
Fig. 1(a).

Fig. 1(b) illustrates the shape memory e2ect for material starting as austenite at a
temperature T¡As. During the loading process (A→B), the applied stress induces
formation of martensite and inelastic strain. Upon unloading from B to C, the newly
formed martensite remains stable, as does the transformation strain. Upon heating the
material to temperatures above Af , the material becomes again completely austenitic
and the inelastic strain is fully recovered (C→A).

To determine what crystallographic state is stable at a given combination of applied
uniaxial stress and temperature, a phase diagram depicting the critical stress for the
phase transformation as a function of temperature can be used. A simpliCed typical
phase diagram is shown in Fig. 2 (the phase diagram and transformation kinetics will
be revisited in more detail in Section 4). Transformation from austenite to martensite
can take place in the [M] strip between the two lines with slope CM , passing through
Mf and Ms. Transformation from martensite to austenite can take place in the [A] strip
between the two lines with slope CA, passing through As and Af . A phase diagram
for a particular alloy is derived experimentally by performing several uniaxial tests at
di2erent temperatures.

Even for uniaxial loading, other complicated combinations of pseudoelasticity and
SME are often the subject of in-depth study. Experimental results for one-dimensional
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Fig. 2. SimpliCed schematic for inelastic domains of A →M and M→A transformations. Distinction between
detwinned (stress-induced) and twinned (temperature-induced) martensite not represented here (see later
Fig. 6).

thermomechanical loading histories are discussed in numerous papers on SMA materials
published in the last three decades. Issues such as transformation return points, partial
transformations and hysteresis subloop formation have been considered (Ivshin and
Pence, 1994a,b; Lu et al., 1990; Tanaka et al., 1995a,b, 1996).

Pseudoelasticity and the shape memory e2ect make SMAs very appealing as poten-
tial materials for various engineering applications. It is advantageous that the trans-
formation temperatures can be controlled by the alloying elements that constitute the
material. This allows the designer to exploit the properties of SMAs over a wide
range of temperatures. Among several other applications, SMAs are used to produce
shrink Ct rings (Borden, 1996), actuators (in the form of torque bars or wires, Otsuka
and Wayman, 1998), orthodontic wires and other medical devices (Auricchio, 1995;
Otsuka and Wayman, 1998). SMAs are also useful as dampers, thanks to the energy
dissipated in the pseudoelastic hysteresis (Graesser and Cozzarelli, 1991; Oberaigner
et al., 1996; Lagoudas et al., 1994; Boyd and Lagoudas, 1996a,b). In practical ap-
plications, SMAs are often used in the form of wires. This caused the attention of
experimental researchers to be mostly focused on one-dimensional behavior, and sev-
eral constitutive models capable of satisfactorily reproducing one-dimensional response
of SMA have been developed (see references in Section 2). However, Cnite element
analysis in design of advanced applications of SMAs requires the knowledge of fully
three-dimensional constitutive laws. SMAs are often subjected to triaxial stress states,
for instance, when embedded in other materials to enhance the damping properties of
composite structures.

To fully understand shape memory response, one must move from the purely macro-
scopic description given above to a more detailed microscale viewpoint. Fig. 3 (after
Otsuka and Wayman, 1998) illustrates schematically how the transformation strain
can be produced and then recovered crystallographically. Fig. 3(a) shows a simpli-
Ced austenitic single crystal. Upon cooling at zero stress, martensite plates nucleate
and grow inside the austenite until, at T¡Mf , the material is completely marten-
sitic. Martensite formed in such a manner assumes a self-accommodated structure in
which the combination of variants does not produce a macroscopic observable strain
(Fig. 3(b)). The stress applied to a self-accommodated martensitic structure, however,
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Fig. 3. Mechanism of shape memory e2ect (after Otsuka and Wayman, 1998).

induces a large, macroscopic deformation due to reorientation of martensite variants
(detwinning) (Fig. 3(c) and (d)).

When the temperature is increased again above Af , the martensite gradually trans-
forms back to austenite with the original crystallographic orientation, thus allowing for
a full recovery of the detwinning strain (Fig. 3(e)). Polycrystalline response is similar
with each individual grain in the polycrystal responding to its local stress and tempera-
ture state, as described above. The overall polycrystal response is an averaged response
over all the di2erently oriented single crystal grains.

Following this simple introduction to the mechanical behavior of SMA materials,
Section 2 will brieKy review the existing one-dimensional (1-D) and three-dimensional
(3-D) SMA models and motivate the development of the proposed microplane model.
It will be shown that the statically constrained microplane model is a very eLcient
numerical framework for the development of a macroscale three-dimensional SMA
model and o2ers exciting potential for further development of SMA models at the micro
and meso scales. Section 3 will review microplane model approach, while Section 4
will present the formulation for macroscale prediction of polycrystalline SMA response.
Section 5 will give numerical predictions with the usual 1-D response replication, plus
more complicated subloop phenomena, as well as illustrate the capability of the model
to capture SMA response under nonproportional loading.

2. Review of existing 1- and 3-D SMA models

The macroscopic mechanical behavior of shape memory alloys is usually modeled
following either a phenomenological or a micromechanical approach.

2.1. Macroscopic phenomenological models

One-dimensional phenomenological models are suitable for engineering practice,
because they make use of measurable quantities as parameters and are often rela-
tively simple. These models are often ad hoc descriptions aimed at Ctting experimen-
tal data and are usually quite accurate in predicting the uniaxial response of SMAs.
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Uniaxial phenomenological models have been proposed by many researchers, among
them Tanaka and Nagaki (1982), Liang and Rogers (1990), Ivshin and Pence (1994a, b)
and Brinson (1993).

These models usually consist of a mechanical law, governing the stress–strain behav-
ior, and a kinetic law, governing the crystallographic transformation. The kinetic laws
employed in these models describe the evolution of the phase fraction as a function of
stress and temperature and often make use of a phase diagram such as that shown in
Fig. 3.

As discussed by Brinson and Huang (1996), the main factor distinguishing these
one-dimensional models is the particular kinetic law. This is due to the fact that the
transformation strain is very large compared to the elastic strain, and therefore the
mechanical part of the model plays a less signiCcant role. Brinson and Huang showed
that several di2erent models yield very similar results when the same kinetic law is
used.

Several attempts are being made to extend these models to three dimensions. 3-D
phenomenological models appear to be capable of capturing the typical features of
SMAs, but it is diLcult to evaluate the performance of 3-D phenomenological models
due to the lack of experimental data for multiaxial response. The existing 3-D models
are developed in the form of plasticity models with an internal variable such as the
phase fraction � (Boyd and Lagoudas, 1994; Lubliner and Auricchio, 1996; Liang and
Rogers, 1992; Lagoudas et al., 1996; Birman, 1997) and most have been compared
directly only to uniaxial experimental data.

2.2. Micromechanics based macroscopic models

The researchers following a micromechanics approach (Sun and Hwang, 1993; Pa-
toor et al., 1988, 1993, 1994; Goo and Lexcellent, 1997; Huang and Brinson, 1998;
Gao et al., 2000; Vivet and Lexcellent, 1998; Lu and Weng, 1997) try in various
ways to follow very closely the crystallographic phenomena within the material, using
thermodynamics laws to describe the transformation. These models often consider the
martensitic variants as transforming inclusions and use micromechanics to calculate the
interaction energy due to the phase transformation in the material. Stresses and strains
are obtained as volume averages calculated over a volume in which many inclusions
are considered, representing the possible variants.

The models conceived following this approach are obviously much more compli-
cated than phenomenological models and usually are computationally demanding. On
the other hand, being based on an accurate investigation of the physics of the ma-
terial, these models seem to o2er the most rational way to derive a highly accurate
three-dimensional constitutive law.

2.3. A microplane model for SMA

A microplane model for SMA, proposed in this paper, falls in between the two
approaches just mentioned. As will be described in the following section, the mi-
croplane model is in essence a phenomenological model, which aims at reproducing the



1056 M. Brocca et al. / J. Mech. Phys. Solids 50 (2002) 1051–1077

macroscopic mechanical behavior of materials. But while in the usual phenomenolog-
ical models the constitutive laws are expressed directly in terms of stress and strain
tensors and their invariants, in a microplane model the macroscopic material behavior
is obtained by describing the material response along several planes of di2erent orienta-
tions, called the microplanes. While not directly modeling material microstructure, use
of multiple microplanes is considered to be generally representative of microstructural
response, thereby allowing a more direct and intuitive description of phenomena occur-
ring at the microscale level. The stress and strain quantities on the microplanes have an
immediate physical meaning such as shear strain, normal pressure on the plane or shear
stress along the plane, and thus these quantities can be used to describe phenomena
such as crystallographic slip, shear bands, crack opening, friction, etc.

The phenomena occurring at the microplane level contribute jointly to the overall
macroscopic response of the material. When the material response can be approximated
as isotropic, the constitutive laws for the microplane response can be assumed to be the
same on all the microplanes. This reduces the task of developing a three-dimensional
constitutive law to the much simpler task of identifying relationships to describe the
material response on a plane. In some cases (as for the SMA model proposed in this
paper), a simple one-dimensional constitutive law at the microplane level is suLcient
to generate a consistent three-dimensional model.

We stress, however, that the number and orientations of the microplanes are dic-
tated by numerical considerations, as will be seen in the next section, and thus the mi-
croplanes are not intended to give an accurate microscopic and crystallographic descrip-
tion of the material microstructure (as some of the strict micromechanics SMA models
do). In fact, the constitutive laws at the microplane level must be phenomenological
laws, to compensate for the possible discrepancy between the microplane structure and
the material microstructure. Although there is potential to apply the microplane model
more directly at the microscale level by choosing the microplanes based on known
habit plane orientations for a given SMA, such an approach is left for future work. In
this paper, the microplane model approach will be used to develop a constitutive model
for polycrystalline SMA materials based on macroscale phenomenological constitutive
laws for the microplanes.

The main advantages in the proposed approach arise from the fact that by allowing
the material laws to be prescribed independently on several planes, the model is quite
versatile and capable of reproducing phenomena diLcult to capture with the traditional
models expressed in terms of stress and strain tensors and their invariants. For example,
recently Lim and McDowell (1999) have shown experimentally that a constitutive law
based on a J2-type transformation rule (such as that used for von Mises or Drucker
Prager yield surfaces) is not accurate in the case of nonproportional multiaxial loading
of an SMA. By performing experiments on SMAs under axial torsional nonproportional
loading, Lim and McDowell showed that the direction of transformation strain is not
colinear with the deviatoric stress (as it would be in a J2-type formulation). This
Cnding increases the interest in the microplane model, which naturally exhibits deviation
from normality; indeed, independent contributions from numerous planes produce a
multi-surface plasticity type of response in the material, with vertex e2ect (see Brocca
and Ba+zant, 2000). In addition to this, the microplane model is rather intuitive and



M. Brocca et al. / J. Mech. Phys. Solids 50 (2002) 1051–1077 1057

therefore it is relatively easy to modify and tune to given data simply by changing
the constitutive laws at the microplane level. It will be shown that important SMA
characteristics such as pressure sensitivity and tension–compression asymmetry can be
easily introduced in the model.

3. The microplane model approach

3.1. History of microplane model

The history of the microplane modeling approach can be traced back to a pioneering
idea of Taylor (1938), who proposed characterizing the constitutive behavior of poly-
crystalline metals by relations between the stress and strain vectors acting on planes of
all possible orientations within the material and determining the macroscopic strain and
stress tensors as a summation of all these vectors under the assumption of a static or
kinematic constraint. Batdorf and Budiansky (1949) were the Crst to extend Taylor’s
idea and develop a realistic model for plasticity of polycrystalline metals, still con-
sidered among the best. Many other researchers subsequently reCned or modiCed this
approach to metals (KrQoner, 1961; Budiansky and Wu, 1962; Lin and Ito, 1965,1966;
Hill, 1965,1966; Rice, 1971). Extensions for the hardening inelastic response of soils
and rocks were also made (Zienkiewicz and Pande, 1977; Pande and Sharma, 1983;
Pande and Xiong, 1982).

All the aforementioned models used the so-called “static constraint”—the assumption
that the stress vector acting on a given plane in the material, called the microplane, is
the projection of the macroscopic stress tensor. Later, Ba+zant (1984), and Ba+zant and
Oh (1985) showed that a static constraint prevents the model from being generalized
for postpeak behavior or damage of quasi-brittle materials. The extension to softening
damage requires replacing the static constraint by a kinematic constraint, in which the
strain vector or any inclined plane in the material is the projection of the macroscopic
strain tensor.

In all applications to metals, the formulations emanating from Taylor’s and Bat-
dorf and Budiansky’s work were called the “slip theory of plasticity”. However, this
expression is unsuitable for general material models (Ba+zant and Prat, 1988a,b), for
example models of the damage in quasi-brittle materials, where the inelastic behavior
on the microscale does not physically represent slip. For this reason, the neutral term
“microplane model” was coined, applicable to any type of inelastic behavior (Ba+zant,
1984). Microplane is the name given to a plane of any orientation in the material, used
to approximately characterize the behavior in the microstructure of the material.

After generalizing the microplane model for both tensile and compressive damage
(Ba+zant and Prat, 1988a,b), the microplane model and the corresponding numerical
algorithm reached its present, very e2ective formulation for concrete in Ba+zant et al.
(2000). Microplane formulations have also been developed for anisotropic clays (Ba+zant
and Prat, 1987) and for soils (Prat and Ba+zant, 1989, 1991a,b). A detailed review of
the microplane model formulation with kinematic or static constraint can be found in
Carol and Ba+zant (1997). For both the formulation with kinematic constraint and the
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Fig. 4. Strain components on a microplane.

formulation with static constraint, the material properties are characterized by relations
between the stress and strain components on the microplanes. The tensorial invari-
ance restrictions need not be directly enforced in the constitutive relations, which is
a simplifying feature of the microplane formulation. They are automatically satisCed
by superimposing in a suitable manner the responses from the microplanes of all ori-
entations. This is done by means of a variational principle (principle of virtual work)
(Ba+zant, 1984).

3.2. Formulation with kinematic constraint

The orientation of a microplane is characterized by the unit normal n of components
ni (indices i and j refer to the components in Cartesian coordinates xi). In the for-
mulation with a kinematic constraint, which makes it possible to describe softening in
a stable manner, the strain vector V�N on the microplane (Fig. 4) is the projection of
the macroscopic strain tensor �ij. So the components of this vector are �Ni = �ijnj. The
normal strain on the microplane is �N = ni�Ni, that is

�N =Nij�ij; Nij = ninj; (3.1)

where repeated indices imply summation over i= 1; 2; 3. The mean normal strain, called
the volumetric strain �V, and the deviatoric strain �D on the microplane can also be
introduced, deCned as follows:

�V = �kk =3; �D = �N − �V: (3.2)

This separation of �V and �D is useful when the e2ect of the hydrostatic components
of stress and strain needs to be controlled directly, or when the volumetric–deviatoric
interaction observed for a number of cohesive frictional materials, such as concrete,
needs to be captured. We will not need to use �V and �D for the model presented in
Section 4: the e2ect of hydrostatic pressure will be taken into account indirectly as
will be explained later.
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To characterize the shear strains on the microplane (Fig. 4), we need to deCne two
coordinate directions M and L, given by two orthogonal unit coordinate vectors m and
l of components mi and li lying on the microplane. To minimize directional bias of
m and l among microplanes, we alternate among choosing vectors m to be normal to
axis x1; x2 and x3.

The magnitudes of the shear strain components on the microplane in the directions
of m and l are �M =mi(�ijnj) and �L = li(�ijnj). Because of the symmetry of tensor �ij,
the shear strain components may be written as follows (e.g. Ba+zant et al., 1996, 1999):

�M =Mij�ij; �L =Lij�ij; (3.3)

in which the following symmetric tensors were introduced:

Mij = (minj + mjni)=2; Lij = (linj + ljni)=2: (3.4)

Once the strain components on each microplane are obtained, the stress components
are updated through microplane constitutive laws, which can be expressed in algebraic
or di2erential forms. In this paper, these microplane constitutive laws are taken to
be an appropriate version of an existing 1-D SMA constitutive model as described in
Section 4.

If the kinematic constraint is imposed, the stress components on the microplanes are
equal to the projections of the macroscopic stress tensor �ij only in some particular
cases, when the microplane constitutive laws are speciCcally prescribed in a manner
such that this condition be satisCed. This happens for example in the case of elastic
laws at the microplane level, deCned with elastic constants chosen so that the overall
macroscopic behavior be the usual elastic behavior (see Carol and Ba+zant, 1997). In
general, the stress components determined independently on the various microplanes
will not be related to one another in such a manner that they can be considered as
projections of a macroscopic stress tensor. Thus, the static equivalence or equilibrium
between the microlevel stress components and macrolevel stress tensor must be en-
forced by other means. This can be accomplished (as proposed in Ba+zant, 1984) by
application of the principle of virtual work, yielding

�ij =
3

2�

∫
�
�Nninj d� +

3
2�

∫
�

�Tr

2
(ni�rj + nj�ri) d�; (3.5)

where � is the surface of a unit hemisphere. Eq. (3.5) is based on the equality of the
virtual work inside a unit sphere and on its surface, rigorously justiCed by Ba+zant et al.
(1996).

The integration in Eq. (3.5), is performed numerically by Gaussian integration using a
Cnite number of integration points on the surface of the hemisphere. Such an integration
technique corresponds to considering a Cnite number of microplanes, one for each
integration point. A formula consisting of 28 integration points is given by Stroud
(1971). Ba+zant and Oh (1986) developed a more eLcient and nearly equally accurate
formula with 21 integration points, and studied the accuracy of various formulas in
di2erent situations.
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3.3. Formulation with static constraint

A formulation with static constraint equates the stress components on each mi-
croplane to the projections of the macroscopic stress tensor �ij. Once the strain compo-
nents on each microplane are updated by use of the microplane constitutive laws, the
macroscopic strain tensor is obtained again by applying the principle of virtual work.

The microplane components of stress are deCned as follows:

�N =Nij�ij; Nij = ninj; (3.6)

�M =Mij�ij; �L =Lij�ij: (3.7)

The complementary work equation, dual to Eq. (3.5), can be written as

�ij =
3

2�

∫
�
�Nninj d� +

3
2�

∫
�

�Tr

2
(ni�rj + nj�ri) d�: (3.8)

Again, volumetric and deviatoric quantities could be introduced:

�v = �kk=3; �D = �N − �V: (3.9)

Although they will not be needed in the model presented in the next section, �V and �D

are useful when the e2ect of hydrostatic pressure and volumetric–deviatoric interaction
must be accounted for explicitly.

3.4. Formulation with double constraint

It is possible and advantageous to formulate the microplane model with particular
material laws such that a kinematic constraint for the strains coexists with a static
constraint for the true stresses in the sense of damage mechanics (but of course not with
the actual stresses). When this happens the model is said to have a double constraint
and it satisCes simultaneously integral equations (3.5) for strains and Eq. (3.8) for true
stresses. Such a double constraint is useful in microplane damage formulations (Carol
and Ba+zant, 1997; Ba+zant et al., 1996, 2000).

3.5. Overall application

Fig. 5 shows schematically the pattern followed in order to update the stress or
strain in the microplane model approach. As seen, the microplane model takes a
one-dimensional constitutive law on each microplane and transforms this into a con-
sistent three-dimensional model. In this work, the static constraint is used. Thus, the
macroscale stress tensor is projected onto the 28 microplanes using Eqs. (3.6) and
(3.7). A 1-D constitutive law and kinetic law for SMAs (described in the next section)
is applied on each microplane along with a combined constraint on total martensite
fraction, producing the strains on each of the 28 microplanes. The macroscopic strain
is then determined numerically via integration of Eq. (3.8). The numerical procedure
is incremental and small increments in stress are taken at each step.
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Fig. 5. Patterns for stress or strain update in the microplane model with static or kinematic constraint.

4. Microplane constitutive model for SMA

The main objective of this paper is to formulate a microplane model for SMA
constitutive behavior. Several simpliCcations will be introduced, and reCnements of the
model as well as alternate approaches are left to future studies. In the present model,
no rate e2ect due to latent heat is considered, thermal expansion is neglected, and
the elastic modulus of the material is considered to be independent of the martensite
fraction. Furthermore, the volumetric response is taken as elastic and the e2ect of
the hydrostatic pressure on the martensitic transformation is not directly addressed.
However, the model will be able to take into account the e2ect of hydrostatic pressure
indirectly, achieved through a dependence of the microplane kinetic law on the normal
component of stress on each plane (see Section 4.4).

To implement the microplane model, one needs to prescribe on each plane only a
one-dimensional constitutive law, to describe the shear response in each of two chosen
reference directions normal to each other, namely those characterized by vectors m
and l. Note that the same constitutive law is used for both directions. Admittedly, this
approach introduces a certain directional bias within each microplane and invariance
with respect to rotation of vectors m and l does not hold. This diLculty could be
avoided by considering a 2-D yield surface for the resulting shear vector on each
microplane (which has been tried for concrete). However, by choosing vectors m and
l randomly on each microplane (and also at each integration point of the Cnite element
model), the biases e2ectively cancel out and the model is almost invariant in the overall
sense. This approach makes the model computationally simpler without any signiCcant
loss of accuracy.

The transformation of an SMA single crystal can be represented by a shear strain in-
duced by shear stress such that at the microstructural level only the shear transformation
strain contributes signiCcantly to the overall inelastic strain. The overall response of a
polycrystalline material, however, is a superposition of the shear contributions in the
many di2erently oriented single crystal grains. Given this picture of material response,
one can see two scales at which a microplane model for SMA constitutive behavior
could be applied: (1) at the microscale (single crystal) level, with each microplane rep-
resenting a habit plane of martensite; in this case, the microplane orientations would
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necessarily be dictated by the known crystallographic transformation planes, the mi-
croplane constitutive laws would be dictated by the known transformation strains for
each variant, and the overall model would simulate response of a SMA single crystal.
(2) At the macroscale (polycrystal) level, with the microplane model being used as
a consistent and eLcient approach to transition from a one-dimensional constitutive
model for shear of a polycrystal to a three-dimensional model for general loading;
in this case, the microplane orientations can be chosen for numerical eLciency. This
paper pursues this latter approach and the overall model simulates the response of an
SMA polycrystal.

Since the SMA transformation is fundamentally in shear at the microscale level, it
is appropriate for our macroscale model to utilize an SMA constitutive model valid
for shear deformation as the local constitutive law at the microplane level. When the
only source of inelastic deformation is the shear strain on the microplanes, as it is in
this case, the kinematic constraint poses some limitations to the material compliance
(Brocca and Ba+zant, 2000). We therefore use a statically constrained microplane model,
which calculates the stress components on each microplane from the stress tensor and
the local SMA constitutive law then provides the shear strain on each microplane. The
constitutive law used here is analogous to those that followed the initial proposal by
Tanaka in the 1980s outside the microplane context. In particular, the present model
will be adapted to the form of the constitutive law proposed by Brinson (1993), with
some simpliCcations.

4.1. SMA constitutive law

On each microplane, the shear deformation can be assumed to be governed in general
by the following 1-D law:

� − �0 =E(�− �0) + �(�− �0) + �(T − T0); (4.1)

where � is the shear stress and � is the shear strain in either of the directions m
and l; � is the martensite fraction, E is the elastic modulus, � is usually called the
“transformation tensor” (although a scalar quantity in 1-D), and � is related to the
thermal coeLcient of expansion for the material; (�0; �0; �0; T0) represent the initial
state of the material.

It has been shown (Brinson and Huang, 1996) that constitutive law (4.1) can be
more simply expressed as

�=E(�− �L�) + �XT; (4.2)

where �L is the maximum transformation strain. In the application here, we will neglect
the thermal expansion term, simplifying the expression further to

�=E(�− �L�): (4.3)

Note that here � represents the stress-induced martensitic fraction: the fraction of the
material that has been transformed by stress into a single martensitic variant and is
therefore associated directly with a transformation strain, not the overall percentage
of the material transformed to martensite. A distinction between temperature-induced
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Fig. 6. Critical stresses for transformation or martensite twin conversion as functions of temperature (from
Brinson). We are careful here to represent regions of transformation to stress-induced martensite (associated
with transformation strain) which cause the di2erence from the schematic in Fig. 2.

martensite, with multiple variants, and stress-induced martensite has been introduced
by Brinson (1993) and subsequently adopted by other researchers (e.g., Auricchio and
Sacco, 1999; Govindjee and Hall, 2000; Wu and Pence, 1998). This distinction is
necessary to have a constitutive equation that is valid for temperatures below Ms as
well as above.

4.2. SMA kinetic law

The constitutive equation (4.3) must be combined with a kinetic law, which governs
the evolution of � as a function of the thermomechanical loading history.

To describe the algorithm used to enforce the kinetic law, we will refer to the phase
diagram shown in Fig. 6, which gives the variation with temperature of the stresses
for transformation to detwinned (stress-induced) martensite or to austenite. The critical
values of stress for conversion of martensite variants below Ms are assumed to be con-
stant. In the following, we will explicitly consider only the [M ] region of the forward
martensitic transformation strip, but as noted in Bekker and Brinson (1998) [d] can be
treated in exactly the same fashion and simply accommodated. In the present study, we
need only the evolution equations for the calculation of the stress-induced martensite
fraction. The stress � in the phase diagram of Fig. 6 is either �L or �M in our model
and the critical stresses represented on the diagram are the shear stresses required for
stress-induced martensitic transformation on a microplane. Fig. 6 shows only the part
of the phase diagram for positive values of �. The complete diagram (shown in Fig.
9) is symmetric with respect to the temperature axis, to reKect the fact that there is
no preferential direction for the transformation strain on a given microplane.

Whenever a point representative of the thermomechanical state on a microplane
enters the shaded area on the diagram of Fig. 6, � must be updated. An eLcient and
reliable algorithm is needed to ensure that � is always continuous and bounded within
the interval [0; 1]. The thermomechanical path can be complex, as in the example
shown in Fig. 7, or it can consist of cycles. The algorithm employed to update � must
be able to consistently reproduce the path dependence of martensitic transformation.
The model proposed in the present study will adopt an algorithm analogous to that
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Fig. 7. A loading path � with several switching points indicated by solid circles. Current stress state used
to deCne distances �i0 and �i in the [A] strip indicated by x.

proposed by Bekker and Brinson (1998), who introduced a procedure based on the
geometry of the loading path on the stress–temperature phase diagram. For a rigorous
formulation of the kinetic law, see the original paper by Bekker and Brinson. Here we
will give only a brief presentation of the concepts on which the algorithm is based.

Fig. 7 shows a loading path � and a portion of the phase diagram. The normal
vectors ñA and ñM represent the directions of transformation change in the [A] and
[M ] strips, respectively. At any point on the path, !̃ is the vector tangent to �. A
transformation occurs whenever one of the following conditions is satisCed:

(a) !̃ · ñA¿0 in [A];

(b) !̃ · ñM¿0 in [M ]: (4.4)

A given loading path � can be subdivided into several segments (�n; n= 1; 2; : : :)
by introducing the switching points, deCned as the points where the direction or sense
of the transformation changes. The switching points can be points where � enters or
leaves the transformation strip in the direction of transformation (points A and C in
Fig. 7), or points inside the strip where the dot product between !̃ and ñA or ñM
changes sign (points B, D, E, F in Fig. 7). Along the portions of � between two
switching points, � is monotonically either increasing or decreasing (when moving in
a transformation direction, e.g. between C and D) or constant (when moving opposite
to the transformation direction, e.g. between D and E).

A global kinetic law for the whole path can be given as a sequence of local kinetic
laws for the portions �n. Bekker and Brinson present three ways to formulate the local
kinetic law, one of which is utilized here. We Crst deCne Y i =Y i(T; �); (i=A;M) as
the normalized distance between a given point on � inside a transformation strip and
the start boundary. Y i is given by the following expression:

Y i =
�i

�i0
; (4.5)
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where �i is the distance of point (T; �) from the start boundary, and �i0 is the width
of the strip. Fig. 7 illustrates these quantities for the case of the [M ] strip.

On a given portion �n between two switching points, � can then be updated using
the appropriate one of the following expressions:

�= �jfA(YA − YA
j ) (4.6)

when the point is inside the [A] strip, and

�= �j + (1 − �j)fM (YM − YM
j ) (4.7)

when the point is inside the [M ] strip.
In the forgoing expressions, quantities marked with subscript j are the values of

the martensite fraction and the normalized distance at the previous switching point
relevant to the current transformation, � is the stress-induced martensite fraction and
fj are interpolation functions. Here cosine interpolation functions are used, equivalent
to those originally developed by Liang and Rogers (1990):

fA(YA − YA
j ) = 1 − 1

2{1 − cos[�(YA − YA
j )]}; (4.8)

fM (YM − YM
j ) = 1

2{1 − cos[�YM − YM
j )]}: (4.9)

Note that Eqs. (4.6)–(4.9) are derived empirically and might need to be adapted when
used for di2erent SMA materials. The microplane model developed here is not depen-
dent on this particular form of the kinetic expressions and could easily accommodate
alternate kinetic laws.

4.3. Microplane implementation

The SMA microplane model is implemented using the statically constrained mi-
croplane formulation to project the macroscopic stress state onto each microplane (Eqs.
(3.6) and (3.7). The SMA constitutive and kinetic laws (Eqs. (4.3), (4.6)–(4.9)) are
used as the local constitutive law for shear on each microplane. Then the overall shear
strain is obtained using Eq. (3.8). The calculation is performed incrementally. There
are two additional items which must be addressed in computation: directionality of the
incremental transformation strain and consistency of the total martensite fraction.

First, to calculate the incremental inelastic transformation strain, we must ensure that
the sign of the strain is properly chosen. If the local stress state is found to be in the
martensitic transformation strip, and the change from the last step is in the direction
of transformation, the new value of � is computed and the incremental transformation
shear strain is in the direction of the corresponding shear stress. On the other hand,
if the local stress state is in the austenitic strip and meets the conditions for reverse
transformation, the incremental transformation strain is always in the direction that
reduces the existing transformation strain, regardless of the actual direction of stress.
Taking this detail into account is crucial in case of complicated loading histories. To
illustrate this point, let us consider, for example, the two thermomechanical loading
paths in Fig. 8, �1 (ABCDEF) and �2 (ABGHIL). � is either �L or �M on a given
microplane.
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Fig. 8. Example of how the loading path can a2ect the direction of the increment of inelastic strain.

If we assume that for both �1 and �2 the initial value of � is 0, points E and I
(where the two paths enter the [A] region) are characterized by the same value of
�, which is the value reached at point B, common to the two paths (B is the last
switching point before E and I). In the two segments EF and IL, � decreases by the
same amount, but in EF the incremental inelastic strain produced is in the direction
opposite to the direction of �, while in IL the incremental inelastic strain and � have
the same direction.

In addition, since � is computed independently on planes of di2erent orientations,
consistency of this model necessitates a constraint on the total value of �. Such a
constraint is expressed in the following form:

�i¿ 0;
N∑
i

�i6 1; (4.10)

where �i is the martensite fraction computed on the ith microplane, and N is the
number of microplanes used for the numerical integration of Eq. (3.5). Constraint
(4.10) is employed at each incremental step. When the total martensite fraction reaches
unity, transformation stops and elastic constitutive laws are used until the condition for
reverse transformation is achieved.

Examples with the microplane model for SMA response will be shown in the next
section.

4.4. E9ect of normal components of stress

Experimental tests on SMA have shown very early (Kulin et al., 1952; Burkart and
Read, 1953) a signiCcant asymmetry of the material response in tension and compres-
sion. As conCrmed later by numerous other studies, the compressive stress required for
stress-induced martensitic transformation is considerably higher than the tensile stress
at transformation for most alloy systems (e.g. Gall et al., 1998) (although the oppo-
site situation has been observed for several di2erent alloys (Sakamoto et al., 1979)).
Included in the sample calculations of Section 5 is one additional reCnement of the
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Fig. 9. Schematic representation of transformation from austenite to martensite.

microplane model for SMA, introduced in order to capture the asymmetry of response
in tension and compression. We will not address in detail the crystallographic source
of such a behavior. However, the underlying mechanism that causes this e2ect can
be intuitively understood in the following way. As shown schematically in Fig. 9, the
shear deformation corresponding to martensitic transformation can be accompanied by
a small displacement component (un) in the direction normal to the plane of shear. A
normal component of stress in the direction of displacement un will favor the marten-
sitic transformation, while a normal component of stress in the opposite direction will
oppose it.

The microplane SMA algorithm can be modiCed to account for the e2ect of this
normal strain. The simplest Crst approximation is to introduce a dependence of the mi-
croplane kinetic law on the normal component of stress acting on each microplane. At
this stage, only a simple method to accomplish this e2ect is proposed, in order to illus-
trate qualitatively reasonable results. We assume that the normal component of stress
will shift the transformation strips [A] and [M ] on the phase diagram, similar to an
approach taken by Tanaka et al. (1995a,b). This e2ect can be obtained by introducing
the following relationships:

�s
cr = �s

cr0 + %�N ;

�f
cr = �f

cr0 + %�N ;

As =As0 + &�N ;

Af =Af 0 + &�N ; (4.11)

where �s
cr0, �f

cr0, As0, Af 0, % and & are determined empirically. Note that the signs of %
and & determine whether the presence of normal stress will favor or oppose the trans-
formation and therefore depend on the sign of un. (Note that here un is introduced with
the only purpose of giving a physical justiCcation of parameters % and &, which are,
however, determined empirically and not through a precise model of their dependence
on un).

Introducing this simple dependence of the kinetic law on the normal stress renders
the model capable of reproducing the asymmetric material response in tension and in
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compression observed in experiments. The numerical example in Section 5.3 illustrates
this feature. In the uniaxial case, when the material is loaded in tension and in com-
pression, the normal components of stress on the microplanes change sign. Therefore,
the martensitic transformation will be easier in tension for a material characterized by
a positive un, while it will be easier in compression for a material characterized by a
negative un.

We conclude the presentation of the SMA microplane model with an observation on
the hydrostatic e2ect. It is recognized that although the thermoelastic transformation of
an SMA is nearly volume conserving, a small volumetric strain is observed in nearly all
cases. This volumetric strain causes the material response to depend on the hydrostatic
stress level (Gall et al., 1998) which must be considered in a three-dimensional model.
The dependence of the kinetic law on the normal stress given by Eq. (4.11) introduces
automatically a dependence of the overall material response on the hydrostatic pressure.
Applying hydrostatic pressure corresponds in fact to applying a uniform normal stress
on every microplane and therefore it has an e2ect in the present model. This is a clear
example of one of the advantages of using the microplane model: triaxial phenomena
can be naturally reproduced, due to the interaction of the microplanes. The numerical
examples in Section 5.4 show how the presence of a pre-applied hydrostatic pressure
a2ects the value of deviatoric stress required to trigger the martensitic transformation.
At this stage, we do not directly address the hydrostatic e2ect in quantitative terms.
Rather, we limit ourselves to showing in a qualitative way that the microplane approach
o2ers a solid basis for also tackling this aspect of SMA. For an accurate quantitative
model of the e2ect of triaxial stress states on the crystallographic transformation, it
will probably be necessary to introduce a reCned form of relations (4.11) such as

�s
cr = �s

cr0 + %�D + '1�V;

�f
cr = �f

cr0 + %�D + '1�V;

As =As0 + &�D + '2�V;

Af =Af 0 + &�D + '2�V; (4.12)

where the e2ect of the volumetric stress is decoupled from the e2ect of the devia-
toric parts of the normal stress components on the microplanes, in order to give the
model enough Kexibility to take into account both the normal strain associated with
the martensitic transformation on a given plane and the overall volume change. Full
development and implementation of relationships such as Eq. (4.12) are left to future
work.

5. Numerical examples

This section presents some basic and a few advanced numerical tests of the developed
SMA microplane model. In these tests, we will consider a polycrystalline shape memory
alloy characterized by the following material properties, derived from the data given
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Fig. 10. Pseudoelasticity and shape memory e2ect for Nitinol by the microplane model.

by Dye (1990) and Liang (1990) for a Nitinol alloy (Ni55Ti):

E = 52×103 MPa (shear modulus);

Mf = 9◦C; Ms = 18:4◦C; As = 34:5◦C; Af = 49◦C;

CM = 8
2 MPa=◦C; CA = 13:8

2 MPa=◦C;

�cr
s = 100

2 MPa; �cr
f = 170

2 MPa;

�L = 0:06: (5.1)

The foregoing values are obtained by adapting to our model the phase diagram deCned
in terms of uniaxial quantities and used by Brinson (1993) for numerical computation
with a one-dimensional model. The SMA microplane model requires a phase diagram
in terms of shear quantities on the microplane as discussed in Section 4.2. Such a phase
diagram can be obtained from that employed for a tensile model by considering that
in the uniaxial case the maximum resolved shear is half of the absolute value of the
uniaxial stress. Therefore, the factor 1=2 must be introduced to modify the parameters
for the phase diagram, yielding the values in Eq. (5.1). The variation of elastic modulus
with martensite fraction is neglected here for the sake of simplicity.

5.1. Uniaxial thermomechanical loading histories

Fig. 10 shows tests of pseudoelasticity and shape memory e2ect for Nitinol alloy
(Ni55Ti). The two curves are in good qualitative and quantitative agreement with the
results of Dye (1990) and Liang (1990) and similar results for other shape memory
alloys. Fig. 11 shows the agreement between the model and some experimental results
presented by Liang (1990) for T = 50◦C and −10◦C. All the previously developed
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Fig. 11. Experimental and numerical results for the same material considered in Fig. 10, at T=50
◦

and −10
◦
.

Fig. 12. More complex uniaxial loading histories. Loop attractors for cycling loading.

three-dimensional SMA models can of course reproduce 1-D behavior adequately. The
real test of a model comes in more diLcult loading situations which follow.

5.2. Cyclic loading histories

Figs. 12 and 13 show the prediction of material response for more complex uniaxial
loading histories. Fig. 12 refers to the case in which the material, after loading, is
partially unloaded and then subjected to cyclic loading. The model can capture the ex-
istence of closed-loop attractors for sustained cyclic loading (Ivshin and Pence, 1994a;
Bekker and Brinson, 1998). The same closed loop is approached, from two opposite
sides, in the two cases shown in Fig. 12(a) and (b). For comparison, the basic loading–
unloading behavior with complete martensitic transformation is also reproduced in the
Cgure. In Fig. 13, the material is subjected to partial unloading and then stress cycling
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Fig. 13. Stress cycling with gradually diminishing range of stress.

with gradually diminishing range of stress, accurately reproducing material response
(Plotnikov et al., 1988).

5.3. Material response in tension and compression

A very important response seen experimentally for SMAs is the tension–compression
asymmetry. Such asymmetry, which is caused by di2erent variants being activated un-
der tension and compression, can become exaggerated in the case of textured poly-
crystalline materials. Here we do not attempt to capture the microscale phenomena,
but illustrate that the kinetics in the SMA microplane model can easily be modiCed
to accommodate asymmetry. We implement the simple technique explained in Section
4.4. In our example, the material is loaded in tension up to a value of stress at which
all the austenite is transformed into martensite. Then the loading is reversed and the
material is loaded in compression. Fig. 14 shows the material response for such a
loading history as measured experimentally by Lim and McDowell (1999) in a test
on Ni–Ti alloy with the near equiatomic composition (49:20 at% Ti–50:80 at% Ni).
The same Cgure also shows the response obtained with the microplane model. In this
example, the microplane model accounts for the e2ect of the normal component of
stress on the microplanes (with %= 0:16, &= 0:02). The material parameters have been
adjusted slightly from those listed in Eq. (5.1) to Ct the experimental data for this
di2erent alloy.

5.4. E9ect of hydrostatic pressure

As discussed in Section 4.4, when the kinetic law is made to depend on the nor-
mal component of stress on each plane, the overall material response is automatically
made dependent on the applied hydrostatic pressure. Fig. 15 illustrates this e2ect by
comparing stress–strain curves for three cases in which the material is subjected to
di2erent values of hydrostatic pressure. A hydrostatic pressure �h

V is applied and then
the material is loaded and unloaded with an additional tensile stress, while keeping
�h

V constant. To easily compare the three curves obtained for di2erent values of �h
V
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Fig. 14. Stress–strain response during uniaxial cycling (Lim and McDowell, 1999) and numerical result with
the microplane model.

Fig. 15. E2ect of hydrostatic pressure.

we plot �1–�h
V versus �1–�h

1, where �h
1 is the strain in the x1 direction due to �h

V. Fig.
14 clearly shows that the deviatoric stress required to trigger stress-induced marten-
sitic transformation in tension is higher when the hydrostatic pressure is applied to the
material beforehand. Such a result is generally consistent for SMA materials shown to
have a positive volume change upon transformation. Without the normal stress depen-
dence in the kinetic law (from Eq. (4.11)) a hydrostatic pressure applied in advance
has no e2ect and the three curves would be identical. As previously mentioned, this
example shows only qualitatively one possible way to handle the e2ect of hydrostatic
pressure in the microplane model. For materials with texturing or other e2ects causing
inconsistent trends with hydrostatic pressure (Gall et al., 1998; Jacobus et al., 1996) a
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Fig. 16. Overall shear stress vs. overall shear strain, for a material previously subjected to tensile pre-loading.

di2erent approach would be required. An accurate quantitative tuning of this e2ect is
beyond the scope of this paper.

5.5. 3-D cases: nonproportional loading histories

Fig. 16 shows the results calculated for an SMA subjected to tensile pre-loading
and then to shear at constant tensile stress. These results are obtained with the basic
microplane model developed, without the additional modiCcations to the kinetic law
made in Section 4.4 (and Sections 5.3 and 5.4). A nonproportional two-dimensional
loading history as in Fig. 16 is considered to show an apparent deviation from normality
for the SMA microplane model. After the tensile load is applied, an associated Kow rule
based on a macroscale J2 potential would predict an elastic tangential shear sti2ness
regardless of the amount of tensile pre-stress. In the results obtained with the microplane
model, the tangential shear sti2ness is reduced if the shear stress is applied after the
material is loaded in tension into the inelastic region.

The three curves in Fig. 16 correspond to the response in shear for three di2erent
levels of pre-stress. Curve a is obtained for the case in which the pre-loading is such
that the martensitic transformation does not yet occur and the tangential shear modulus
is therefore the elastic shear modulus. For curves b and c, the amount of pre-applied
stress is enough to induce martensitic transformation. When the direction of incremental
applied stress is changed to shear, the resolved incremental component of shear stress on
some microplanes will have the same direction as in the Crst stage of loading, in which
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the tensile stress is applied. Therefore, the material will continue transforming on such
microplanes and the overall macroscopic response will be inelastic and characterized
by a reduced tangential shear sti2ness. Pre-applying compression would produce an
analogous behavior.

The model thus appears to be qualitatively suitable to describe the deviation from
normality observed in Lim and McDowells’ (1999) experiments, called the vertex
e2ect. The ability of the 3-D SMA model to capture this experimentally observed
behavior is an important novel feature.

6. Conclusions

The existing constitutive models for SMA are usually developed following either a
phenomenological or a micromechanical approach. The SMA microplane model pro-
posed in this paper represents an ideal compromise. By considering the possibility of
martensitic transformation on several planes of di2erent orientation, and by obtain-
ing the overall transformation strain as a superposition of shear-induced transformation
strains, the new model can reproduce the actual physical behavior of SMA materials
in a closer way than other phenomenological models. Nevertheless, the model can be
implemented by simply considering 1-D phenomenological constitutive laws on each
plane, thus remaining conceptually simpler than a micromechanics-based model. Note
again that the model presented here is a macroscale, polycrystalline SMA model: the
microplanes provide a mechanism to build a more consistent 3-D SMA model from
a robust 1-D SMA model, but do not represent actual crystallographic transformation
planes.

As seen in Section 4, the microplane model provides a very eLcient computational
framework for extending a 1-D phenomenological model to the 3-D case. The numerical
examples considered show the predicted material response to be in good qualitative
agreement with the behavior observed experimentally. Importantly, we have considered
not merely simple uniaxial loading with complete transformation, but also complex
loading histories. A robust kinetic law is used, to allow easy modiCcation as needed. It
is illustrated that asymmetric tension–compression and hydrostatic loading e2ects can be
accommodated by including a dependence of the microplane kinetic law on the normal
component of stress on the microplanes (or on the volumetric stress). Some SMA
models based on the thermodynamics framework would require substantial changes to
capture these features.

A very important feature of SMA transformation under multiaxial loading is that
J2 or Drucker–Prager models with associated Kow rules are not obeyed in the case
of nonproportional loading. It is shown here that the model developed within the mi-
croplane framework exhibits apparent deviations from the normality rule (with vertex
e2ect) in the case of nonproportional loading and therefore captures the mechanical
behavior of SMAs realistically.

Finally, it should be noted that the SMA microplane model provides a useful platform
for further advances. First, the macroscale polycrystalline model proposed here can be
further reCned on the basis of experimental data and can be utilized in large-scale
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numerical computations (e.g., Cnite element analyses). Second, the microplane model
o2ers an excellent opportunity to address the single crystal behavior on the microscale.
The microplanes can be chosen to coincide with the martensitic plate habit planes and
the shear directions can be chosen to be aligned with the known transformation direc-
tions on those habit planes. Although this microscale approach may require signiCcant
reformulation of the microplane theory, the success of the present macroscale model
suggests the microplane approach as quite an appealing device for capturing complex
multidimensional single crystal behavior more realistically than before.
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