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Size Effect on Strength of
Laminate-Foam Sandwich Plates
Experiments on size effect on the failure loads of sandwich beams with PVC foam core
and skins made of fiber-polymer composite are reported. Two test series use beams with
notches at the ends cut in the foam near the top or bottom interface, and the third series
uses beams without notches. The results demonstrate that there is a significant nonstatis-
tical (energetic) size effect on the nominal strength of the beams, whether notched or
unnotched. The observed size effect shows that the failure loads can be realistically
predicted on the basis of neither the material strength concept nor linear elastic fracture
mechanics (LEFM). It follows that nonlinear cohesive (quasi-brittle) fracture mechanics,
or its approximation by equivalent LEFM, must be used to predict failure realistically.
Based on analogy with the previous asymptotic analysis of energetic size effect in other
quasibrittle materials, approximate formulas for the nominal strength of notched or un-
notched sandwich beams are derived using the approximation by equivalent LEFM. Dif-
ferent formulas apply to beams with notches simulating pre-existing stress-free (fatigued)
cracks, and to unnotched beams failing at crack initiation. Knowledge of these formulas
makes it possible to identify from size effect experiments both the fracture energy and the
effective size of the fracture process zone. �DOI: 10.1115/1.2194557�
ntroduction

According to current practice and all textbooks, sandwich
lates and shells are generally designed under the hypothesis that
aterial failure is determined by the concept of material strength,

ased on either plastic limit analysis or elasticity with a strength
imit �1–10�. This practice implies that there is no deterministic
ize effect. However, recent experiments at Northwestern Univer-
ity demonstrate that sandwich components, such as the fiber-
olymer composites �11–14� and polymeric foams �15�, usually
ail in a brittle manner and exhibit strong deterministic size effect,
alling for the use of fracture mechanics. Naturally, the same must
e expected for the failure of sandwich plates.

The size effect is particularly important for designing large
andwich structures, contemplated for the construction of hulls,
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decks, bulkheads, masts, and antenna covers of large ships, and of
large load-bearing fuselage panels, vertical stabilizer, rudder, wing
box, and other components of future aircraft.

The objective of this study is to investigate the size effect in
sandwich plates, both experimentally and analytically. A numeri-
cal indication of size effect in sandwich plates with a limited size
range has recently been reported �16�.

Laminate-foam sandwich plates can fail in a variety of modes,
including �17�: �1� the debonding shear fracture of skins �or face
sheets�, �2� fracture in the foam core, �3� compression fracture of
skins �18�, �4� delamination with skin buckling, �5� skin wrinkling
�19�, and �6� foam core indentation. These modes often interact.
The first three modes must, in principle, lead to deterministic size
effects. So probably does the fourth, as well as the fifth if it leads
to cohesive delamination. This study is focused particularly on the
first two. Experiments have been designed so as to obtain failure
in one or both of these two modes.

Some previous studies treated skin debonding in terms of frac-
ture mechanics �20,21�. However, the analysis has been confined
to linear elastic fracture mechanics �LEFM�, in which the fracture
process zone �FPZ� is considered to be shrunken into a point.
Recent size effect experiments on fiber-polymer laminates and on
polyvinyl chloride �PVC� foam, conducted at Northwestern Uni-
06 by ASME Transactions of the ASME
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ersity �13,15� reveal that the size effect is weaker than the power-
aw size effect of LEFM. This implies quasibrittle behavior in
hich the FPZ size is not negligible.
Therefore, this study will consider the FPZ to be finite. The

niteness of FPZ will be approximately captured by adopting the
quivalent LEFM—a theory in which the tip of an equivalent
EFM crack is placed into the middle of the FPZ, considered to
ave a certain finite length, denoted as 2cf. The analysis will draw
n analogy with previous size effect studies of many other quasi-
rittle materials �22–29�.

ize Effect Tests of Sandwich Beams with Foam Core
The cores of all sandwich beams were made of closed cell PVC

oam with mass density 100 kg/m3 �25.4 mm thick sheets of Di-
inycell H100, procured from Diabgroup, Inc.�. The properties of
he foam �as specified by the supplier� were as follows: tensile
lastic modulus 105 MPa, tensile strength 3.1 MPa, compressive
lastic modulus 130 MPa, compressive strength 1.7 MPa, elastic
hear modulus 40 MPa, and shear strength 1.4 MPa.

To investigate the size effect, beams geometrically scaled in
wo dimensions were fabricated. The beams of all three sizes had
he same width: b=25.4 mm. All of the cores were cut from the
ame sheet of foam. The thickness t of the skins was scaled in
roportion to the core depth c. Three series of tests were carried
ut. The scaling ratios were 1: 4: 16 for series I and 1: 3: 9 for
eries II and III. For series III, the beams had no notches. For
eries I and II, notches were cut in the foam as close as possible to
he interface with the top or bottom skin, respectively, but without
utting into the skin, and without baring it. The notches in series I
nd II were symmetric, cut at both ends of the beam �Fig. 1�. The
istance a of each notch tip from the support axis was equal to
ore depth c. Each notch tip was sharpened by a razor blade of
.25 mm thickness. The purpose of making the notches was to
larify the effect of large pre-existing cracks or damage zones, and
o force the fracture to develop at a certain predetermined loca-
ion, homologous �geometrically similar� for all the sizes. The
otches also helped to avoid a conceivable Weibull-type statistical
ontribution to the size effect. The choice of beam and notch
roportions was also guided by the need to prevent significant
ore indentation, which would complicate interpretation of the
esults. Furthermore, the notches made it possible to obtain shear
racture for a relatively small length-depth ratio of the test beams.
ll the beams were subjected to three-point loading.

Test Series I, with Fiberglass-Epoxy Skins and Notches at
op Interface. The skins consisted of a cured woven glass-epoxy
omposite �FS-12A, procured from Aerospace Composite Prod-
cts, as 0.38 mm thick sheets�. The following properties were
btained through material tests: longitudinal elastic modulus
0 GPa, transverse modulus 28 GPa, transverse strength

Fig. 1 Dimensions of tes
00 MPa, in-plane shear modulus 5 MPa, and in-plane shear

ournal of Engineering Materials and Technology
strength 90 MPa. The depths of the foam cores were c=10.2,
40.6, and 162.6 mm �Figs. 1 and 2�a��. The scaling of the skin
thicknesses was achieved by bonding 25.4 mm wide composite
strips—one strip for the smallest beams, four strips for the me-
dium beams, and 16 strips for the largest beams. The ratio of L /c
was almost 6:1 for all the beams �and thus the effective lengths of
the beams were L=61.2, 243.6, and 975.6 mm�. All the beams of
series I were loaded in an Instron 5000 universal testing machine.

Local failure under the corners of loading platens is a sensitive
aspect. It could be so extensive as to control the maximum load.
This problem was avoided by placing two separate rubber sheets
on top of the skin. Furthermore, between these sheets and the
metallic platen �aluminum for series I, and steel for series II and
III�, two laminate plates �consisting of the same material as the
skins� were inserted �having dimensions 10�25.4�6 mm, 40
�25.4�6 mm, and 160�25.4�6 mm for series I, and 17
�25.4�4.8 mm, 51�25�4.8 mm, and 154�25.4�4.8 mm for
series II and III�. Observations showed that a small crack grew in
the top laminate plate from the edge of the platen, but did not
extend into the second laminate plate.

Figure 2�b� shows the failure of a medium size beam. To ensure
that the viscoelastic and loading rate effects in the foam, skins,
and FPZ were similar for beams of different sizes, the cross-head
speed was set so as to make all the specimens reach the peak load
within about the same time, chosen as 5 min.

Figure 3�a� shows, for all three sizes, typical records of the
load-deflection curves up to failure. It is obvious that, the larger
the specimen, the more brittle its response. For example, in the

ams with notches on top

Fig. 2 „a… Photo of top-notched test beams of all three sizes
and „b… photo of top-notched beam of medium size during the
t be
test

JULY 2006, Vol. 128 / 367
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argest specimen, crack propagation becomes unstable and the
oad suddenly drops right after the peak load, while in the smallest
pecimen, and to a lesser extent also in the medium specimen, one
an see a period of gradual post-peak softening. In the largest
pecimen, the loss of crack growth stability after the peak is mani-
ested by a loud noise, while in the medium size specimen one
ears several quieter sound emissions during the gradual post-
eak decline of load.

The measured maximum loads P are listed in Table 1. Fig. 3�b�
hows a plot of the measured values of nominal strength

�N = P/bD �1�

here D=characteristic structure �or specimen� size, in our case
aken equal to the beam depth, D=h, and h=c+ t=distance be-
ween skin centroids, chosen as the characteristic beam size. We

ig. 3 „a… Load-deflection diagrams measured on top-notched
eams of three sizes and „b… nominal strength values of these
eams compared to the classical energetic size effect law

Table 1 Data and test results for beams with notches on top

No.
Depth c

�mm�
Width b

�mm�
Length L

�mm�
Load P

�N�
�N

�MPa�

S1 10.2 25.4 61.2 507.01 1.887
S2 10.2 25.4 61.2 478.72 1.781
S3 10.2 25.4 61.2 516.14 1.921
S4 10.2 25.4 61.2 548.90 2.043
S5 10.2 25.4 61.2 547.62 2.038
S6 10.2 25.4 61.2 614.28 2.286
S7 10.2 25.4 61.2 519.24 1.932
S8 10.2 25.4 61.2 519.10 1.932
M1 40.6 25.4 243.6 1517.03 1.418
M2 40.6 25.4 243.6 1550.52 1.449
M3 40.6 25.4 243.6 1543.12 1.442
M4 40.6 25.4 243.6 1547.92 1.447
M5 40.6 25.4 243.6 1502.86 1.405
L1 162.6 25.4 975.6 5081.78 1.186
L2 162.6 25.4 975.6 4984.72 1.163
L3 162.6 25.4 975.6 5066.60 1.182
Fig. 4 Dimensions of test bea

68 / Vol. 128, JULY 2006
see that there is a strong size effect but must notice that, in con-
trast to the other size effect tests, the size effect trend of the data
obtained exhibits a positive curvature. If this were a systematic
trend, it might be attributed to the fact that the top skin is sub-
jected to compression force causing a skin wrinkling instability
�30,36,37� and mixed mode fracture with a nonzero mode I com-
ponent for which the fracture energy is much less than for mode
II. However, calculations have shown such instability to be im-
possible because the critical load is much higher than the loads
recorded. Thus, the positive curvature in Fig. 3�b� is likely a
chancy event.

The size effect in sandwich beams with notches at the bottom
skin-foam core interface is also of interest because it is probable
that the failure mechanism is different in such beams compared to
the beams with notches at the top interface. Therefore, a second
test series has been carried out, with notches near the bottom skin,
which is subjected to tension.

Test Series II, with Carbon-Epoxy Skins and Notches at
Bottom Interface. The foam cores were the same as in Series I.
However �for no other reason than convenient availability�, a dif-
ferent material was used for the skins—unidirectional carbon-
epoxy �IM6-G/3501-6, provided by Hexcel, Inc., in a 12 in. wide
roll, with along the fiber Young’s modulus measured as 172 GPa�.
The prepregs material was cut into 12�12 in. sheets for the small
and medium specimens, and 34�10 in. sheets for the large speci-
mens. Next, for small, medium and large specimens �Figs. 4 and
5�a��, respectively, 3, 9, and 27 layers of prepreg sheets were laid
up. The 12�12 in. laminates were cured in a compression-
lamination press �Tetrahedron MTP-14�, while the 34�10 in.
laminates were cured in an autoclave �McGrill�. The curing pro-

Fig. 5 „a… Photo of bottom-notched test beams of all three
sizes; and „b, c, d… photos of typical failure modes of bottom-
notched beams for each of three sizes
ms with notches at bottom

Transactions of the ASME
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ess suggested by the manufacturer for the 3501-6 epoxy matrix
as followed �it involved a maximum curing temperature of
50°F and a maximum curing pressure of 75 psi�. After curing,
he laminates were cut into 3.67�1.0 11.0�1.0, and 33.0

1.0 in. strips, by means of a diamond saw. The thicknesses of
he �0�3, �0�9, and �0�27 laminate skins were 0.021, 0.063, and
.189 in. �0.53, 1.60, and 4.80 mm� for the small, medium, and
arge specimens, respectively. The foam �Divinycell H100� was
ut into 3.67�0.33�1.0, 11.0�1.0�1.0, and 33.0�3.0
1.0 in. �93.2�8.4�25.4, 279.6�25.4�25.4, 839.0�76.2
25.4 mm� blocks for the small, medium, and large specimens,

espectively. The ratio of L /c of these beams was 9:1, and thus the
ffective beam lengths were 3, 9, and 27 in., or 76.2, 228.6, and
85.8 mm, respectively �Figs. 4 and 5�.

The skins and foam cores were bonded together by epoxy ad-
esive and were cured in a vacuum bag for 8 h.

The small and medium specimens were tested under three-point
ending in a universal testing machine �MTS, 20 kip�, while the
arge specimens were tested in a larger machine �MTS 220 kip�
ecause of their large dimensions rather than strength. The load-
ng rate was chosen so as to reach the peak load of the specimens
f all sizes within about 3 min.

For all the specimens, without exception, the final failure mode
bserved after the load dropped was diagonal tensile fracture
hich propagated through the foam �Figs. 5�b�–5�d��. Whether the
iagonal tensile fracture in the foam occurred at or before the
eak load was not recorded. Preliminary finite element simula-
ions indicate that, for large-size beams it surely happened after
he peak load, and probably also for the medium and small size
eams. Consequently, the failure modes may be assumed to be
eometrically similar. In addition, the tests confirmed that the
arger the specimen, the greater the brittleness of response, as
evealed by post-peak behavior.

The measured maximum loads P are listed in Table 2. The
oad-deflection curves for all three specimen sizes are shown in
ig. 6�a�, and the measured variation of nominal strength �N
P /bh is plotted in Fig. 6�b�.

Test Series III, with Carbon-Epoxy Skins and No Notches.
he beams of test series III were the same as in series II, except

hat the foam block dimensions were 3.67�0.25�1.0, 11.0
0.75�1.0, and 33.0�2.25�1.0 in. �93.2�6.4�25.4, 279.6
19.0�25.4, and 839.0�57.2�25.4 mm�, which means that the

atio of L /c was 12: 1. In addition, the notches were absent �Figs.
and 8�a��. The scaling ratios of the length and depth dimensions

f all the beams were 1: 3: 9 �Fig. 7�.
In series III, the failure modes varied. In the small beams, no

able 2 Data and test results for beams with notches at
ottom

No.
Depth c

�mm�
Width b

�mm�
Length L

�mm�
Load P
�KN�

�N
�MPa�

S1 8.5 25.4 76.2 0.795 3.477
S2 8.5 25.4 76.2 0.793 3.468
S3 8.5 25.4 76.2 0.844 3.692
S4 8.5 25.4 76.2 0.786 3.438
S5 8.5 25.4 76.2 0.804 3.517
S6 8.5 25.4 76.2 0.759 3.320
S7 8.5 25.4 76.2 0.805 3.521
M1 25.4 25.4 228.6 2.283 3.328
M2 25.4 25.4 228.6 1.914 2.790
M3 25.4 25.4 228.6 1.837 2.678
M4 25.4 25.4 228.6 2.273 3.314
M5 25.4 25.4 228.6 1.693 2.468
L1 76.2 25.4 685.8 3.984 1.936
L2 76.2 25.4 685.8 3.319 1.613
L3 76.3 25.4 685.8 3.420 1.662
L4 76.3 25.4 685.8 3.690 1.793
iagonal shear fracture was observed and the failure was caused

ournal of Engineering Materials and Technology
by compressive fracture of the upper skin. This mode of failure
was also observed in some medium and large beams, but in most
of these beams the interface crack branched into a diagonal tensile
crack which crossed the foam core �Figs. 8�b�–8�d��. A size effect
was found again, but it was not as strong as in the notched beams.

The measured maximum loads P are listed in Table 3. The
load-deflection curves for the beams of all three sizes are shown
in Fig. 9�a�, and the measured variation of nominal strength �N
with size h is plotted in Fig. 9�b�.

Simplified Analysis of Fracture and Size Effect
If the strength theory or plastic limit analysis were applicable to

sandwich beams, a size effect would have to be absent, and thus
the mean trend of the size effect plots in Figs. 3�b�, 6�b�, and 9�b�
would have to be horizontal. This is obviously not the case. Be-
cause, in the notched beams, fracture can begin propagating at
only one place—the notch tip—the fact that other points may have
a lower random strength must be immaterial. This means that, in
notched beams, the Weibull-type statistical size effect is impos-
sible. So it is for the unnotched beams of series III, because their
fracture, too, begins always at the same place—at the interface at
the beam end. Hence, any observed size effect must be explained
deterministically. This leads to an energetic explanation by frac-
ture mechanics.

If linear elastic fracture mechanics �LEFM� were applicable,
the mean size effect trend in Figs. 3�b�, 6�b�, and 9�b� would have
to be a straight line of slope −1/2. However, the mean trend in
these plots is obviously less steep than that. It follows that the
fracture process zone �FPZ� has a non-negligible size, which
causes nonlinear fracture behavior. This means that LEFM does
not apply and the cohesive crack model is needed.

In our case, the cohesive fracture is a shear fracture that propa-
gates in the foam in the immediate vicinity of the interface with
the skin. Strictly speaking, it is neither mode I nor mode II frac-
ture because, in the vicinity of the skins, neither symmetric nor
antisymmetric behaviors can be defined. Nevertheless, as an ap-
proximation, it seems reasonable to assume that the fracture en-
ergy Gfs characterizing the fracture of foam near the skin is
roughly equal to the mode II shear fracture energy Gf

II of foam.
For most materials, Gf

II is many times larger than the mode I
fracture energy, Gf

I, but for the foam, according to preliminary
finite element simulations, it seems to be only about 20% larger
�doubtless because of large collapsible pores�.

According to the equivalent LEFM approximation of cohesive
�or quasi-brittle� fracture �in which the tip of an equivalent LEFM
crack is placed into the middle of the FPZ of length 2cf�, the
nominal strength of the structure may generally be expressed as

Fig. 6 „a… Load-deflection diagrams measured on bottom-
notched beams of three sizes and „b… nominal strength values
measured on these beams of three sizes, compared to the clas-
sical energetic size effect law
�13,23,28�

JULY 2006, Vol. 128 / 369
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�N =� EGfs

g���h
, � =

a

h
, a = a0 + cf �2�

here E=Young’s modulus �the material is assumed to be in a
tate of plane stress�; a0=length of the stress-free �or fatigued�

Fig. 7 Dimensions of te

ig. 8 „a… Photo of unnotched test beams of all three sizes;
b…, „c…, and „d… photo of typical failure modes for each of three
eam sizes

Table 3 Data and test resu

No. Depth c �mm� Width b �mm� Length L �mm�

S1 6.35 25.4 76.23
S2 6.35 25.4 76.23
S3 6.35 25.4 76.23
S4 6.35 25.4 76.23
S5 6.35 25.4 76.23
S6 6.35 25.4 76.23
S7 6.35 25.4 76.23
S8 6.35 25.4 76.23
S9 6.35 25.4 76.23
S10 6.35 25.4 76.23
S11 6.35 25.4 76.23
S12 6.35 25.4 76.23
S13 6.35 25.4 76.23
M1 19.05 25.4 228.6
M2 19.05 25.4 228.6
M3 19.05 25.4 228.6
M4 19.05 25.4 228.6
M5 19.05 25.4 228.6
M6 19.05 25.4 228.6
M7 19.05 25.4 228.6
M8 19.05 25.4 228.6
M9 19.05 25.4 228.6
L1 57.15 25.4 685.8
L2 57.15 25.4 685.8
L3 57.15 25.4 685.8
L4 57.15 25.4 685.8
L5 57.15 25.4 685.8
70 / Vol. 128, JULY 2006
crack at maximum load, a=total crack length at maximum load,
�=relative crack length; cf =half-length of the fracture process
zone, assumed to be size-independent �13,23,28�; and g���
=dimensionless LEFM energy release function, calculated ap-
proximately in the Appendix �note that g���= �k����2 where

k���=KIb�h / P and KI=stress intensity factor�. As confirmed in
the Appendix, the sandwich beams considered here are structures
of positive geometry, which means that g��� is an increasing func-
tion. In that case, the structure reaches the maximum load as soon
as the FPZ is fully formed, and so a0=length of the notch.

By analogy to previous studies of size effect in quasi-brittle
materials such as concrete, the maximum loads of fracture speci-
mens and structures that are not extremely large depend only on
the slope of the initial tangent of the softening curve of the cohe-
sive crack model �or crack band model�. It is logical to expect the
same here. Thus, the maximum loads of the present sandwich
beams depend not on the total fracture energy GF �representing
the total area under the softening curve, including its long tail�,
but only on the so-called initial fracture energy, which is the
proper meaning of Gfs and represents the area under the initial
tangent �Fig. 10� of the cohesive softening curve ��w�; �
=cohesive crack-bridging shear stress, w=relative displacement
�or slip� between the crack faces �near the skin�. In Eq. �2�, we
may substitute the approximation

beams with no notches

for beams with no notches

ad P �N� �N �MPa� Failure modes

583 3.336 Upper skin compressive failure
600 3.433 Upper skin compressive failure
575 3.290 Upper skin compressive failure
814 4.658 Upper skin compressive failure
688 3.937 Upper skin compressive failure
688 3.937 Upper skin compressive failure
605 3.462 Upper skin compressive failure
702 4.017 Upper skin compressive failure
688 3.937 Upper skin compressive failure
732 4.188 Upper skin compressive failure
714 4.085 Upper skin compressive failure
699 3.999 Upper skin compressive failure
642 3.673 Upper skin compressive failure

1740 3.317 Shear fracture
1698 3.237 Shear fracture
1927 3.673 Shear fracture
1879 3.582 Upper skin compressive failure
1792 3.416 Upper skin compressive failure
1756 3.347 Shear fracture
2144 4.087 Upper skin compressive failure
1808 3.447 Shear fracture
1737 3.311 Upper skin compressive failure
5864 3.726 Upper skin compressive failure
5849 3.717 Upper skin compressive failure
5815 3.695 Shear fracture
3525 2.240 Shear fracture
4809 3.056 Upper skin compressive failure
st
lts

Lo
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g��� � g��0� + g���0��cf/h� �3�

n which cf /h=�−�0. This leads to the well-known size effect
aw

�N =� EGfs

g���0�cf + g��0�h
=

�0

�1 + h/h0

�4�

here cf =constant, approximately representing the half-length of
he FPZ, and h0 and �0 are constants if the notches are geometri-
ally similar �i.e., if �=a0 /h=constant�

�0 = �EGfs/cfg��a0�, h0 = cfg��a0�/g�a0� �5�
The mechanics of bending and shear of sandwich plates may be

sed to obtain approximate expressions for the energy release
unctions g��� for the test geometries considered; see the Appen-
ix.

Having noted this theoretical background, we may check
hether it can explain the experimental results. Figure 6�b� shows

hat the classical energetic size effect law in Eq. �4� can fit the
ominal strength values measured on sandwich beams of series II
ith notches at bottom. The fit is as good as can be desired in
iew of the inevitable random scatter of experiments.

In Fig. 3�b�, the classical energetic size effect law in Eq. �4� is
ompared to the measured values of nominal strength for series I
f sandwich beams with notches on top. For this series, the frac-
ure energy in shear is found as Gfs=214.1 kN/mm and the FPZ
alf-size turned out to be cf =101.9 mm.

In Fig. 6�b�, the same size effect law is used to approximate the
easured values of nominal strength for test series II in which the

otches were located at the bottom interface. Although the speci-
ens of this series had a stronger skin, their depth was less than

ig. 9 „a… Load-deflection diagrams measured on unnotched
eams of three sizes and „b… nominal strength values mea-
ured on these beams, compared to the size effect law for fail-
re at crack initiation

ig. 10 Softening cohesive stress-slip curve for shear crack

nd its initial linear approximation
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for series I specimens, and so the overall moment capacity was
lower. The fracture energy in shear �near the interface� was deter-
mined to be Gfs=71 kN/mm, and the FPZ half-size as cf
=21.6 mm.

It must be noted that these fracture energies in shear appear to
be several orders of magnitude higher than the shear fracture en-
ergy of foam alone, as estimated by preliminary finite element
simulations �roughly 0.60 N/mm�. This discrepancy must be ex-
plained by the composite action of the skin with very high axial
stiffness. The high skin stiffness causes that �1� most of the strain
energy is stored in the skin, and released from the skin, and that
�2� the effective FPZ length 2cf near the interface is much larger
than in the foam alone �15� �see Appendix�.

Size Effect at Crack Initiation in Unnotched Sandwich
Beams

In test series III, the sandwich beams had no notches. The ap-
proximate solutions of energy release rate in the Appendix dem-
onstrate that the sandwich beams considered have a positive ge-
ometry, and therefore reach the maximum load as soon as the
fracture process zone in the skin-core interface is formed. In spite
of that, the statistical Weibull-type size effect is out of the ques-
tion because mechanics dictates that the fracture can initiate at
only one place—very near the skin-core interface at the end of
beam.

For crack initiation, we generally have g��0�=0, and thus the
third term of the series expansion extending g��� in Eq. �3� must
be included

g��� � g���0��cf/h� +
1

2
g���0��cf/h�2 �6�

Substituting this into �2�, and modifying the resulting expression
according to the required asymptotic properties without affecting
the first two nonzero terms of the large-size and small-size
asymptotic expansions in terms of h and h−1, we obtain the well-
known formula for the classical deterministic �energetic� size ef-
fect for failures at crack initiation �23,26,28,39�;

�N = �N
��1 +

hb

h
� �7�

in which �N
� and hb are constants; �N

�=�EGf /g��0�cf and hb=
−cfg��0� /4g��0�.

The solid curve in Fig. 9�b� shows the optimum fit of this
formula to the data measured in test series III. For this series of
tests, the shear fracture energy is determined as Gfs
=240.4 kN/mm, and the effective half-length of FPZ as cf
=2.9 mm. Regression of size effect test data provided hb
=1.12 mm and �0=3.58 MPa. It must be pointed out, however,
that the smallest beams failed by compressive fracture of the skins
rather than shear fracture of the foam. This means that the load
that would have caused failure by shear fracture of the foam must
have been higher than the measured load, a fact that has been
proved by preliminary finite element simulations. In Fig. 9�b�, this
would shift the data points for the smallest beams upward, as
sketched by the dashed curve. thus, the true size effect must be
stronger than that seen in Fig. 9�b�. In other words, although the
figure does not represent purely the size effect of shear fracture, it
does represent a conservative estimate of the size effect of such
fracture.

Conclusions

1. As expected on the basis of a theory previously developed
for other quasi-brittle materials, failure of sandwich plates
consisting of fiber composite skins and PVC foam core ex-
hibits a significant size effect. This is true not only for
notched �or damaged� sandwich structures, but also for un-

notched ones.
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2. The observed size effect cannot be attributed to Weibull
theory of local material strength because the crack causing
failure cannot form at random locations. In the notched
beams tested, the material failure is forced to occur at one
precise location—the notch tip—and in unnotched beams
the crack seen to initiate at one precise location—the inter-
face at the beam end. Thus, the only possible physical source
of size effect is deterministic, which inevitably leads to the
energetic theory.

3. Consequently, it is unrealistic to predict the load capacity of
large sandwich structures based on the concept of material
strength or plastic limit analysis.

4. For normal size sandwich structures, the size effect is
weaker than that of linear elastic fracture mechanics
�LEFM�. Therefore, the use of LEFM to calculate load ca-
pacity is not realistic. Failure theories with a characteristic
length, such as fracture mechanics based on the cohesive
crack model, crack band model, or nonlocal damage me-
chanics, need to be used.

5. Similar to other quasi-brittle materials, one must distinguish
two types of size effect: �1� size effect for failures-occurring
at fracture initiation in an uncracked �and unnotched� struc-
ture and �2� failures due to fracture propagation from pre-
existing large cracks or damage zones.

6. The formulas for the size effect on nominal strength of
notched or unnotched sandwich beams, derived by
asymptotic approximation based on equivalent LEFM,
match the experimental results satisfactorily. Different for-
mulas apply to beams with notches simulating pre-existing
stress-free �fatigued� cracks and to unnotched beams failing
at crack initiation.

7. Knowledge of the size effect formulas makes it possible to
identify from size effect experiments both the fracture en-
ergy and the effective size of the fracture process zone.
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ppendix: Calculation of Maximum Loads of Sandwich
eams
Consider a simply supported sandwich beam of symmetric

ross section, with span L, one concentrated load P at midspan,
nd a crack in the top interface �as in test series I�. Let x be the
ongitudinal coordinate measured from the left support. If the
eam is not notched, the theory of bending implies that such a
rack should begin propagating above the support where the shear
tress in the core is maximum. It is assumed that the crack propa-
ates only inward. Let the tip of the crack be located at x=a
�h where � is called the dimensionless crack length and D=h
c+ t=distance between the centers of skins; c and t are thickness
f core and skin, respectively �Fig. 11�a��.

According to the standard hypothesis of plane cross sections of
he core remaining plane, the bending moment distribution along
he skin would have a sudden drop to zero at the notch tip. In
eality, this hypothesis is locally, near the tip, far from true. thus,
he moment in the skin must drop to zero gradually over a certain
nite transition length, which may be assumed as

Lt = �
L

2
�1 − 2�

h

L
� �8�

The results are reasonable if � is considered to be in the range
0.01,0.3�, depending on the specimen geometry and the type of
ize effect; Lt is measured from the crack front such that along this

ength the skin moment reduces to zero gradually. Introduction of
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this finite transition length was found to be essential for obtaining
a realistic form of function g���. Without a finite Lt, the comple-
mentary potential energy in Eq. �12� would yield function g���
with a vanishing second derivative, which would conflict with the
derivation of the size effect law for crack initiation �23–25�. The
alternative of considering above the support a two-tip crack that
can grow both inward and outward has also been found to be
insufficient to describe the observed size effect at crack initiation.
In accordance with the classical sandwich beam assumptions, the
axial normal stresses in the core are neglected. So are the shear
forces transmitted by the skins, with two exceptions: �1� in the
cracked cross sections in which the core cannot resist any shear,
and �2� along the transition length Lt, in which it is assumed that
the shear is resisted by both the core and the skins �Fig. 11�b��. In
addition, the crack surfaces are assumed to be free of stress.

Let subscript c refer to the core and subscript s to the skin; b
=beam width; �=a /h=dimensionless crack length measured from
the support; I=bth2 /2=moment of inertia of sandwich cross sec-
tion; and Is=bt3 /12 moment of inertia of each skin. At an un-
cracked cross section, each skin is subjected to a normal force Ns,
and a bending moment Ms; and if the section is inside the transi-
tion length, a shear force Vs, while the core sustains the total shear
force if the section is uncracked, so that V=Vc, or part of it if it is
in the transition length, but it sustains no bending moment any-
where along the beam length �see Fig. 11�c��. In a cracked cross
section, on the other hand, the core receives no stress and all of
the shear force and bending moment is resisted by the skins �Vc

Fig. 11 Illustrations for beam-type analysis of fracture in the
Appendix
=Mc=0� �Fig. 11�c��.
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The conditions of equilibrium of moments and horizontal forces
cting on a cross section lead to the following distributions of
nternal forces

�i� for 0�x��h:

Ms =
P

4
x, Vs =

P

4
, Ns = 0, V = 2Vs �9�

�ii� for �h�x��h+Lt:

Ms =
P

4
�h� x − �h

Lt
− 1�2

, Vs =
P

2
�h

x − �h − Lt

Lt
2

Ns =
Px

2h
−

P��x − �h − Lt�2

2Lt
2 , Vc =

P

2
−

P�h�x − �h − Lt�
Lt

2

�10�
�iii� for �h+Lt�x� �L /2:

Ms = 0, Ns =
Px

2h
, Vs = 0, V = Vc = P/2 �11�

From these internal forces, one can calculate the following ex-
ression for the complementary potential energy �per half beam�

�* =
2

2EsIs
	

0

�h �P

4
x�2

dx +
2

2Gsbt		0

�h �P

4
�2

dx

+
2

2EsIs
	

�h

�h+Lt 
P

4
�h� x − �h

Lt
− 1�2�2

dx

+
2

2Gsbt		
�h

�h+Lt �P

2
�h

x − �h − Lt

Lt
2 �2

dx

+
2

2EsI
	

�h

�h+Lt �Px

2h
−

P��x − �h − Lt�2

2Lt
2 �2

dx

+
1

2Gcbh

	

�h

�h+Lt �P

2
−

P�h�x − �h − Lt�
Lt

2 �2

dx

+
2

2EsI
	

�h+Lt

L/2 �Px

2h
�2

dx +
1

2Gcbh

	

�h+Lt

L/2 �P

2
�2

dx �12�

here 
=1 and 	=4/3 are the correction factors giving the ef-
ective shear stiffness, 
Gcbh and 	Gsbt, of the core and the skin
40�. In LEFM, the energy release rate of a statically propagating
rack, calculated as G=G�P ,a�= ���* /���P /h, must be equal to
Gfs; i.e.,


 ��*

��
�

P

= hbGfs �13�

If Eq. �13� is solved for P, one obtains for P /bD a formula of
he general form of Eq. �2� in which g��� is a function with
arameters h / t=27.67, Es /Gs=6000, Es /Gc=750, L / t=160, and
/h=5.78. For the sake of brevity, the resulting expression for
���, which is very long, is not shown here; given the integral
orm of the complementary potential energy �Eq. �12��, one can
alculate g��� and its derivative unambiguously using any com-
uter algebra system software.

Because the resulting expression for g��� has too many terms
o manage on paper, further calculations are simplified by using a
hird-order polynomial, obtained by fitting the numerical values of
��� as shown in Fig. 12. In the calculation of numerical values of

���, the parameter � is chosen to be 0.3 for test series I and II,
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and 0.01 for test series III, which is necessary to model the ob-
served size effect. The polynomial fits obtained for test series I, II,
and III are given by

gI��� = 139874�3 − 274743�2 + 200821� �14�

gII��� = 20694�3 − 52725�2 + 58978� �15�

gIII��� = 175176�3 − 536244�2 + 686634� �16�

Note that functions gI, gII, and gIII are all increasing within the
range of interest. This demonstrates that the notched sandwich
beam has a positive fracture geometry, and thus must fail at the
start of fracture propagation if the load is controlled �28�. Further
note that the second derivatives of all these functions at vanishing
crack size are negative but eventually become positive at certain
finite crack extension. This behavior is necessary �23–25� for ex-
plaining and modeling the size effect at crack initiation.
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