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4. THEORETICAL MODELING
AND SCALING

During the 1980s and 1990s, a host of experiments on the
micrometer and submicrometer scale, including microinden-
tation [15], microtorsion [29, 30], and microbending [28],
revealed a strong size effect on the yield strength and hard-
ening of metals. Similar size effects were observed also
in metal matrix composites with particle diameters in the
micrometer and submicrometer scale [255, 256]. The clas-
sical plasticity theories cannot predict these size effects
because they involve no material characteristic length. To
explain them, several strain gradient theories were devel-
oped. The first one was a phenomenological theory by Fleck
and Hutchinson [30] based on the existence of a poten-
tial. This theory was later extended and improved in several
versions [31, 257, 258] while retaining the same basic struc-
ture. Another strain gradient theory which received consid-
erable attention was the mechanism-based strain-gradient

(MSG) theory [33, 35] derived under certain simplifying
assumptions from the concept of geometrically necessary
dislocations. Based on numerical experience, this theory was
recently improved as the Taylor-base nonlocal (TNT) theory
[259], and the improvement consisting in the form of strain
gradient dependence of the hardening function made the
theory conform to a revision proposed by Bažant [260, 261]
on the basis of scaling analysis. Another noteworthy theory
was the Acharya and Bassani strain gradient plasticity the-
ory based on the idea of lattice incompatibility [262, 263],
which represented a generalization of the incremental the-
ory of plasticity. The asymptotic characters of these strain
gradient theories were analyzed recently and it was found
that the small-size asymptotic size effect predicted by some
of the theories is excessive and unreasonable [259–261].
It might seem that the small-size asymptotic behavior of

gradient plasticity is irrelevant because it is approached only
at sizes below the range of validity of theory, for which the
spacing of the geometrically necessary dislocations (about 10
to 100 nm) and the crystal size are not negligible, and other
physical phenomena, such as surface tension, gradation of
crystal size, and texture, intervene. However, knowledge of
both the small-size and large-size asymptotics is very use-
ful for developing asymptotic matching approximations for
the intermediate range, for which the solutions are much
harder to obtain. For the purpose of asymptotic matching,
the asymptotic behavior must be physically reasonable even
if attained outside the range of validity of the theory (this
has been demonstrated in the modeling of cohesive fracture
when the small-size plastic asymptote is often approached
only for specimen sizes much smaller than the inhomogene-
ity size, e.g., the aggregate size in concrete [260]).
The present chapter reviews and summarizes several

recent papers in which it was shown that the main theories
proposed in the past, including couple stress theory, stress
and rotation gradient theory, MSG, TNT, and the Acharya
and Bassani theory, suffer from excessive asymptotic size
effect and some exhibit an unrealistic shape of the load-
deflection curve. Simple adjustments of all these theories
suffice to achieve reasonable asymptotic behavior and thus
to make asymptotic matching approximations feasible.
The main strain gradient theories will be briefly intro-

duced and their asymptotic analysis presented by Bažant and
Guo [264] will be outlined. After that, a simple asymptotic-
matching approximation, suitable for predictions of yield
limit and plastic hardening on the micrometer scale, will be
presented.

4.1. Strain Gradient Theories

First we will consider the Fleck and Hutchinson phe-
nomenological strain gradient theory [29, 30] and its succes-
sive versions. In these theories, the effect of strain gradient
tensor is incorporated into the potential energy density func-
tion, in a manner similar to the classical theories of Toupin
[265] and Mindlin [266] in which only linear elasticity was
considered. A higher order stress tensor needs to be intro-
duced in these theories to provide a work conjugate to the
strain gradient tensor, and the boundary condition of classi-
cal solid mechanics also needs to be modified as well. The
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classical J2 deformation theory of plasticity (i.e., Hencky-
type solid strain theory) is chosen as the basis of strain gra-
dient generalization.
The Gao and Huang MSG theory [33, 35] does not use the

potential energy approach (and actually, potential energy
even does not exist in that theory). Rather, this theory is
based on the Taylor relation between the shear strength and
dislocation density. A multiscale framework is used to intro-
duce the higher order stress tensor and to establish the vir-
tual work balance. Numerical simulations showed that while
the higher order stress tensor is affected by the material
length characterizing the size of the framework cell (called
the mesoscale cell), the stress and strain tensors are almost
unaffected. This observation triggered a reformulation in the
form of the TNT theory [259], in which the strain gradient is
numerically simulated as a nonlocal variable and the higher
order stress disappears. This reformulation coincided with
a revision proposed by Bažant [260, 261] for entirely differ-
ent reasons—namely, the observation that the presence of
couple stresses, dictated by the use of a strain gradient ten-
sor as an independent kinematic variable, causes an exces-
sive small-size asymptotic size effect, indicating that couple
stresses should be removed from the formulation.
The Acharya and Bassani strain gradient theory [262, 263]

differs significantly from the previous theories. It represents
a generalization of incremental plasticity rather than total
strain theory. The effect of a strain gradient is considered by
changing the tangential modulus in the constitutive relation,
while the framework of classical plasticity theory remains.

4.1.1. Fleck and Hutchinson Theories
The first phenomenological strain-gradient theory developed
by Fleck and Hutchinson [29, 30] is called the couple stress
theory (denoted by CS). The subsequent modification [31] is
called the stretch and rotation gradients theory (denoted by
SG). Since the main idea of these two theories is the same,
we will consider them jointly. To simplify the problem, only
incompressible materials will be considered and the elastic
part will be ignored because it is negligible compared to
large plastic deformation of metals.
In the classical work of Toupin [265] and Mindlin [266],

and dealing only with the linear elasticity case, the strain
gradient is introduced into the strain energy density W as

W = 1/2(!ii!jj + �!ij!ij + a18ijj8ikk + a28iik8kjj
+ a38iik8jjk + a48ijk8ijk + a58ijk8kij (27)

where ( and � are the usual Lamé constants, !ij = �ui: j +
uj: i�/2 is the strain, 8ijk = uk: ij is the component of strain
gradient tensor �, and an is the additional elastic stiffness
constant of the material. The sum of the first two terms on
the right-hand side is the classical strain energy density func-
tion, while the other five terms are the contributions of the
strain gradient tensor. Based on the strain energy density
defined as (27), the Cauchy stress �ij can be defined as a
work conjugate to !ij (i.e. �ij = ;W/;!ij). A higher order
stress tensor �, work conjugate to the strain gradient tensor
�, needs to be defined as <ijk = ;W/;8ijk. The strain energy
W defined by (22) represents a linear elastic constitutive

relation. There are many ways to extend it to a general non-
linear plastic material. Fleck and Hutchinson [31] chose to
do it by defining a new variable, a scalar called the combined
strain quantity, E, which involves both the strain tensor and
the strain gradient tensor, to replace the effective strain in
the J2 theory. W is then assumed, for a general nonlinear
plastic material, to be a nonlinear function of E. To define
E, the strain gradient tensor � needs to be decomposed into
a hydrostatic part �H and deviatoric part �′:

8Hijk = �'ik8jpp + 'jk8ipp�/4 �′ = �− �H (28)

Due to incompressibility, we have !′ij = !ij , 8′
ijk = 8ijk. Fur-

thermore, �′ is decomposed into three orthogonal parts �′ =
�′�1� +�′�2� +�′�3� such that 8′�m�

ijk 8
′�n�
ijk = 0 when m �= n [31];

the three invariants 8′�n�
ijk 8

′�n�
ijk are used to define E,

E =
√
2!′ij!

′
ij /3+ >218′�1�

ijk 8
′�1�
ijk + >228′�2�

ijk 8
′�2�
ijk + >238′�3�

ijk 8
′�3�
ijk

(29)

where >i are three length constants which are given different
values in different version of the theory.

For CS: >1 = 0 >2 = >CS/2 >3 =
√
5/24>CS (30)

For SG: >1 = >CS >2 = >CS/2 >3 =
√
5/24>CS (31)

Here >CS is called the material characteristic length. If the
strain gradient part is ignored, scalar E becomes identical to
the effective strain ! used in the classical plasticity theories.
Now the strain energy density W can be expressed as a

function of E instead of ! as W = W�E�; thus the Cauchy
stress tensor � and the higher order stress tensor � can be
expressed as

�ij =
;W

;!ij
= dW

dE

;E

;!ij
= 2!ij
3E

dW

dE
(32)

<ijk =
;W

;8ijk
= dW

dE

;E

;8ijk

= dW

E dE

(
>218

′�1�
lmn

;8
′�1�
lmn

;8ijk
+ >228′�2�

lmn

;8
′�2�
lmn

;8ijk
+ >238′�3�

lmn

;8
′�3�
lmn

;8ijk

)

= >2CSCijklmn8lmndW

E dE
(33)

Here Cijklmn is a six-dimensional constant dimensionless ten-
sor [264]. Since the values of >i are different in CS and SG
theories, the tensor C will also be different in these two the-
ories, although for each of them C is a constant tensor, that
is, independent of !, �, and >CS. Because of the existence of
higher order stress, the field equations of equilibrium must
be generalized as

�ik: i − <ijk: ij + fk = 0 (34)

where fk is the body force.
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4.1.2. Gao and Huang MSG Theory
and TNT Theory

As the first strain gradient theory based on geometrically
necessary dislocations, the MSG theory is a generalization
of the incremental theory of plasticity [267]. In the MSG
theory, the definition of strain gradient tensor 8ijk = uk: ij is
the same as it is in the Fleck and Hutchinson theories, but
the definition of higher order stress is different. It is defined
by virtual work balance in a multiscale framework. The final
constitutive relation reads [33, 260, 261, 264]

�ik=K'ik!nn+
2�
3!
!′ik <ijk= l2!

(
K

6
8Hijk+�?ijk+

�2Y
�
Aijk

)
(35)

where

?ijk =
1
!
�Bijk −Cijk� Aijk = f �!�f ′�!�Cijk (36)

! =
√
2!′ij!

′
ij /3 8 =

√
8′
ijk8

′
ijk/2

� = �Y
√
f 2�!�+ l8

(37)

and

Bijk = D28ijk + 8kji + 8kij − �'ik8ppj + 'jk8ppi�/4E72
Cijk = D!ik8jmn + !jk8imn − �'ik!jp + 'jk!ip�8pmn/4E

× !mn/54!2
8Hijk = �'ik8jpp + 'jk8ipp�/4 8′

ijk = 8ijk − 8Hijk

(38)

where K is the elastic bulk modulus. Equation (37) defines
the new hardening rule of the material in which �Y is the
yield stress; ! and � are the effective strain and stress; 8
is the effective strain gradient, which is proportional to the
density of geometrically stored dislocations; �Y f �!� repre-
sents the classical plastic hardening function; l is the mate-
rial intrinsic length (similar to parameter >CS used in the
Fleck and Hutchinson theories [29–31]); !′ij = !ij − !nn/3 is
the deviatoric strain; 8Hijk is the volumetric part of strain gra-
dient tensor; and l! is the size of the so-called “mesoscale”
cell which is expressed by Gao et al. [33] as

l! = ��G/�Y �b (39)

Here G is the shear modulus, b is the Burgers vector,
and � is an empirical factor whose value is suggested to
be between 1 to 10 [33]. The equilibrium equations are the
same as (29). It is also interesting to consider a more general
hardening relation,

� = �Y Df q�!�+ �l8�pE1/q (40)

where p and q are positive exponents; and MSG theory cor-
responds to the case p = 1, q = 2.
When the MSG theory is used in numerical simulations,

the results show that when the value of l! is changed, the
stress and strain do not change much, although the higher
order stress does. This means that the existence of the
higher order stress offers no advantage [35] (aside from
the fact that they make the asymptotic scaling problematic

[261, 264]). Upon noticing this fact, the MSG theory has
been replaced by the TNT theory, in which the higher order
stress tensor is removed.
In the TNT theory, the strain gradient is not an inde-

pendent variable but a nonlocal variable defined by numer-
ical integration. The gradient term !ij: k can be numerically
approximated in a nonlocal form as [259]

!ij: k =
∫
Vcell

D!ij �x+ G�− !ij�x�EGm dV
(∫
Vcell

GkGm dV
)−1

(41)

in which Vcell is a sufficiently small representative cell sur-
rounding point described by x. To simplify the integration,
Vcell can be chosen as a cube centered at x, and then the
strain gradient 8ijk can be expressed as

8ijk =
1
I!

∫
Vcell

D!ikGj + !jkGi − !ijGkE dV with

I! =
∫
Vcell

G21 dV = 1
12
l5! (42)

where l! is the size of the cube. Furthermore, one may intro-
duce the volumetric part �H and the deviatoric part �′ of
tensor �, and the effective strain gradient invariant 8 =√
8′
ijk8

′
ijk/2, which is identical to that defined in the MSG

theory. Because the strain gradient tensor does not function
in (40) as an independent kinematic variable, we need not
define the corresponding work-conjugate higher order stress
tensor. For p = 1, q = 2, the constitutive relation is [259]

�ik = K'ik!nn +
2�
3!
!′ik

where

� = �Y
√
f 2�!�+ l8 (43)

Since the new higher order stress is absent, the equilibrium
equation of the TNT theory is the same as in the classical
theory (i.e., �ij: i + fj = 0).

4.1.3. Acharya and Bassani Theory
The Acharya and Bassani strain gradient theory is a general-
ization of the classical incremental plasticity theory, in which
the strain gradient is assumed to affect only the instanta-
neous modulus. The strain gradient is considered to be a
measure of lattice incompatibility and is introduced only
through the second-order tensor as [262, 263]

�ij = ejkl!pil: k (44)

where ejkl is the alternating symbol and !p is the plastic
strain. Introducing the invariant:

� =
√
2�ij�ji (45)

Acharya and Bassani modified the classical J2 flow theory as
follows [262, 263]:

<=
√
� ′
ij�

′
ij /2 <̇= <̇cr=h�Hp:��Ḣp (46)

!̇
p
ij=�Ḣp/2<�� ′

ij �̇ij=Cijkl�!̇kl− !̇pkl� Hp=
√
2!pij!

p
ij/3

(47)
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Here the instantaneous hardening modulus h depends not
only on plastic strain invariant Hp but also on plastic strain
gradient invariant �. An example of this function is [262,
263]

h�Hp: �� = h0
(
1+ H

p

H0

)N−1[
1+ l2��/H0�

2

1+ c�Hp/H0�2
]1/2

(48)

where l is the material intrinsic length, and h0, H0, c, and N
are positive material constants.
There exist other strain gradient theories, but generally

they are similar to one of the theories introduced here. For
example, the Chen and Wang [268, 269] strain gradient the-
ory is similar to the Fleck and Hutchinson theories.

4.2. Asymptotic Analysis of Strain
Gradient Theories

For the purpose of scaling analysis, we need to consider geo-
metrically similar structures of different sizes. This means
that the structures are also similarly loaded. It is obvious
that the strain gradient theories must reduce to the clas-
sical plasticity theory when the structure size is very large.
To discuss the asymptotic cases, it is necessary to introduce
dimensionless variables. Diverse sets of such variables could
be chosen but only one is easy to interpret,

x̄i = xi/D ūi = ui/D !̄ij = !ij
8̄ijk = 8ijkD f̄k = fkD/�N

(49)

where D is the characteristic length of the structure, and �N
is the nominal strength. For geometrically similar structures
the strain distribution may often be assumed to be the same,
and then x̄i, ūi, !̄ij , and 8̄ijk will be size independent; that
is, they will be the same for structures of different sizes.
Consequently, the asymptotic behavior of the strain gradient
tensor must be 8ijk ∝ 1/D.

4.2.1. Asymptotic Analysis of the Fleck
and Hutchinson Theories

Scaling and Size Effect The Fleck and Hutchinson strain
gradient theory can be used to generalize various partic-
ular forms of classical constitutive relations for plasticity.
A stress–strain relation in the form of a general power law
relation may be chosen as an example, in which the strain
energy density is [29–31]

W = n

n+ 1
�0E0

(
E

E0

)�n+1�/n
(50)

where �0, E0, and n are positive material constants. For
hardening materials, n ≥ 1; typically n ≈ 2–5 for normal
metals. According to (32) and (33), the constitutive relation
then reads

�ik =
2
3
�0

(
1
E0

)1/n
E�1−n�/n!ik (51)

<ijk = �0
(
1
E0

)1/n
>2CSE

�1−n�/nCijklmn8lmn (52)

It is now useful to define dimensionless variables:

<̄ijk = <ijk/�E0>CS� �̄ij = �ij/�0 �E = E
8̄
�l�

ijk = 8′�l�
ijk D �l = 1: 2: 3�

(53)

Then the constitutive relation can be expressed as

�̄ik =
2
3

(
1
E0

)1/n
�E�1−n�/n!̄ik (54)

<̄ijk =
(
1
E0

)1/n >CS
D

�E�1−n�/nCijklmn8̄lmn (55)

The equilibrium equation (29) can be rewritten as

;i�̄ik −
>CS
D
;i;j <̄ijk +

�N
�0
f̄k = 0 (56)

where ;i = ;/;x̄i = derivatives with respect to the dimen-
sionless coordinates. Substituting (49) and (55) into (56),
one obtains the dimensionless field equation of equilibrium
in the form

2
3

(
1
E0

)1/n
;i
(�E�1−n�/n!̄ik)− (

>CS
D

)2( 1
E0

)1/n
× ;i;j

(
Cijklmp�E�1−n�/n8̄lmp

) = −�N
�0
f̄k (57)

Following Bažant [260, 261] and Bažant and Guo [264],
we may simplify the analysis by replacing the surface frac-
tions with body forces applied in a very thin boundary layer,
the thickness of which tends to zero. This ensures that all
the boundary conditions are homogeneous. When the struc-
ture is sufficiently large, >CS/D → 0, <̄ijl vanish, according
to (55), and the equilibrium equations reduce to the classi-
cal equilibrium equations, as required. The combined strain
quantity, E, reduces to the classical effective strain because
the strain gradient part can be ignored compared to the
strain part. Then the strain energy density function takes the
normal form as a function of the strain only.
As proposed by Bažant and Guo [264], it is interesting

to look at the opposite asymptotic character of the theory
when the structure size tends to zero, >CS/D→ �. At first,
the dimensionless combined strain quantity can be rewritten
as

�E =
√
2!′ij!

′
ij /3+

(
>218̄

′�1�
ijk 8̄

′�1�
ijk + >228̄′�2�

ijk 8̄
′�2�
ijk + >238̄′�3�

ijk 8̄
′�3�
ijk

)/
D2

∝ D−1 for >CS/D→ � (58)

If one defines a size-independent dimensionless variable

�H =
√
>218̄

′�1�
ijk 8̄

′�1�
ijk + >228̄′�2�

ijk 8̄
′�2�
ijk + >238̄′�3�

ijk 8̄
′�3�
ijk

/
>CS (59)

the asymptotic behavior is seen to be

�E ≈ >CS
D

�H for >CS/D→ � (60)
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Substituting (60) into (57), the asymptotic form of the equi-
librium equation reads

2
3

(
>CS
D

)�1−n�/n( 1
E0

)1/n
;i
(�H�1−n�/n!̄ik

)− (
>CS
D

)�1+n�/n
×
(
1
E0

)1/n
;i;j

(
Cijklmp �H�1−n�/n8̄lmp

) = −�N
�0
f̄k (61)

After multiplying this equation by �D/>CS��n+1�/n and tak-
ing the limit of the left-hand side for >CS/D→ �, one gets
the following asymptotic form of the equilibrium equations:

;i;j
(
Cijklmp �H�1−n�/n8̄lmp

) = Jf̄k
with J = �E 1/n

0
�N
E0

(
D

>CS

)�n+1�/n
(62)

Because the left-hand side of the foregoing equation, as
well as the dimensionless body force f̄k, is independent of
size D and because the boundary conditions are homoge-
neous and thus size independent, the parameter J must be
size independent. Thus, upon solving �N from (62), one
finds that the small-size asymptotic scaling law is

�N = �0J�E−1/n
0

(
>CS
D

)�n+1�/n
(63)

or

�N ∝ D−�n+1�/n (64)

For plastic hardening materials, we have 1 < �n+ 1�/n ≤
2. Although the result (64) applies only to the special case
of strain energy density function given by (50), the analyt-
ical technique used here is general. It is even suitable to
the strain energy density function defined directly in terms
of strain and strain gradients, rather than as the combined
strain quantity. For example, if the strain energy density
function is defined as (27) for the case of linear elasticity,
a similar analysis can be made and it is found that the size
effect law for very small sizes reads [264]

�N ∝ D−2 (65)

This also shows that (64) is quite general because (65) can
be regarded as a special case of (64) in which the strain
hardening exponent n = 1.

Small-Size Asymptotic Load–Deflection Response
For some special cases (e.g., the pure torsion of a long thin
wire or the bending of a slender beam), the symmetry con-
ditions require displacement distribution to remain similar
during the loading process. For such cases, the dimension-
less displacement ūk can be related to a single parameter,
w, and characterized by displacement profile ûk as ūk = wûk
[260, 261, 264]. Since ûk is dimensionless, it must be inde-
pendent of the size D. Displacements ūk evolve during the
proportional loading process while the distribution profile
remains constant. Thus the parameter w can be considered
as the displacement norm, �ūk�. It follows that the strain,
strain gradient, and combined strain quantity are all propor-
tional to w. Therefore, �E can be similarly represented as
�E = wÊ, where Ê is a size independent profile function, and

w can be regarded as the deflection magnitude. Substituting
this relation into the dimensionless constitutive relation (54)
and (55), one can easily get

�̄ik = w1/n�̂ik <̄ijk = wl/n<̂ijk (66)

where �̂ik and <̂ijk are both size independent profile func-
tions. Substituting these relations into dimensionless equilib-
rium equation (56), one finds that the load-deflection curve
must have the form

f̄k ∝ w1/n (67)

This relation is similar to the traditional strain–stress rela-
tion derived from the strain energy density function (50).
The reason the load deflection curve begins with a vertical
tangent is that the initial elastic response is assumed to be
negligible.

Example One important example is the microtorsion of a
thin wire, for which a strong size effect was demonstrated
[29–31] and described by strain gradient theories. The strain
energy density function W is defined as W = �EN+1/�N +
1�. Compared with (50), one finds that N = 1/n. The radius
of the wire, D, is chosen as the characteristic size of the
structure. The deformation is characterized by the twist
angle per unit length, L. The nominal stress can be defined
as �N = T /D3, where T is the torque. For different radii of
the wire, we compare the �N values corresponding to the
same dimensionless twist L̄ = LD. The nominal stress can
be expressed according to the CS theory as follows:

�N = T

D3
= 6
N+3�0L̄

N

{[
1
3
+
(
>CS
D

)2]�N+3�/2
−
(
>CS
D

)N+3}
(68)

When >CS/D→ �, one has

[
1
3
+
(
>CS
D

)2]�N+3�/2
−
(
>CS
D

)N+3

≈ N + 3
2

(
D

3>CS

)2(>CS
D

)N+3
(69)

from which

�N ∝ D−N−1 = D−�n+1�/n (70)

For the load-deflection response, we now obtain the follow-
ing relation between the load T and the deformation L̄:

T ∝ LN = L1/n (71)
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4.2.2. Asymptotic Analysis of the Gao
and Huang MSG Theory
and TNT Theory

Scaling and Size Effect The dimensionless variables
defined in (49) also need to be used here, and further dimen-
sionless variables need to be defined as follows:

!̄ = ! 8̄ = 8D �̄ij = �ij/�Y
<̄ijk = <ijk/��Y l� �̄ = �/�Y

(72)

8̄Hijk = 8HijkD �Bijk = BijkD �Cijk = CijkD
�?ijk = ?ijkD �Aijk = AijkD

(73)

These definitions are meaningful because 8Hijk, Bijk, and Cijk
are all homogeneous functions of degree 1 of tensors 8ijk
and !ij . It is not difficult to obtain a dimensionless version
of the constitutive law of the MSG theory

�̄ik =
K

�Y
'ik!̄nn +

2�̄
3!̄
!̄′ik

<̄ijk =
l2!
lD

(
K

6�Y
8̄Hijk + �̄�?ijk +

1
�̄
�Aijk

)
(74)

where l and l! are two characteristic material lengths. The
corresponding dimensionless equilibrium equation reads

;i�̄ik −
l

D
;i;j <̄ijk +

�N
�Y
f̄k = 0 (75)

Same as before, the boundary conditions can again be
considered as homogeneous and the applied loads replaced
by body forces f̄k applied within a thin surface layer. The
asymptotic behavior for a very large structure is simple.
When l/D→ 0, we also have l!/D→ 0. Thus <̄ijk tends to
zero, according to Eq. (69), and all the equations reduce to
the standard equations of classical plasticity theory, which
means that there is no size effect, as required by classical
plasticity.
The opposite asymptotic character for sufficiently small

structures (l/D → � and l!/D → �) is more interest-
ing. The general hardening rule (40) can be rewritten with
dimensionless variables as

�̄ = Df q�!�+ �l8̄/D�pE1/q (76)

Thus, we have �̄ ≈ �l8̄/D�p/q when l/D → �. Substitut-
ing (74) into (75), we can express the equilibrium equation
as follows:

;i

[
K

�Y
'ik!̄nn +

2
3!̄

(
l8̄

D

)p/q
!̄′ik

]
−
(
l!
D

)2
× ;i;j

[
K

6�Y
8̄Hijk +

(
l8̄

D

)p/q
�?ijk +

(
D

l8̄

)p/q
�Aijk

]
= −�N

�Y
f̄k (77)

When l/D→ �, the five terms on the left-hand side of the
foregoing equation are, in sequence, of the order of

O�1� O�D−p/q� O�D−2� O�D−2−p/q� O�D2+p/q�
(78)

When D→ 0, the fourth term is generally the dominant
one, and so we get the asymptotic form of the equilibrium
equation,

;i;j�8̄
p/q�?ijk� = J1f̄k (79)

with

J1 =
(
l

l!

)2 �N
�Y

(
D

l

)2+p/q
(80)

Since D is not present in the left-hand side of (80) and the
boundary conditions are also homogeneous, the parameter
J must be independent of D. Thus, the general small-size
asymptotic scaling law of MSG theory reads [260, 261, 264]

�N = �YJ1
(
l!
l

)2( l
D

)2+p/q
and for p

q
= 1

2

�N ∝ D−5/2 (81)

This asymptotic size effect is very strong [260, 261, 264].
It is much stronger than the normal linear elastic fracture
mechanics size effect, which is �N ∝ D−1/2, or the typical
Weibull size effect, which is around �N ∝ D−0�1.
There are also some special cases. For example, in the

case of microbending, �?ijk = 0 for all i: j: k, which makes
the fourth term on the left-hand side of (77) vanish; in
the case of incompressible material, 8Hijk = 0, which makes
the third term on the left-hand side of (77) zero. So
the general size effect law will change to �N ∝ D−2 for
microbending of a compressible material, and to �N ∝
D−2+p/q for microbending of an incompressible material (in
detail, see [264]).
The size effect D−5/2, as well as D−2, is enormous and

unrealistic. This is a consequence of the last three terms
on the left-hand side of (77), which represent contributions
from the couple stresses. A detailed analysis showed that the
couple stresses are not necessary to fit the test results and
to ensure the virtual work balance [264]. Based on this anal-
ysis, Bažant [260, 261] and Bažant and Guo [264] proposed
a modified version of the MSG theory in which the couple
stresses are made to vanish. This led to a theory identical to
the TNT theory [260, 261, 264], which was proposed on the
basis of numerical experience with varying the “mesoscale
cell size” l!. Let us now analyze the asymptotic size effect
of this theory. The dimensionless variables defined for the
MSG theory may again be used for TNT theory. The dimen-
sionless constitutive relation of the TNT theory reads

�̄ik =
K

�Y
'ik!̄nn +

2�̄
3!̄
!̄′ik (82)

and the differential equation of equilibrium in terms of the
dimensionless variables takes the form

;i�̄ik +
�N
�Y
f̄k = 0 (83)

For large enough sizes, D/l→�, the asymptotic behavior
will be identical to the classical theory of plasticity, which
implies no size effect. For very small sizes, D/l→ 0, we have

�̄ = Df q�!�+ �l8̄/D�pE1/q ≈ �l8̄/D�p/q (84)
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and the equilibrium equation can be rewritten as follows:

;i

[
K

�Y
'ik!̄nn +

2
3!̄

(
l8̄

D

)p/q
!̄′ik

]
= −�N

�Y
f̄k (85)

Obviously, the second term on the lefthand side domi-
nates when D/l → 0, and so the asymptotic form of the
equilibrium equation is

;i

(
8̄p/q

!̄′ijk
!̄

)
= Jf̄k with J = −3

2
�N
�Y

(
D

l

)p/q
(86)

Same as before, J is sizeindependent, and consequently the
small-size asymptotic scaling law for the TNT theory is

�N = −2�Y
3
J

(
l

D

)p/q
and for p

q
= 1

2

�N ∝ D−1/2 (87)

Four possible cases of small-size asymptotic scaling for the
MSG theory and the TNT theory are shown in Figure 45.

Small-Size Asymptotic Load-Deflection Response
The characteristic features of the small-size asymptotic load-
deflection curves will now be determined. The MSG theory
will be analyzed first, and the TNT theory can be treated as
a special limiting case of the MSG theory. Again we con-
sider only the special cases where the relative displacement
profile does not change during the loading process. Same as
before, the displacement can be characterized by parameter
w as ūk = wûk, where ûk is the displacement profile, which
is not only independent of D but also invariable during the
proportional loading process. Similarly, the strain and strain
gradient can be expressed as !̄ij = !ij = w!̂ij , !̄ = ! = w!̂,
8̄ijk = w8̂ijk, 8̄ = w8̂. Since variables Bijk and Cijk are homo-
geneous functions of degree 1 of both � and �, their cor-
responding dimensionless variables can also be expressed
as products of w and a dimensionless profile function (i.e.,
�Bijk = wB̂ijk and �Cijk = wĈijk). Because of the factor 1/!
in the definition of ?ijk [see Eq. (36)], we have �?ijk = ?̂ijk,
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Figure 45. Four possible small-size asymptotic scaling curves for the
MSG theory and the TNT theory.

which means that �?ijk is independent of w. When we con-
sider the beginning of the load-deflection diagram at D→ 0,
we also have w → 0, which is a limit not discussed during
previous sizeeffect analysis. When the effect of w is con-
sidered, the five terms on the left-hand side of (77) are
proportional, in sequence, to the functions as follows:

w �w/D�p/q w/D2 wp/q/D2+p/q

w1−p/q w1−p/q/D2−p/q (88)

In the case of MSG theory with p = 1: q = 2, these functions
are

w
√
w/D w/D2 w1/2/D5/2 w1/2/D3/2

(89)

and (77) can then be expressed as

−�N
�Y
f̄k=a1w+a2wp/qD−p/q+a3wD−2+a4wp/qD−2−p/q

+a5w1−p/qD−2+p/q (90)

where parameters ai are constants independent of D and
w. Since the force f̄k should decrease when w decreases,
one knows that 1 − p/q > 0, which implies p < q. As we
discussed before, if only D → 0 is considered (or, in other
words, D� w�, the dominant term is a4wp/qD−2−p/q , which
means that

f̄k ∝ wp/q �for w � D� (91)

For the MSG theory, this gives

f̄k ∝ w1/2 �for w � D� (92)

We need to consider another asymptotic case in which w �
D (e.g., at the beginning of the load-deflection diagram).
The dominant term in this case is either a4wp/qD−2−p/q

or a5w1−p/qD−2+p/q , depending on the value of p/q. The
asymptotic load-deflection behavior is

f̄k ∝ wr r = minNp/q: 1− p/qO �for w � D�
(93)

For MSG theory, the dominant term is a4w1/2D−5/2, and so
the load f̄k initially increases in proportion to w1/2. Thus one
has the asymptotic load-deflection relation for MSG theory
as

f̄k ∝ w1/2 for all w (94)

As discussed in the preceding section, some terms in (77)
may vanish in some special cases, and a similar analysis
can be applied to these special cases. For example, for
microbending of an incompressible material, the third and
fourth terms in (77) vanish, and as a result (92) changes as
follows:

−�N
�Y
f̄k = a1w + a2

√
w/D + a5w1/2/D3/2 (95)

The asymptotic load-deflection curve is simple because
the last term on the right-hand side of (95) dominates when
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D is small, regardless of the ratio of w/D, and so the asymp-
totic load-deflection relation for this special case is again

f̄k ∝ w1/2 for all w (96)

This means the vanishing of some terms in flexure prob-
lems will not change the asymptotic load-deflection behav-
ior. The TNT theory can be treated as a special case of
the MSG theory. If the last three terms on the right-hand
of the MSG equilibrium equation (77) vanish, the equation
becomes identical to equilibrium equation (85) of the TNT
theory. So (85) can be expressed as

−�N
�Y
f̄k = a1w + a2

√
w/D (97)

For small enough D and w, the dominant term will be the
second term on the right-hand side of (97), and so we have

f̄k ∝ w1/2 for all w (TNT theory) (98)

It should be noted that the elastic part of the response has
been neglected, which is why the load-deflection curves in
(94), (96), and (98) begin with a vertical tangent.

Example The experiment of microtorsion of a thin wire
can also be analyzed by the MSG theory [35] or TNT theory.
Equation (35) in [35] can be transformed to the dimension-
less formula

�N = T

D3
=�Y

2�L̄
3

∫ 1
0

{
�̄

!̄

(
.2+ l2!

12D2

)
+ l

2
!f �!̄�f

′�!̄�
12D2�̄

}
.d.

(99)

where �N is the nominal stress, T is the torque, D is the
radius of wire (which is also chosen as the characteristic
length of the structure), �Y is the yield stress of macroscale
metal, and L̄ = 8̄ = LD is the dimensionless specific angle
of twist, where L = actual specific angle of twist (i.e., the
rotation angle per unit length of wire). Substituting �̄ =√
f 2�!̄�+ l8̄/D ≈√

lL̄/D into this formula, we find that, for
D→ 0, the dominant part is obtained by integration of the
second term, which leads to the following small-size asymp-
totic form:

�N = �Y
(
�

18
l2!l

1/2
∫ 1
0

.

!̂
d.

)
L̄1/2D−5/2 (100)

This result verifies the conclusions (81) and (89), where L̄
is considered as a measure of deflection, analogous to w in
(89). The asymptotic load-deflection behavior of the TNT
theory can be obtained similarly.
Another special case is the application of the MSG theory

to the microbending of incompressible metals [35]. Equa-
tion (29) in [35] can be transformed to the dimensionless
version

�N = M

D2
= 2�Y

∫ 1/2
0

[
2√
3
�̄.+ L̄l

2
!f �!̄�f

′�!̄�
9D2�̄

]
d. (101)

where D is the beam depth (the characteristic dimension
of the structure), M is the bending moment, L̄ = 8̄ = LD
is the dimensionless bending curvature, and L is the actual

bending curvature. When D→ 0, the small-size asymptotic
form is

�N = �Y
(
2
9
l2!l

−1/2
∫ 1/2
0
f �!̄�f ′�!̄�d.

)
L̄1/2D−3/2 (102)

This verifies for this special case the asymptotic behavior
�N ∝ D−2+p/q , as well as (96). Letting l! = 0, one finds that
this asymptotic character also applies to the TNT theory.

4.2.3. Asymptotic Analysis of Acharya
and Bassani’s Theory

Let us now give a simple analysis of the asymptotic behavior
of the Acharya and Bassani strain gradient theory [263]. We
define dimensionless variables ūi = ui/D, !̄ij: k = !ij: kD, and
that �̄ij = �ijD. When D → 0, the asymptotic behavior of
the plastic hardening modulus (H̄p = Hp� defined by (48) is
found to be

h�Hp: �� = h0
(
1+ H

p

H0

)N−1[
1+ c�Hp/H0�2

]−1/2 �̄
H0

l

D

∝ D−1 (103)

This shows that, at the same strain level, the plastic hard-
ening modulus (slope of load deflection curve) increases as
D−1 when D → 0. If the elastic part is neglected for very
large plastic strain, the nominal stress must also scale asymp-
totically as D−1. This asymptotic size effect is again quite
strong (but not as strong as in the MSG theory). This size
effect can be reduced by modifying the hardening function
h�Hp: ��. For example, if the hardening modulus is rede-
fined as

h�Hp: �� = h0
(
1+ H

p

H0

)N−1[
1+ l�/H0

1+ c�Hp/H0�
]1/2

(104)

then the asymptotic scaling becomes more reasonable:

h�Hp: �� ∝ D−1/2 when D→ 0 (105)

4.3. Asymptotic-Matching
Approximation Formula

After determining the asymptotic behaviors of strain gradi-
ent plasticity theories, one can obtain an asymptotic match-
ing approximation for a smooth transition of the nominal
strength in the intermediate size range. In [260, 261, 264],
a smooth transition between the case of no size effect for
D→ � and the case of power law size effect �N ∝ D−s for
D→ 0 �s > 0� has been described by the simple asymptotic-
matching approximation

�N = �0
[
1+

(
D0

D

)2s/r]r/2
(106)

where r is a constant to be determined by data fitting, while
parameters �0 and D0 can be determined by either the
asymptotic size effect formula or data fitting. This formula
was shown to fit the results for microtorsion and microbend-
ing (Figs. 46 and 47).
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Figure 46. Asymptotic-matching approximation for microtorsion.

4.4. Concluding Remarks on Strain
Gradient Theories

In many applications of interest (e.g., microelectronics and
MEMS), characteristic dimensions are in excess of 100 nm–
1 �m. Modeling the mechanics of such systems at the
atomistic level is beyond present computational capabilities.
Therefore, extension of continuum theories to account for
size scales is of high relevance. Here we have discussed many
of the existing theories. At the same time, their range of
applicability was examined through small-size asymptotics.
Even though the small-size asymptotic behavior is

obtained only below the size range of applicability of the
theory (>100 nm), it is useful to pay attention to it. Sev-
eral main theories show unreasonable small-size asymptotic
behavior, which impairs the representation of experimen-
tally observed behavior in the practical size range and spoils
asymptotic matching approximations. Simple adjustments of
the theories suffer to obtain reasonable asymptotics and
make asymptotic matching approximation meaningful.
Finally, an analogy with quasibrittle materials such as con-

crete, rocks, sea ice, and fiber composite may be mentioned
[270]. For them, too, the small size as well as large size
asymptotic behaviors are attained only outside the range
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Figure 47. Asymptotic-matching approximation for microbending.

of validity of the theoretical models (cohesive crack model,
crack band model, nonlocal damage models), that is, for
specimen sizes much smaller than the inhomogeneity size
or much larger than the largest constructable structures. Yet
the knowledge of two-sided asymptotics has been shown
to be very helpful to achieving good asymptotic matching
approximations for the intermediate practical range.
It is also important to emphasize that strain gradient the-

ories cannot explain the size scale effects observed in fcc
metals in the absence of strain gradients [36, 37]. Clearly,
new continuum theories are needed to be able to predict
these size effects.
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