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Lateral Confinement Needed to Suppress Softening
of Concrete in Compression

Ferhun C. Caner1; and Zdeněk P. Bažant, F.ASCE2

Abstract: Suppression of softening in the load-deflection diagram of concrete-filled tubular columns and spiral columns is prop
serve as a design criterion helping to avoid the size effect and explosive brittle character of collapse. To this end, the recently d
‘‘tube-squash’’ tests, in which a short concrete-filled steel tube is squashed to about a half of its original length and allowed to b
conducted with tubes of different wall thicknesses. A finite-strain finite element computer code with a microplane constitutive m
used to simulate the tests. After its verification and calibration by tests, the code is used to analyze nonbuckling concrete-fille
columns and spirally reinforced columns. It is found that softening in the load-deflection diagram can be fully suppressed on
reinforcement ratio~ratio of the tube volume or spiral volume to the total volume of column! exceeds about 14%. If mild softening
allowed, the reinforcement ratio must still exceed about 8%. These ratios are surprisingly high. If they are not used in design, o
to pay attention to the localization of softening damage, accept the~deterministic! size effect engendered by it, and ensure safety mar
appropriate for protecting against sudden explosive brittle collapse. This is of particular concern for the design of very large co
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Introduction

As is well known, the compression failure of concrete colum
without strong lateral confining reinforcement is very brittle. T
cause of brittleness is strain-softening damage of concrete u
compression. The damage typically consists of a band of a
splitting microcracks which does not form over the whole cro
section of a column simultaneously but propagates during fai
laterally~Bažant and Xiang 1997; Bazˇant and Planas 1998!. Since
the compressive stress is reduced by the band of microcracks
zones adjoining the band are getting unloaded during propaga
and the stored strain energy released by unloading drives
propagation. The rate of energy release increases with the s
ture size, which causes the brittle compression failure to exhib
size effect, i.e., the larger the column, the lower is the aver
stress in the column cross section at ultimate load.

To capture these phenomena, the column must be anal
according to the energy release criteria of fracture mechanics.
only way to avoid them, as is well known, is to subject concr
to lateral confinement by a sufficiently strong circular steel tu
or spiral. The question is, how strong. In mechanics terms,
leads us to ask:
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What is the minimum lateral confinement needed to comple
suppress postpeak softening of the load-deflection diagram
thus eliminate the size effect?

This vital question has not yet been answered. The answe
this question, which is sought in this paper, is proposed to se
as an objective rational criterion for the design of column co
finement.

The answer cannot be obtained on the basis of the cur
codified approach to the design of reinforced concrete colum
The current design practice relies on the plastic limit des
philosophy, which is inapplicable when the load-deflecti
diagram exhibits postpeak softening. This current prac
ignores the fact that, due to propagation of strain-softening d
age, the material strength at different points of the cross sec
does not get mobilized at the same time, and that the progres
nature of collapse gets more pronounced as the column size
creases.

The answer to the foregoing question must be obtained b
detailed simulation of the damage process and supported by
able experiments. The so-called ‘‘tube-squash’’ test developed
Bažant et al.~1999! and analyzed by finite elements by Brocc
and Bazˇant ~2001a!, may be used for the present purpose. In t
test, concrete-filled tubes are squashed to about one half of
original length and allowed to bulge laterally. Conducting te
for various tube thicknesses, one can extract information on
effect of various levels of confinement.

A realistic nonlinear triaxial constitutive model with strain
softening damage must be employed to analyze and interpre
tube-squash tests. To simulate the behavior of concrete in
tube, the latest version of the microplane constitutive model
beled as version M4~Bažant et al. 2000a,b; Caner and Bazˇant
2000!, is used, and the geometrical nonlinearity of large strain
taken into account. Model M4, including its large-strain versio
was originally developed for simulating the penetration of m
siles into concrete walls and the ground shock effects on bu

-
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hardened structures~Bažant et al. 2000b!. The model has been
calibrated and verified by numerous test data for the most b
types of tests~Caner and Bazˇant 2000!.

The steel in the tube is simulated by a microplane mode
well. This model~Brocca and Bazˇant 2001a,c! is equivalent to the
classical hardeningJ2 plasticity for the case of proportional~ra-
dial! loading paths. However, unlike that classical theory, t
model can correctly reproduce the vertex effect for nonprop
tional loading paths with principal axes rotating against the m
terial. This is a very important effect in the case of great dev
tions from proportional loading, which characterize the lar
deformations of the steel tube. Although this effect was brough
light long ago by the tests of Gerard and Becker~1967!, the
vertex effect has generally been ignored in finite-element sim
tions with constitutive models such as theJ2 plasticity, expressed
in terms of tensors and their invariants. Such models miss
vertex effect.

The finite strains that occur in the steel tube are handled
step-by-step loading by the updated Lagrangian approach~e.g.,
Zienkiewicz and Taylor 1991; Crisfield 1997!. A special finite-
strain formulation of the microplane constitutive law, combini
nonconjugate Green’s Lagrangian strain and back-rotated Ca
stress, is used for concrete~Bažant et al. 2000a!. The reason is
that, among all strain measures, Green’s Lagrangian strain te
is the only one for which the resolved strain vector on the m
croplane fully defines the stretch and shear angle on that pl
and that, among all the stress tensors referred to the initial~unde-
formed! configuration, the back-rotated Cauchy stress is the o
one for which the resolved stress vector on the microplane f
defines the forces acting on that microplane. For a detailed ju
fication and demonstration that the laws of thermodynamics
not violated, see Bazˇant et al.~2000a!.

After verifying and calibrating the finite-strain finite-eleme
code by the tube-squash tests, the same computer code wil
ther be applied to tubular columns with other wall thicknesses
long ~nonbulging! sections of tubular columns, and to spiral co
umns.

Aside from the fracture mechanics aspects of postpeak be
ior and size effect, a major progress in the understanding of
capacity of tubular concrete-filled columns has been achie
during the last several decades, beginning with Furlong~1967!.
For a detailed historical account, see Schneider~1998!, who
found slender tubular columns to lack composite action and s
little or no improvement in ultimate strength, while short colum
did exhibit composite action and improved ultimate streng
Roeder et al.~1999! studied the bond between the concrete c
and the steel tube in columns in which all the axial load w
applied on the core so as to produce slip against the confi
tube. They found the average bond strength to vary between
and 3.25 MPa for diameter-to-wall thickness ratiosD/t,50.
Schneider~1998! also analyzed the effect of steel wall thickne
on column yield strength and concrete core confinement, u
the orthotropic material model for concrete from the theo
manual for version 4.8 of the commercial finite-element co
ABAQUS ~1989!. This is an associated elastic-plastic mod
using a simple form of yield surface of Mohr-Columb type wr
ten in terms of the first two invariants of the stress tensor. Ho
ever, this and other models of the classical plasticity type are
realistic, especially not for very high-confining pressures a
highly nonproportional loading with vertex effects due to rotati
principal stress axes.
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Experimental Investigations

The results of the previously reported~Bažant and Planas 1998!
tube-squash tests with steel wall thickness oft512.7 mm~0.5 in.!
were used as a part of the data base in the present study. T
previous tests were complemented by further similar tests of
erwise identical specimens with tubes of two different sma
wall thicknessest, No. 1 with t54.76 mm~3/16 in.! and No. 2
with t51.59 mm ~1/16 in.!. For all the three thicknesses, th
tubes had the same inner diameterD538.1 mm~1.5 in.! and the
same lengthL 88.9 mm~3.5 in.!. The steel ratiosr corresponding
to these three wall thicknesses were 64.0, 36.0, and 14.8%~r 5
ratio of the steel area to the combined area of steel and concre
the cross section, in the initial undeformed configuration!. The
tubes were made of a highly ductile steel alloy ASTM No. 10
with Young’s modulusE546,852 MPa~6,800 ksi! and Poisson’s
ratio n50.25. The filling of the tubes was a normal strength co
crete with maximum aggregate size of 9.52 mm~0.375 in.!,
uniaxial compressive strengthf c8541.37 MPa ~6 ksi!, and
Young’s elastic modulusE524,115 MPa~3,500 ksi!; its Pois-
son’s ratio is taken asn50.18. The larger size aggregates used
concrete consisted of dolomite, granite, and basalt with trace
schist. River sand~No. 2 sand! and Type I Portland cement wer
used. Filled with concrete, and ends without sealing, the sp
mens were cured in a fog room for 28 days.

The concrete-filled tubes were compressed axially under
placement control in a servo-controlled closed-loop MTS test
machine until the steel tube fractured, which happened when
tube length was reduced to about one half. This custom-built
chine had an extremely stiff frame with a load capacity of 4.4
MN ~one million pound!, although the highest load needed
squash the specimens No. 1 was only 18% of this value.
specimens were loaded at a constant axial displacement ra
0.0254 mm/s~0.001 in./s!. By virtue of very strong confinemen
in the steel tube, shear angles over 70° and axial compres
strains of the order of 50% were achieved in concrete without
breakup~Bažant et al. 1999!.

Fig. 1 shows the test setup. The axial forces and displacem
along with the maximum lateral expansions of the steel tube
recorded during the test. Linear variable differential transform
~LVDTs!, visible on the sides of the specimen, were used to m
sure deformations~their range was625.4 mm or61 in.!. After
the experiment, some of the specimens have been cut into
halves axially and inspected visually for damage distribution

Fig. 1. Test setup for axial compression of specimens, showing
two sides linear variable differential transformers~LVDT gauges!
OURNAL OF ENGINEERING MECHANICS / DECEMBER 2002 / 1305
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the concrete core. Figs. 2 and 3 show the cut sections of sp
mens No. 1 and No. 2 after the test. In specimens of type N
~thicker wall!, no softening damage~cracking! is visually de-
tected, except for a barely discernible shear band initiating fr
the loading platen. On the other hand, in specimens No. 2~Fig. 3!,
completely developed shear bands are observed, and the con
close to the steel around the midsection of the specimen is se
have suffered microcracking.

Finite-Element Analysis with Microplane Model

The finite-element analysis of the axisymmetric problem is p
formed using an explicit dynamic finite-element driver which w
originally developed by Brocca and Bazˇant ~2001a,c! ~since the
problem is static, the technique of dynamic relaxation is applie!.
Because the steel is subjected to very large strains, the fi
element driver is coded using the updated Lagrangian form
tion.

Based on examining the axial cuts of deformed specimen
perfect contact with no slip is assumed to exist between the sp

Fig. 2. Typical specimen of type No. 1 cut axially after experime
for visual inspection and digitization of its cross-section geometr

Fig. 3. Typical specimen of type No. 2 cut axially after experime
for visual inspection and digitization of its cross-section geometr
1306 / JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2002
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men and the loading platens. On the other hand, the cuts sh
slip between the deforming tube and concrete at the interf
Separation is seen to occur as well—at the highly curved conc
folds of the inner-tube surface. Besides, separation from
inner-tube surface must also occur during initial elastic load
because the steel tube has a much higher Poisson ratio~0.25 com-
pared to 0.18!. The slip and separation are modeled by insert
into the finite-element mesh a very thin layer of transversely i
tropic finite elements that have a very low-shear modulus and
very weak for tension~albeit not for compression! in a direction
normal to the interface.

The nonlinear triaxial behavior of concrete is described
microplane Model M4, which is the latest in a long sequence
microplane models developed at Northwestern University si
1983 ~see Bazˇant et al. 2000b, with a detailed historical review!.
Model M4 was calibrated with a wide range of experimental d
~Caner and Bazˇant 2000!, encompassing all the basic test types
use. Model M4 has only two pairs of adjustable~free! input pa-
rameters, each of which can be easily calibrated separately, u
the given values of stress and strain at a uniaxial compres
peak load and the pressure volume curve for hydrostatic load
These input parameters, with the notation used in Caner and
žant 2000!, were identified for the present concrete ask1

50.0004,k25350,k3510, andk45150.
The general idea underlying the microplane model, which w

proposed by G. I. Taylor~1938! for plasticity of polycrystalline
metals and is used today in various sophisticated Taylor mo
for metals~reviewed in Brocca and Bazˇant 2001c!, is to charac-
terize the material behavior not by tensors but by the stress
strain vectors acting on planes of various orientation in the m
rial, named later~in 1984! the ‘‘microplanes.’’ The contributions
from the microplanes of all possible orientations at a given po
of the material are then suitably combined to obtain the c
tinuum response at that point. At Northwestern Univ., several n
concepts were introduced to extend and adapt this idea to
crete ~in detail, see Bazˇant et al. 2000b; Brocca and Bazˇant
2001c!.

The strain vector on a microplane is assumed to be the pro
tion of the continuum strain tensore i j . This is called the kine-
matic constraint between the microplanes and the continuum~and
is to be distinguished from the static constraint used in the Ta
models for metal plasticity, in which microplane stress vector
the projection of the continuum stress tensors i j ). Thus, the nor-
mal and shear components of the microplane strain vector ar

Fig. 4. Determination of critical wall thickness of steel tube usin
experimental data points on minimum effective tangential stiffnes
axial direction observed in test~point marked Kim’s is taken from
Bažant and Planas 1998
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eN5e i j ninj , eL5e i j ~ l inj1ni l j !/2, eM5e i j ~minj1nimj !/2
(1)

Here, the Latin lower-case subscripts refer to Cartesian coo
natesxi ( i 51,2,3); repeated indices imply summation;ni unit
normal to the microplane;eL ,eM5shear strains on the microplan
in the directions of two mutually orthogonal unit vectorslW andmW
both normal tonW , which are generated in advance~randomly, to
minimize the directional bias!. It is useful to also introduceeV

5ekk/35volumetric strain for small strains, which is the same
all microplanes. While a static constraint has been used from
outset in the Taylor models for hardening plasticity of met
~Brocca and Bazˇant 2001c!, the kinematic constraint was intro
duced for concrete in 1984 because it was found necessar
ensuring model stability when strain softening takes place.

A volumetric-deviatoric split of the microplane constitutiv
relation is introduced by setting

eN5eD1eV (2)

where«V5volumetric strain. One purpose of this split is to ca
ture the fact that uniaxial compression tests terminate with s
ening while hydrostatic and perfectly confined compression t
do not, and another purpose is to achieve the full thermodyna
cally admissible range~21,0.5! of Poisson’s ratio. For the mi
croplane stresses, the analogous volumetric-deviatoric split,sN

5sD1sV , is valid only for the linear elastic range, in which th
elastic response is defined on the microplane level as

sD5EDeD , sV5EVeV , sL5ETeL , sM5ETeM (3)

whereeN , eV , eL , andeM are obtained using the kinematic co
straint given by Eq.~1! andeD by Eq. ~2!. The elastic moduli on
the microplane are given byED5ET5E/(11n) and EV

5E/@3(122n)# where E is Young’s modulus andn Poisson’s
ratio ~see Bazˇant et al. 2000b!. In the inelastic range, the const
tutive laws on the microplane are defined using strain-depen
yield limits, called the stress-strain boundaries, having the gen
form

sN5FN~eN!, sD5FD~eD!, sV5FV~eV!,

sL5FT~eL!, sM5FT~eM !, (4)

The elastic stress increments on the microplane, as calcu
from Eq. ~3! are not allowed to reach beyond the correspond
stress-strain boundary given in Eq.~4!. This is ensured by making
a drop of stress to the boundary value at constant strain.

Finally, equilibrium of the stress tensor and the microplan
stresses is enforced in a weak sense by using the principl
virtual work over a unit hemisphere, which yields the stress ten

s i j 5
3

2pEV
FsDS ninj2

d i j

3 D1
sL

2
~ni l j1nj l i !

1
sM

2
~nimj1njmi !GdV1sVd i j (5)

whered i j 5Kronecker delta. The integration in Eq.~5! must be
performed numerically. To this end, a Gaussian quadrature w
finite number of planes over a unit sphere is used. The m
efficient Gaussian quadrature formula is the 21-point form
whose errors in the hardening range are not graphically disc
ible and in the strain-softening range lead to a scatter ban
maximum width about 5%~Bažant and Oh 1986!. Other less ef-
ficient formulas with higher accuracy are also available~Stroud
1971!. The algorithms for the numerical implementation of th
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model in the small strain range using explicit dynamic or impli
finite-element drivers were presented in Bazˇant et al.~2000b!.

A finite-strain formulation suitable for the Model M4 wa
originally developed in Bazˇant et al.~2000a!. In that formulation,
the back-rotated Cauchy stresss5RTsR and Green’s
Lagrangian straine5(FTF2I )/2, which arenot work conjugate,
are introduced as the stress and strain measures, respec
(F5RU5deformation gradient,R andU are the material rotation
and the right stretch tensor, respectively, andI5unit tensor!.

The back-rotated Cauchy stress is chosen as the stress me
because it is the only stress measure referred to the initial c
figuration of the material that allows a physical interpretation
its components on the microplane, so that internal friction, yi
limit, tensile cracking, and pressure sensitivity can have th
proper physical meanings. The reason for choosing Green’s
grangian strain as the strain measure is that it is the only st
measure whose components on a microplane suffice alon
characterize the finite shear angle and normal stretch~defined,
e.g., in Ogden 1984; or Bazˇant and Cedolin 1991, Chap. 11! on
that microplane, independently of the strain components on o
microplanes. Even though these stress and strain measures a
work conjugate, nonnegativeness of the energy dissipation is
sured because~1! the stress drop to the stress-strain boundary
made in the numerical algorithm at constant strain; and~2! be-
cause the elastic part of the strain tensor is so small that it
cause no negative energy dissipation.

An important point in the finite-strain version of Model M4 i
the way of calculating the volumetric strain. This strain may n
be expressed aseV5ekk/3, because of geometrical nonlinearit
However, instead of the classical multiplicative decompositi
one may simplify analysis by introducing an additive decompo
tion of volumetric and deviatoric strains, with the volumetr
Green’s Lagrangian strain tensor defined as

eV5e01e0
2/2, with e05~J21!/3, J5detF (6)

~Bažant 1996!. The fact that makes this simplification possible
the smallness of the volumetric strain, which in concrete ne
exceeds 3%.

For data-fitting purposes, it is convenient~Bažant 1996! to
introduce the finite strains on the microplane in such a way t
their ranges be~2`,`! and that the normal strain posse
compression-tension symmetry, as for small strains. Accordin
the microplane normal and shear strains are redefined as

EN5 ln~122eN!/2

gNL5~ tanuNL!/25@~112eN!~112eL!/eL
224#21/2 (7)

gNM5~ tanuNM!/25@~112eN!~112eM !/eM
2 24#21/2

In this regard, the part of the small-strain algorithm given in B
žant et al.~2000b! that evaluates the stresses from the constitut
law needs to be modified for finite strains. To this end, af
obtaining the microplane normal and shear strains by projec
the Green’s Lagrangian strain tensor onto each microplane u
Eq. ~1!, the microplane normal and shear strains must be ca
lated using Eq.~7!. The microplane volumetric strain is then d
termined from Eq.~6!. Finally, the back-rotated Cauchy stre
tensor must be calculated from Eq.~5! using the nonconjugate
microplane stresses evaluated from Eq.~4!.

Since the microplane model for concrete is a local continu
damage model, one must, in general, either use it in the sens
the crack band model, with the proper element size determine
a material property, or introduce a nonlocal generalization~Ba-
OURNAL OF ENGINEERING MECHANICS / DECEMBER 2002 / 1307
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žant and Ozˇbolt 1992; Bazˇant et al. 1996!. The correctness of the
element size may be verified by comparison with the experim
tal data for uniaxial~unconfined! compression tests.

For a short initial period of loading, strain softening alwa
develops because the steel tube, due to its higher Poisson
expands laterally more than does the concrete core. But it doe
only until the inelastic volume expansion of the concrete c
begins. From that moment on, the tube provides confinemen
the core. The tube prevents the strain-softening zone from de
oping into a localized damage band running across the speci
which would inevitably give rise to size effect. For most of t
test, strain softening is suppressed by high-confining press
except in thin tubes. But even in that case, a specimen-cros
damage band does not develop~Bažant and Ozˇbolt 1992! because
the specimen is too short for its interior to be unaffected by
constraining effect of friction at the ends.

Consequently, even though the finite-element size was 0.4
0.74 mm~which is quite small, and would generally be too sm
for the aggregate size used!, it was not necessary to implement
nonlocal approach~of course, if the load peaked and then d
creased at increasing displacement, the nonlocal approach w
be requisite!. That a nonlocal concept was unnecessary was v
fied by the fact that the computations with different element si
gave about the same results~note that this could not have been th
case if there were any pronounced localizations!. Another justifi-
cation is provided by the absence of size effect, which is c
firmed ~1! computationally, by Bazˇant and Ozˇbolt’s ~1992! mi-
croplane simulations of similar specimens of sizes in the ra
1:2:4 ~the smallest having the height 54 mm!; and~2! experimen-
tally, by van Mier’s~1986! tests data for specimens 100-mm lon
which are shown in Eq.~7! along with their fits by the presen
microplane model.

The steel tube was originally modeled by Brocca and Bazˇant
~2000a! using a microplane-based model that was made equ
lent for proportional loading toJ2 plasticity. The advantage o
such a model over the classicalJ2 plasticity is that the strong
vertex effect experimentally observed in metals for highly no
proportional loading with rotating principal stress axes~Gerard
and Becker 1957! can be simulated realistically. In this model,
yield surface is introduced on each microplane, as follows:

f 5sD
2 1sL

21sM
2 2k2 (8)

wheresD5sN2sV andsV5skk/3 ~repeated indices imply sum
mation!. When f <0, the response on the microplane is linea
elastic as given by Eq.~3!. The microplane strain components
Eq. ~3! are the projections of the strain tensor, i.e., a kinema
constraint applies. When the state of stress becomes such tf
.0, plastic flow occurs. The incremental effective plastic str
on each microplane is defined as

Deeff
p 5A12

k2ky

3ET12Ep
(9)

where, by data fitting, Ep5E(0.0058810.085e220eeff
p

), k
5 f (sD ,sL ,sM).ky , and ky5radius of current yield surface
When Deeff

p .0, the yield surface expands as described by
increment

Dk5
1

A3EpDeeff
p

(10)

Finally, the stresses on the microplane are determined by ra
return to the expanded yield surface
1308 / JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2002
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sD←sDS 12
1

k

A3

2
ETDeeff

p D
sL←sLS 12

1

k

A3

2
ETDeeff

p D (11)

sM←sMS 12
1

k

A3

2
ETDeeff

p D
The bond between the steel tube and the concrete core is

perfect. There can be separation and also tangential slip a
interface. To simulate such phenomena, a layer of transver
isotropic elastic elements, with a thickness of only 1% of the c
radius, is inserted into the finite-element mesh at the interfa
For axisymmetric geometry, the linearly elastic stress-strain r
tion for a transversely isotropic material with respect to the pr
cipal material axes can be expressed, in Voigt notation, as

H e1

e2

e3

2e12

J 5F 1/E1 2n12/E1 2n12/E1 0

2n12/E1 1/E2 2n12/E2 0

2n12/E1 2n12/E2 1/E2 0

0 0 0 1/G12

G H s1

s2

s3

t12

J
(12)

For correct simulation of the observed deformed shape of
specimens as well as the measured load-displacement curve
lateral expansion, the following assumed characteristics wor
well for this interface layer:n1250.18, Young’s moduliE1

524.00 MPa~3,500 ksi! andE25241.2 MPa~35 ksi!, and shear
modulusG12510.22 MPa~0.1483 ksi!. Experience with data fit-
ting suggests that the separation at the interface is not very
portant for simulating the present tests, but the tangential
~modeled as a shear strain of the thin layer! is crucial.

Determination of Critical Confining Reinforcement

The occurrence of strain softening at a point of the mater
which often causes a bifurcation of the response path, is indic
by the loss of positive definiteness of the tangential stiffness
sorE5ds/de of the material~manifested by the loss of positive
ness of the first eigenvalue ofE!. However, checking these con
ditions would overtax the computer and is actually superfluou
it is known from experiments that the specimen behaves i
stable manner and the response exhibits no symmetry-brea
bifurcation. For the tube-squash tests, this can be assumed s
In that case, the check for strain softening and stability loss ca
greatly simplified; it then suffices to check only the positivene
of the effective tangential stiffness in the direction of local loa
ing, defined by

Et5
Ds:De

De:De
(13)

~e.g., Bazˇant and Cedolin 1991!. If Et.0, the material is locally
stable and hardening; ifEt,0, it is strain softening; and ifEt

50, the material is locally at the limit of stability. Note that if, o
the other hand, the absence of bifurcation could not be sa
assumed, one would need to check the positiveness ofEt for all
the possible incrementsDe from the given state at a given poin
~which is equivalent to a check of positive definiteness ofE!.

The purpose of encasing concrete columns in tubes is to
sure ductility. Strictly speaking, ductility is equivalent to the a
sence of unstable strain softening~or unstable fracture growth!.
Determining the minimum necessary confinement steel ratio
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suring the absence of strain softening provides, in the strict se
the answer to the question raised in the Introduction. Such a s
condition, however, appears reasonable only for spiral column
is excessively strict for tubular columns.

In tubular columns, the concrete core will always undergo li
ited temporary strain softening right at the start of inelastic late
expansion of concrete, at a load much smaller than the load
pacity at which the effect of local softening on ductility an
strength is nil. The reason is that the higher Poisson ratio of s
will cause the elastic lateral expansion to be initially higher in
tube than in the concrete core. Therefore, it appears more ap
priate to determine the critical reinforcement ratio from the co
dition that the load-deflection diagram would exhibit no softe
ing.

The fitting of experimental results indicates that the propo
finite-element model simulates very well the axial loa
displacement response, as shown in the Figs. 5 and 6. Fur
more, Figs. 7 and 8 show that the complex deformed shapes
dicted by the finite-element calculations are quite accur
despite the fact that a possible slip between the platens of
machine and the top or bottom surfaces of the specimen are
glected. These figures also show the contours of equalEt<0
normalized by Young’s modulusE of concrete. The contours con

Fig. 5. Experimental data on axial load versus axial strain
specimen type No. 1, and their fits by finite element analysis

Fig. 6. Experimental data on axial load versus axial strain
specimen type No. 2, and their fits by finite element analysis
J
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firm that the concrete rehardens after the initial temporary st
softening caused by a higher-elastic Poisson effect in steel~Fig.
9!.

Having calibrated the finite-element model by experimen
data, the simulations of the response for other tube thickne
and lengths can be trusted.

The critical wall thicknesstcr corresponding to the critical con
fining reinforcement ratio achieving perfect ductility may be co
sidered as the minimum necessary to guarantee that the effe
tangential stiffnessKt along the response path would remain no
negative during the entire loading.

Fig. 4 shows the minimum values ofKt determined by tests a
a function of steel tube thicknesst. The plot also includes a poin
with negativeKt which corresponds to the standard~unconfined!
compression test of a cylinder (t50). This value has been calcu

Fig. 7. Experimental deformed shape of typical specimen type No
and its prediction by finite element analysis. Also shown are conto
of equalKt<0

Fig. 8. Experimental deformed shape of typical specimen type No
and its prediction by finite element analysis. Also shown are conto
of equalKt<0 normalized by Young’s modulusE of concrete.
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lated by means of Model M4. The critical thicknesstcr for which
Kt50 is seen to lie between the first two points in the plot.

The value oftcr might be most easily estimated by linear i
terpolation between the first two points; this yieldstcr51.513
mm, which corresponds to the critical steel ratiorcr514.2%. To
check whether a linear interpolation is justified, two intermedi
points ~marked ‘‘computational’’ in Fig. 4! were calculated with
Model M4. They reveal that the diagram ofKt versust in the
range between the first two points is curved approximately a
parabola. Using a parabolic arc to interpolate between the
two points, one gets an improved estimate of the critical thi
ness,tcr51.523 mm, which is however nearly the same as befo
This critical thickness corresponds approximately to steel r
rcr5As /A514.2%. It may be emphasized that the experim
tally determined critical thickness of the tube matches the va
predicted numerically using the microplane Model M4, witho
any adjustment in the prediction model.

Any subcritical tube thickness will cause the load-deflect
diagram of a tubular column to exhibit softening. This will cau
explosive brittle response under gravity loading, and will inevi
bly engender a size effect.

The occurrence of softening is confirmed by the simulatio
with M4 of load-displacement diagrams of a tubular column e
ment with steel ratiosr5rcr514.2%, r57.9%, andr54.0%,
shown in Fig. 10. These diagrams show that the load decrease
to softening is relatively small for steel ratio 7.9%, and so in t
case the brittleness of failure and the size effect will be relativ
mild. On the other hand, the load decrease is large for steel
4.0%, and a high brittleness of failure and a pronounced
effect must be expected in this case.

These comparisons suggest that, in structural enginee
practice, subcritical steel ratios may not cause much harm as
they are not less than roughly 0.5rcr . Whether the reduction fac
tor should be 0.5 or some other value may have to be decide
the testing of full size columns.

The diagram of the average axial stress in the concrete
versus its average strain can be easily determined by separ
the contributions of concrete and steel to the axial resistanc
the column. The results of such separation are shown, for var
reinforcement ratios, in Fig. 11. As mentioned before, regard
of the steel ratio in the tubular column, the concrete core is s

Fig. 9. Axial nominal stresss5Fc /Ac
0 ~normalized by unconfined

compression strengthf c8541.37 MPa! versus axial straine5DL/L0

of concrete during tube squash tests, as simulated by finite elem
with Model M4 for different reinforcement ratios
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to always exhibit softening for at least a part of the loading p
cess, because of a difference in Poisson ratios of steel and
crete. Consequently, the bond between steel and concrete
broken early in the test and a gap develops between concrete
steel. So, the concrete is initially loaded by uniaxial stress
lacks confinement. Only after reaching its uniaxial strength, c
crete expands inelastically at decreasing axial force, until a c
tact with the steel tube is reestablished and a large enough co
pressure is developed. It is remarkable that this does not ha
until the average axial strain reaches a surprisingly large valu
about 25%. Only after that, concrete begins hardening again
remains doing so for the entire test if the steel ratio exceeds
critical value. The reason that the activation of the tubular c
finement requires such a large axial strain is that, after steel
gins to yield, its plastic deformation occurs at constant volum
which means that the effective Poisson ratio for the yielding tu
is not 0.25 but 0.5.

The softening of the concrete core cannot be eliminated,
matter how thick the tube. The only way to do so would be
make the tube from a different material, with a Poisson ratio
larger than that of concrete. This can of course be achieved
fiber composites.

Simulations of Large Tubular and Spiral
Reinforced-Concrete Columns

Having verified and calibrated the computational model, one
use it with much greater confidence to predict the behavior
similar situations. This has been done to study the respons
long tubular columns that can expand without bulging, uniform
along their length, and the response of long spirally reinforc
concrete columns.

For uniformly expanding tubular columns, the simulations
the response diagrams of axial load versus axial and lateral st
for different steel ratiosr are shown in Fig. 12. Note that, for thi
case, the critical reinforcement ratio obtainedrcr516.1% is
slightly larger than that obtained for the fixed end test specime
Obviously, the reason is that, in the tube-squash test, the fric
under the plates helps to provide additional confinement, an e
that is missing in a long column.

Fig. 13 shows, for different steel ratiosr, the computed dia-
gram of the axial nominal stresss5Fc /Ac

0 ~with Fc5axial force

ts

Fig. 10. Axial load versus axial strain as predicted by finite eleme
analysis with Model M4 for critical and subcritical reinforceme
ratios
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in concrete core!, normalized by the unconfined~uniaxial! com-
pressive strengthf c8541.37 MPa, versus the axial straine
5DL/L0 of the concrete core of a uniformly expanding tubu
column. The results for different reinforcement ratios are sho
From the figure, it can be inferred that the behavior of the c
crete core is very similar to that of the short tube in the tu
squash test~Fig. 9!, i.e., that the effect of friction under the pla
ens is small. The concrete core again softens during the in
stage of loading, for the same reason as already discussed.

To simulate spirally reinforced columns, their concrete co
is discounted, as is standard according to design codes. The s
reinforcement is not modeled individually. Rather, it is assum
dense enough to be uniformly smeared, equivalent to a con
ous tube consisting of an orthotropic material that has a z
stiffness in the direction of column axis. The inclination of t
spiral with respect to the planes normal to the column axis
assumed small and negligible.

For programming convenience, the uniaxial stress-strain
for the spiral in the circumferential direction has been formula
by using again the microplane model forJ2 plasticity in a three-

Fig. 11. Experimental data obtained by van Mier~1986! from
unconfined compression tests with specimen lengthL5100 mm, and
its simulation using rectangular finite elements of dimensio
0.4 mm30.74 mm

Fig. 12. Axial load versus axial and lateral strains, as computed
finite elements for uniformly expanding tubular columns with vario
reinforcement ratios
l

al

-

dimensional finite-element simulation of the axial extension o
steel bar. The computed one-dimensional stress-strain diag
has been fit with convenient simple functions, which were th
implemented in the finite-element program for the spiral colum

Fig. 14 shows the results of the uniaxial tension simulat
~circular symbols! of the spiral bar and its fits by two differen
curves, one in the linear range and the other in the nonlin
range. The intersection of these curves, marked in the figure
considered as the initial uniaxial yield stress.

Once this stress-strain relation for the spiral bar is availa
the pressurep in the concrete core produced by hoop tensile str
s in the spiral of current radiusR is readily obtained asp
5st/R wheret is the thickness of the hoop steel elements hav
the same volume as the spiral. From this internal pressure,
nodal forces are easily computed. The hoop strain correspon
to the hoop stresss according to the one-dimensional constitutiv
law can be computed from the radial displacements.

Fig. 15 shows the results of the finite-element simulations
spiral-reinforced columns for various reinforcement ratiosr in
terms of the diagrams of the nominal axial stress versus the a

Fig. 13. Axial nominal stresss5Fc /Ac
0 ~normalized by unconfined

compression strengthf c8541.37 MPa! versus axial straine5DL/L0

of concrete, as computed by finite elements for uniformly expand
tubular columns with different reinforcement ratios

Fig. 14. Stress-strain diagram for confining steel in one dimensi
as obtained by uniaxial tension simulation with finite eleme
~circular symbols!, and its fits by two different curves~solid lines!
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or lateral strain. There are two interesting points that can be
ferred from this figure, namely,~1! the spirally reinforced col-
umns with steel ratiosr>rcr never soften, as opposed to th
tubular columns; and~2! the critical reinforcement ratiorcr

514.2% is less than that for uniformly expanding tubular colu
but roughly equal to that for the tube-squash test.

As an explanation of Point 1, note the following differen
between the spirally reinforced and tubular columns: As the sp
carries no axial load by itself, it does not expand due to a
Poisson effect in the steel but only because the lateral expan
of concrete forces it to expand. Consequently, the concrete co
confined all the time and exhibits no initial softening.

Conclusions and Implications for Design

1. By performing a series of tube-squash tests on concr
filled tubes of different wall thicknesses, it is demonstra
that a fully ductile inelastic response can be ensured onl
the ratio of the cross-section area of steel to the whole cr
section area is at leastrcr514%, which represents a critica
value of the steel ratio.

2. Verification and calibration of state-of-art material mod
for steel and concrete by the tube squash test makes it
sible to predict the inelastic behavior of tubular and spi
columns with higher confidence.

3. A large-strain finite-element model previously developed
the analysis of the tube-squash test is extended to ha
uniformly expanding tubular columns and spiral-reinforc
columns. It is found that the critical steel ratio for tubul
columns isrcr516%, which is only slightly larger than tha
for the tube-squash test in which the tubes have frictio
support under the platens and bulge in the middle.

4. The concrete core of tubular columns always softens prio
large inelastic lateral expansion. This is explained by
Poisson effect, causing that the expansion of the compre
tube to be initially larger than that of concrete core. T
concrete core in this type of column does not harden until
average axial strain exceeds 25%.

5. For spirally reinforced columns, the critical steel ratio
found to bercr514%, which is about the same as that f

Fig. 15. Axial nominal stresss5Fc /Ac
0 ~normalized by unconfined

~uniaxial! compression strengthf c8541.37 MPa! versus axial strain
e5DL/L0 of concrete, as predicted by finite elements for spir
reinforced columns with different reinforcement ratios
1312 / JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2002
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the tube-squash test. Furthermore, it is shown that for
>rcr , the concrete core confined by the spiral reinforcem
neversoftens, except locally.

6. The aforementioned minimum steel ratios needed to c
pletely prevent softening response, i.e., to achieve pla
behavior, are significantly higher than the steel ratios c
rently used in design. If mild softening is allowed, the r
quired steel ratio is roughly half as large~about 8%!, which
is still distinctly higher than the steel ratios currently in us

7. The results imply that, for the currently used steel rati
plastic-limit analysis is not the best design concept. If t
steel ratios used in designing tubular and spiral columns
not increased, one needs to pay attention to the localiza
of softening damage, accept the size effect engendered b
and ensure safety margins high enough for protecting aga
explosive brittle behavior. This is of particular concern f
very large columns.

8. A disadvantage of the steel tube is that it separates f
concrete filling. A disadvantage of spiral is that it does n
carry a part of the axial load. An orthotropic fiber compos
tube with a negligible Poisson ratio is free of both disadva
tages, and thus represents a better design.
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