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Abstract: An improved form of a recently derived energetic-statistical formula for size effect on the strength of quasibrittle structures
failing at crack initiation is presented and exploited to perform stochastic structural analysis without the burden of stochastic nonlinear
finite-element simulations. The characteristic length for the statistical term in this formula is deduced by considering the limiting case of
the energetic part of size effect for a vanishing thickness of the boundary layer of cracking. A simple elastic analysis of stress field
provides the large-size asymptotic deterministic strength, and also allows evaluating the Weibull probability integral which yields the
mean strength according to the purely statistical Weibull theory. A deterministic plastic limit analysis of an elastic body with a through-
crack imagined to be filled by a perfectly plastic “glue” is used to obtain the small-size asymptote of size effect. Deterministic nonlinear
fracture simulations of several scaled structures with commercial code ATENA �based on the crack band model� suffice to calibrate the
deterministic part of size effect. On this basis, one can calibrate the energetic-statistical size effect formula, giving the mean strength for
any size of geometrically scaled structures. Stochastic two-dimensional nonlinear simulations of the failure of Malpasset Dam demonstrate
good agreement with the calibrated formula and the need to consider in dam design both the deterministic and statistical aspects of size
effect. The mean tolerable displacement of the abutment of this arch dam is shown to have been approximately one half of the value
indicated by the classical deterministic local analysis based on material strength.
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Introduction

Although the importance of size effect for safe design of large
concrete structures is now widely accepted, its consideration is
still quite limited. This is especially true for the combined
energetic-statistical size effect in structures failing at fracture ini-
tiation, for which an effective computational approach has been
lacking.

Significant though the recent progress has been in stochastic
nonlinear fracture modeling of concrete structures �Bažant and Xi
1991; Carmeliet 1994; Carmeliet and Hens 1994; de Borst and
Carmeliet 1996; Gutiérrez and de Borst 1999, 2001; Bažant and
Novák 2000a,b; Pukl et al. 2002, 2003; Bergmeister et al. 2004;
Novák et al. 2003b, 2005; Vořechovský and Matesová 2006,
Vořechovský 2006�, no effective and simple method nevertheless
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exists for incorporating the combined energetic-statistical size ef-
fect in computer analysis of structures, avoiding the computa-
tional burden of direct Monte Carlo simulations. This work,
whose major part was carried out at Northwestern University dur-
ing 2003 �and received detailed coverage in Vořechovský’s 2004
dissertation�, has three main objectives: �1� derivation of an ex-
tended mean size effect formula capturing two independent size
effect sources �energetic and statistical�; �2� a method to predict
the size effect with no stochastic simulations; and �3� full com-
putational probabilistic verification of the proposed formula and
asymptotic prediction. The known analytical scaling law �Bažant
2001, 2002, 2004a,b; RILEM 2004� of the energetic-statistical
size effect will be extended and exploited to completely avoid
stochastic finite-element analysis by matching of the asymptotic
behaviors of structures much smaller and much larger in size. The
deterministic finite-element analysis exhibiting both the energetic
and statistical size effect will be simplified by employing previ-
ously proposed “random blocks” of finite elements whose mean
strength is reduced according to the block size on the basis of the
weakest-link model. The proposed method will be demonstrated
by analyzing the failure of Malpasset Dam.

The analysis will deal exclusively with the Type 1 size effect
�Bažant 2002, 2004a�, which occurs for quasibrittle structures
of initially positive geometry �Bažant and Planas 1998�, failing
�under load control� at crack initiation. For Type 2 size effect,
which occurs in quasibrittle structures with large notches or
deep stress-free �fatigued� cracks, there is no statistical size effect
on the mean strength �Bažant and Xi 1991�, i.e., the mean size
effect is independent of material randomness. As usual, the
size effect will be characterized in terms of the nominal strength

�N=cP /bD where P is the maximum load or load parameter,
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D is the characteristic structure size �or dimension�, b is the struc-
ture width, and c is the arbitrary convenience parameter.

Nonlocal and Classical Weibull Statistical Theories

The probability Pf of failure of a quasi-brittle structure is realis-
tically approximated by nonlocal generalization of Weibull statis-
tical theory �Bažant and Xi 1991�, in which

Pf = 1 − exp�−�
V

��̄�x�/s0�mdV�x�/ls
n� �1�

in which �X�=max�X ,0� �Macauley bracket�; V=structure vol-
ume, area or length, depending on whether the fracture growth
is scaled in one, two, or three dimensions, n=1, 2 or 3; s0,
m=positive constants called the scaling parameter and Weibull
modulus; ls=chosen reference size, such that ls

n is the volume
or area for which parameter s0 has been measured �this volume
cannot be taken smaller than the depth of the fully developed
fracture process zone �FPZ� at fracture initiation�; ��x�=local
stress at point of coordinate x; and �̄�x� is the nonlocal stress,
defined �in one-dimensional simplification� as �̄�x�=E��e

+	���x ,s���̄�x�dV�s�
 where �e=local elastic strain; ��=local in-
elastic strain; E=Young’s modulus, and the overbar denotes non-
local averaging with a certain weight function ��x ,s� over a non-
local characteristic volume � centered at point x. The power
function p1= ��̄�x� /s0�m represents the failure probability of vol-
ume �. This is a power function of stress, with zero threshold,
and �according to Bažant and Pang 2005a,b� this is an inevitable
consequence of the fact that the failure of interatomic bonds is
governed by Maxwell-Boltzmann distribution of thermal energies
of atoms and the stress dependence of activation energy. The av-
eraging in Eq. �1�, of course, cannot introduce a length scale for a
body under uniform stress, in which case other, purely statistical,
length scales may arise due to autocorrelation. The averaging
physically captures the fundamental property that the representa-
tive volume element �RVE� of material must act, due to its het-
erogeneity, as one unit dominated by parallel coupling �essentially
equivalent to averaging, as in Daniels’ fiber bundle model, but
different from statistical correlation�. This fact is usually the main
reason for deviations from the classical �local� Weibull theory
�although autocorrelation of local material strength may also en-
gender deviations�. The nonlocal averaging, however, does not
give a realistic distribution tail for small structures �Bažant and
Pang 2005b, 2006�.

It has been demonstrated by asymptotic analysis as well as
numerical simulations that, for large enough structures �D→��,
the nonlocal Weibull theory reduces to the classical �local�
Weibull statistical theory, for which �̄�x� in Eq. �1� is replaced by
local stress ��x� �see, e.g., Bažant and Planas 1998�. For geo-
metrically similar structures, it is convenient to write ��x�=� s���
where s���=dimensionless field of maximum principal stress.
�=nominal stress parameter; �=x /D=dimensionless coordinate
vectors. Often only the positive �tensile� maximum principal
stresses matter, and then

Pf = 1 − e−Cls
n��/s0�m

�2�

where C=	V�s����mdV��� �which is independent of D
and nominal stress�. In the purely statistical classical

Weibull theory �Weibull 1939�, the mean nominal strength
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�N for any chosen reference size D=Dst is �Nst
=	−�

� �dPf���
= ¯ =C−1/mls

−n/ms0	0
�t1/me−tdt, i.e.,

�st = C−1/mls
−n/ms0��1 + m−1� �3�

The coefficient of variation � of �N, calculated as �2

=	0
1�� /�N−1�2d�, is �= ���1+2m−1��−2�1+m−1�−1
1/2, which

is independent of size D. If �Nst
denotes �N corresponding to

D=Dst, the purely statistical size effect on the mean nominal
strength may be written as

�N = �Nst�Dst/D�n/m �4�

Energetic Size Effect Formula
and Its Statistical Generalization

A simple energetic �deterministic� size effect formula, sufficient
for heterogeneous structures of any size, reads �Bažant 1995,
1997, 2002; Bažant and Chen 1997; Bažant and Novák 2000b;

Fig. 1. Computational sequence: �a� Steps 1–4: fit of nonlocal
computations by deterministic formula; �b� Step 5: determination of
parameter ls; and �c� final size effect formula �9� for predicting
strength for the real size Da of the dam. Limiting case of energetic
and energetic-statistical size effect curves when Db→0.
RILEM 2004�:
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�N�D� = fr
��1 + rDb/D�1/r �5�

�Fig. 1�a� or 2�a�� in which lp=0�; and fr
�, Db, r=positive empiri-

cal parameters. For three-point bending of a beam of span L, a
convenient choice is c=3L /2D, in which case �N represents the
maximum elastically calculated bending stress. The intersection
of the small-size and large-size asymptotes of log �N versus log D
�Fig. 1�a� or 2�a�� occurs at D=rDb. Exponent r controls the
initial slope of the size effect curve while having no effect on
the first two terms of the asymptotic expansion of �N for D→�
�Bažant and Planas 1998�; Db=deterministic characteristic length
interpreted as the thickness of the boundary layer of cracking
causing stress redistribution within the cross section; D�1.5 to
2 grain sizes.

Quasibrittle fracture can be deterministically well simulated by
the cohesive crack model. This is a continuum model which, by
contrast to Eq. �5�, can be extrapolated below the size of FPZ and
all the way to D=0. The following generalization of Eq. �5�,
conforming to the cohesive crack model over the entire size
range D� �0,��, is advantageous because the zero size limit of
the cohesive crack model �or nonlocal damage model� can be
easily calculated and used for calibration �Bažant and Planas
1998; Bažant 2002�

�N�D� = fr
��1 +

rDb

D + lp
�1/r

�6�

where, aside from Db, lp=second deterministic characteristic

Fig. 2. Best fit of extended deterministic formula �6�: �a� for a wide
range of structural sizes �Malpasset Dam here�; �b� examples of
inadequate fitting of the simplified deterministic formula �5� to 1�
the whole range of data; and 2� to the data without the smallest size
length controlling the center of transition to a horizontal asymp-
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tote of the ln �N versus ln D curve �Fig. 1�a� or 2�a��. Formula �6�
gives the transition from perfectly plastic behavior for D / lp→0
�corresponding to an elastic body in which the crack is filled with
a perfectly plastic glue, Bažant 2002�, through quasi-brittle be-
havior, to perfectly brittle behavior for D /Db→�. The limiting
strength for D / lp→0 �and lp	0� �horizontal asymptote in Fig. 1
or 2� is fr

��1+rDb / lp�1/r.
In the special case of bending without normal force, the ratio


p of the bending moments M for D→0 and D→� is

p=Mpl /Mel= �1+rDb / lp�1/r. Knowing 
p, one gets from Eq. �5�

lp = rDb/�
p
r − 1� �7�

E.g., for a rectangular cross section, 
p=3. In this limit case
�D→0�, the entire cross section is under uniform tensile stress
�= fr

�, balanced by a compressive concentrated force at the
compression face. This force is, of course, fictitious �if a finite
compression strength fc� were introduced, a finite zone of finite
compressive stress would appear but then the size effect curve
for D→0 would cease to be a smooth extension of the size ef-
fect curve for normal sizes, and thus become ineffective for
calibration.

For most purposes, lp=0 can be assumed. Then the small-size
asymptotic size effect is the same as for Eq. �5�, i.e.,
��N�D�
lp→0= fr

��rDb /D�1/r; see Fig. 2�a� in which lp=0�.

Energetic-Statistical Size Effect Formula

The large-size asymptote of the deterministic Eqs. �5� and �6� is
horizontal, i.e., �N= fr

�; see Figs. 1 and 2. Except for the Bažant
and Novák �2000b, 2001� formula, the large-size asymptote of all
the classical formulas for the modulus of rupture is horizontal
�Bažant and Planas 1998�, but according to Bažant and Novák’s
�2000a,b, 2001� analysis based on the nonlocal Weibull theory
�Bažant and Xi 1991� it must be inclined, with the slope of −n /m;
i.e., �N�D−n/m. The reason that this property is not readily
detected in modulus of rupture tests is their limited size range.
Nevertheless, a modified formula with an inclined Weibull-type
asymptote has been shown to give a closer fit of the existing test
data and be necessary for a close fit of new data of very broad
size range �Bažant and Novák 2000b, 2001�. Hence, a statistical
generalization of Eq. �5� is needed. Adapting slightly the deriva-
tion of Bažant and Novák �2000b�, one may argue as follows.

Since the Weibull size effect dominates for D→�, for which
the stress redistribution in the boundary layer is negligible and the
structure is far larger than the FPZ �or RVE�, we need to adjust
the horizontal asymptote of Eq. �5�.

Since the deterministic part of size effect vanishes for D→�,
it consists of the difference � of formula �5� from the horizonal
asymptote, for which

�r = �fr/fr
0�r − rDb/�D + lp� �8�

where �=1. If material strength randomness is taken into consid-
eration, difference � should conform to the size effect of Weibull
statistical theory, �N�D−n/m �n=2 for two-dimensional fracture�.
Therefore, instead of �=1, we set �= �D / ls�−n/m. But this applies
only for DFPZ size, for which the FPZ occurs randomly in any
of the elemental volumes of material. Otherwise, there is no
chance for the failure to begin at different random locations, and
so the statistical size effect must disappear for small D. This
feature �which is similar to Eq. �33� of Bažant 2004a and of an
identical T&AM Report No. 05-03/C728s at Northwestern Uni-
versity 2003; and to f�l� in Eq. �6.10� of Vořechovský 2004� may

−n/m −n/m
be captured by replacing �= �D / ls� with �= ��D+�ls� / ls
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where, as shown later, �=1. Substitution into �8� then furnishes
the final formula for energetic-probabilistic size effect

�N�D� = fr
��� ls

D + ls
�rn/m

+
rDb

D + lp
1/r

�9�

For the special case ls=Db, this formula was derived in Eq. �17�
in Bažant �2004a� by dimensional analysis with asymptotic
matching, and in Eq. �33� of Bažant �2004b� by nonlocal Weibull
theory. Using the foregoing procedure, Bažant and Novák
�2000b� derived the formula

�N�D� = fr
���Db/D�rn/m + �rDb/D�
1/r �10�

which represents a still more special case of Eq. �9� and suffices
for all purposes except theoretical extrapolations to cross section
sizes smaller that the aggregate size.

Because normally rn /m�1, formula �9� satisfies three
asymptotic requirements: �1� for small but not too small
sizes, it asymptotically approaches the power law ��N�D�

→ fr

�r1/r�Db /D�1/r�D−1/r for D / ls→0 and D / lp→� while the
simplest deterministic energetic formula �5� approximately holds
true for lp�D� ls. �2� For large sizes, D ls �and for ls� lp�,
Eq. �9� asymptotically approaches the Weibull size effect

��N�D�
D/ls→��ls�lp� = fr
��ls/D�n/m � D−n/m �11�

�3� For m→�, the limit of Eq. �9� is the deterministic energetic
formula �5�. Eq. �9� is in fact the simplest formula with these
three asymptotic properties. Moreover, it also agrees with the
second-order terms of the asymptotic expansions of cohesive
crack model and nonlocal Weibull model, which require that: �1�
�N=c1−c2D+O�D2� for D→0; �2� �N=b1D−n/m+b2D−1+O�D−2�
for D→� �where b1 ,b2 ,c1 ,c2 are constants�; and �3� the power
law �N�D−1/r ought to be approached as an intermediate asymp-
tote for ls / lp→0 �Bažant 2002, 2004a�.

The special case in Eq. �10� does not satisfy the small size
asymptotic limit of the cohesive crack model, and thus cannot be
calibrated by this model. Yet it is good enough for describing all
the available test data, and has therefore been adopted in a pro-
posal for an improved testing standard for the modulus of rupture
�Bažant and Novák 2001�.

The physical cause of the energetic part of size effect �given
by the second term in Eq. �9��, is the stress redistribution and
energy release caused by a sizable boundary layer of cracking �or
FPZ�, and its characteristic length Db is set principally by the
material inhomogeneity size, i.e., the aggregate size in concrete.
On the other hand, the physical cause of the statistical part of size
effect �given by the first term in Eq. �9�� is the material strength
randomness.

Compared to the pure Weibull theory, parameter ls has here
a different physical meaning than in the asymptotic limit of
Eq. �11�. In that classical theory, there is no material characteristic
length �because the size effect law is a power law�. Rather, ls in
Weibull theory is simply a chosen unit of measurement to which
the spatial density of failure probability is referred �e.g., Bažant
and Planas 1998�. It represents the size of test specimens on
which Weibull modulus m has been calibrated from statistical
scatter. Obviously, ls can be arbitrarily changed as long as the
fr

�ls
n/m remains the same. However, in Eq. �9�, ls is no longer

arbitrary and acquires the physical meaning of a statistical char-
acteristic length. This length must be roughly proportional to the
width of the damage localization band, which is in turn propor-

tional to the size of material inhomogeneities or the FPZ.
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Because the statistical and energetic physical causes of size
effect are different and independent, ls cannot be affected by
changes Db. This property, along with the fact that �N must be
bounded when D→0, can be exploited to deduce the value of ls.
To this end, consider that Db is reduced to 0. Then the energetic
term becomes a constant, approaching the horizontal line �N= fr

�

�see Fig. 1�c�� which must represent an upper bound on �N. The
same bound must also limit the statistical part of size effect be-
cause it is based on the spatial density of failure probability,
which is a continuum concept and thus cannot operate for sizes
D� ls. The equality of these two bounds is crucial. Another rea-
son for the upper bound of statistical part of size effect is based
on distribution of extremes �minima� of random fields represent-
ing local material strength �Vořechovský 2004; Vořechovský and
Chudoba 2006�.

Consequently, the statistical term must describe �for D→0� a
smooth gradual transition between the Weibull asymptote given
by Eq. �4� and the horizontal asymptote �N= fr

� �Fig. 3�. The
coordinate D= ls of the intersection of these two asymptotes, rep-
resenting the center of the transition in the logarithmic scale,
is obtained, according to Eq. �11�, from the relation
�Nst

= fr
��ls /Dst�n/m; hence

ls = Dst��Nst/fr
��m/n �12�

Note that �=1 is necessary to ensure that the center of transition

Fig. 3. Dependence of the size effect law on the variations in �a�
Weibull modulus m; �b� scaling lengths ls �scaled for bending in 2
dimensions, n=2�
�Fig. 1�c�� between the small-size and large-size asymptotes
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for the case of no deterministic size effect �Db→0� would lie at
D= ls �and thus to ensure that the statistical size effect be bounded
by fr

� when D→0�. This is what has already been assumed in
Eq. �9�. For the special case of ls=Db, a more fundamental deri-
vation of Eq. �9� was given in Bažant �2004a�, where it was also
shown that, up to the second term of power series expansion in
1/D, the probability-density function �PDF� remains Weibull.

How to Predict the Energetic-Probabilistic Size
Effect without Any Stochastic Simulations

Bažant and Novák’s �2000b� formula �10� for size effect predic-
tion agrees quite well with computer simulations by nonlocal
Weibull theory and can be used as a starting point. The stochastic
finite-elements simulations, which are usually complex and te-
dious, can be avoided by calibrating the parameters of this
formula, or better the improved formula �9�. To do this, the
real structure should be scaled down and up, using the following
procedure.
• Step 1. Using, e.g., a standard elastic finite-element program,

first compute the elastic stress field for a chosen structure
size Dst, which may, but need not, be the actual structure size
D=Da. The computed stress field is then used for four pur-
poses: �1� To obtain the large-size asymptotic deterministic
nominal strength �N= fr

�, by setting the maximum elastically
calculated stress in the structure equal to the material strength,
f t� �the classical design procedure stopped here�; �2� to evalu-
ate from this field the local Weibull integral in Eq. �2�, which
yields constant C; �3� to determine the mean nominal strength
�st, using the nonlocal Weibull probability integral �3�; and �4�
to calculate ls from Eq. �12�.

• Step 2. Next calculate �N for D→0, and 
p, using simple
plastic limit analysis.

• Step 3. For the actual size Da of the real structure, prepare
then a deterministic finite-element model for nonlinear fracture
analysis �paying attention to proper meshing and objectivity
with respect to mesh size and orientation�. If the crack path is
known and is made to coincide with a mesh line, the cohesive
crack model or crack band model is satisfactory �otherwise
one must use mesh angle correction, or better a nonlocal dam-
age model with a greatly refined mesh in the cracking zone�.
The computations, based on the mean material properties,
yield the deterministic load-deflection curve. Its peak is �N,
which gives point �Da ,�N� on the size effect plot �solid circle
in Fig. 1�.

• Step 4. Then, preserving geometry, scale the computational
model down or up, or both, to obtain �Ni

for a set of fictitious
geometrically similar structures of sizes Di �i=1, . . . ,N�
�shown as circle points in Fig. 1�a��. Since the deterministic
part of the size effect formula in Eq. �9� has four parameters
fr

�, Db, r, and 
p, and since two parameters fr
� and 
p, are

already known, one needs, in theory, only two �Ni values to
identify all the four parameters, one for the actual size and one
for a scaled size. However, such two �Ni values would have to
lie roughly at the thirds of the transitional range spanning the
interval �N� �fr

� ,
pfr
�� in the log �N scale �Fig. 1�a��. It is

unlikely to have the luck of selecting Di giving such values of
�Ni. So, the deterministic nonlinear analysis program normally
needs to be run for a greater number of sizes Di �by experi-
ence, typically about six�, until the �Ni values cover uniformly,
in the scale of log D �Fig. 1�a��, the lower two thirds of the

� �
interval �fr ,
pfr � �in the upper third, the fictitious scaled-
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down structure is usually smaller than the size of the material
inhomogeneities, and thus of no practical relevance�.

• Step 5. Next fit optimally the set of N pairs �Di ,�Ni
,

i=1, . . . ,N� �points in Fig. 1�a�� by the deterministic-energetic
formula �6�. Since this formula cannot be converted to linear
regression �except for r=1�, nonlinear regression, e.g., the
Levenberg-Marquardt optimization algorithm, is required.
Since 
p is known from Step 2, one may substitute Eq. �7� for
lp into Eq. �6�, which yields

�N = fr
��1 +

�
p
r − 1�rDb

�
p
r − 1�D + rDb

�1/r

�i = 1, . . . ,N� �13�

Since fr
� is also known from Step 1, there are only two un-

known parameters Db and r to determine by the optimization
algorithm. If there are only two data points �Di ,�Ni� �which
must, of course, be properly located�, the fit is exact. To obtain
it easily, first eliminate fr

� and then solve the resulting single
nonlinear equation for r by Newton iterations. However, more
than two points are appropriate �Fig. 1�a��, to allow minimiz-
ing the approximation errors by regression.

• Step 6. In Eq. �9�, n /m is either known from the strength
scatter or assumed from experience. So, there is only one
unknown parameter ls. It may simply be taken from the pre-
viously justified Eq. �12�. Thus, any need for stochastic nu-
merical simulation is circumvented �Fig. 1�b�� .

• Step 7. Once the energetic-statistical formula �9� has been
calibrated, one can use it to evaluate �N for any D, particularly
the real size. This prediction will generally be below the de-
terministic prediction �Fig. 1�c��. The larger the structure, the
greater the difference.

• Step 8. Once the mean combined size effect is predicted, the
distribution of nominal strength for each size have to be deter-
mined. If Weibull distribution of �N is justified, the coefficient
of variation �N of �N and failure probability Pf as a function
of load can be determined from standard formulas in which the
scaling parameter s0=�N /��1+m−1� where �N is the mean
nominal strength obtained by the foregoing procedure.
It must be warned, though, that the Weibull distribution is

realistic only for large enough structures, such that, approxi-
mately, Neq�104 where Neq=equivalent number of representative
volume elements �RVE� of material in the structure �adjusted ac-
cording to the stress field� =number of RVEs in a uniformly
stressed specimen giving the same probability distribution. Here
RVE must be defined not by homogenization �implying-low mo-
ment statistics� but by extreme value statistics; thus RVE is the
smallest volume of material that causes the whole structure to
fail; see Bažant and Pang �2005a,b, 2006�, who further show that
for smaller Neq, the failure probability is given by

Pf��N� = 1 − �1 − PR��N�
Neq �14�

where PR��N�=cumulative probability distribution of strength
of one RVE, provided that the free constant c �in defining
�N=cP /bD� is selected so that �N coincide with the maximum
elastic principal stress in the structure; PR��N� must be Gaussian
except for a far out left tail, which must be of Weibull �or power-
law� type up to the probability of roughly 0.001.

Alternatively, instead of Step 1�a�, one may run the deter-
ministic nonlocal nonlinear code to get the �N values for two
very large structures of different sizes. If they converge, they are
also equal to fr

�. If they do not, it could mean that the computa-
tional model implemented is not mesh objective. But it could also

mean that the structure geometry is not positive �Bažant and
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Planas 1998�. For such geometry, a macrocrack of finite relative
depth develops before the maximum load, causing a size effect of
Type 2 �Bažant 2002�.

The value of m and the meaning of n call for comments.
The traditional thinking was that, for concrete, m�12 �Zech and
Wittmann 1977�. However, Bažant and Novák �2000b� showed
that if the energetic and statistical size effects are properly sepa-
rated m�24. As for n, note that, for mechanical reasons, a crack
front must propagate simultaneously over the entire width of a
beam �except for microscopic unevenness of the front�. Despite
the randomness of local material strength, one particularly weak
point along the fracture front across the thickness cannot propa-
gate forward �on the macroscale� while another point at which the
strength is higher is stalled. So, the bending fracture propagation
is two-dimensional although the structure is three-dimensional.
Therefore, in bending fracture n�2 even if the beam width is
scaled in the third dimension �for this reason, the classical inter-
pretation of Weibull size effect as a “volume” effect is mislead-
ing; often it actually is an “area” effect�.

By the same argument, however, variation of beam width is
likely to exert a different kind of size effect. The material ele-
ments on a fracture front developing across the beam are forced to
deform simultaneously even though they have different random
strengths. Such behavior is characterized by Daniels’ fiber bundle
model. This implies that an increase of beam width b, should have
no effect on the mean �N but should cause a reduction of coeffi-
cient of variation of elemental strength in two-dimensional mod-
eling of the beam. According to Daniels’ model, this reduction
would be proportional to 1/�b if the crack front remained per-
fectly straight �which is only approximately true�. Furthermore,
because of parallel coupling along the front �Bažant and Pang
2005a,b�, the Weibull tail of the distribution of an area element in
two-dimensional modeling should shrink and the Weibull tail
should expand. Such behavior is doubtless the reason why no
statistical size effect on mean �N has been reported for bending
fracture of plates or shells in which the crack front is very long.

Numerical Example Partially Reinterpreting
Malpasset Dam Catastrophe

To demonstrate applicability, the collapse of the Malpasset Dam
in the French Maritime Alps has been analyzed. This arch dam of
record-breaking slenderness and size was built in 1954 and failed
at its first complete filling in 1959 �see Fig. 4�b� for illustration�.
The flood killed 412 people and wiped out the town of Fréjus
�Bartle 1985; Levy and Salvadori 1992; Pattison 1998�. The
failure is believed to have started by vertical flexural cracks
engendered by lateral displacement of abutment �due to slip
of thin clay-filled seam in schist�. This conclusion is not disputed,
but appears incomplete. At the time of design, the energetic
size effect was unknown and the Weibull statistical size effect
was not yet established for concrete. To what extent might have
the size effect contributed, weakening the resistance of dam to
displacement?

From simplified analysis of a single cross section, Bažant
and Novák �2000b� already inferred that the energetic-statistical
size effect must have been a significant aggravating factor. To
assess it more precisely, the dam is now analyzed using the pro-

posed procedure.
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Deterministic Nonlinear Fracture Analysis

Commercial finite-element code ATENA �Červenka and Pukl
2006� is used. It approximates cohesive fracture by smeared
cracking, and employs the crack band model �Bažant and Oh
1983� to capture the size effect and ensure objectivity with respect
to mesh refinements �this capability was demonstrated by Pukl
et al. 1992; Červenka and Pukl 1994; and by Novák et al. 2001

Fig. 4. Results of deterministic computations based on nonlinear
fracture mechanics, for different scaled sizes of the dam; �a�
nominal strength versus normalized displacement; �b� crack patterns
at failure
for commercial code SBETA, a simpler predecessor similar to
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ATENA�. The dam is simulated only by a horizontal arch, dis-
cretized by two-dimensional finite elements in plane strain; the
arch angle 2�=133°, inner radius R=92.68 m, and thickness at
the base D=6.78 m. The damage constitutive law is the three-
dimensional microplane model M4 �Caner and Bažant 2000�,
which has been incorporated into ATENA �Model M5 would
have been more realistic, but it is not yet available in ATENA�.
The crack band model is combined with Model M4 using the
so-called equivalent localization element �Červenka et al. 2005�.
The arch is supported by a sliding hinge at one abutment and
fixed hinge at the other, and is loaded by prescribed displacement
increments, assumed to be in the chord direction. The loading by
water is disregarded, which corresponds to reality near the dam
top and is on the safe side at lower elevations. The compressive
strength and Young’s modulus measured during construction were
fc�=32.5 MPa and E=31.3 GPa. From this, Model M4 generates
�Caner and Bažant 2000� the default values of its four free pa-
rameters: k1=0.000119, k2=500, k3=15, k4=150. To integrate
over spherical angles, 21 microplanes are used. The minimum
crack band width is assumed to be 30 mm, which implies the
initial fracture energy Gf =55 J /m2. From computations, the cor-
responding Db�0.28 m. The crack band model allows changing
the element size �with post-peak softening adjusted to ensure the
same Gf�. Nevertheless, to improve accuracy, the element sizes in
the fracturing zone were kept the same for all sizes, except �in-
evitably� the two smallest.

In Step 4, the real dam size is scaled down by ratios 1 /2,
1 /5, 1 /10, and 1/200, and up by ratios 10, 100, and 1,000 �size
range 1:200,000�. The resulting diagrams of the reaction ver-
sus abutment displacement are shown in Fig. 4�a�, in which
�N=6Mmax/D2, with Mmax=maximum �midspan� bending
moment in the arch at maximum load �per unit height of
dam�. For the real dam size �D=6.78 m�, computations fur-
nish �N=2.35 MPa. For sizes 10, 200, and 1,000� larger, the
computed �N is the same, 2.25 MPa. This agrees with the hand-
calculated fr

�=2.25 MPa. For the scaled-down sizes D, computa-
tions give increasing �N, and for the minimum �D=33.9 mm�,
the increase of �N is 2.9-fold. �Why is this less than the the-
oretical ratio 
p=3 for D→0?—because 
p implies a concen-
trated force at the face, which cannot be captured by elements
of finite size, with a finite compressive strength.� Using 
p=3
gives lp=0.14 m. Fig. 4 shows the computed midspan cross-wall
distributions of normal stresses �x at peak load. For small sizes,
compressive fracturing also occurs during pre-peak response.

Size Effect Obtained from Formulas Calibrated
by Deterministic Computations

For the deterministic two-parameter formula �13�, the finite-
element results are best fitted when Db=280 mm and r=1;
for the extended formula �6� when lp=Db /2=0.14 m �Eq. �7��;
see Fig. 2. If the computed results are closely fitted by Eq. �9�
with lp=0 and if 
p ignored, the fitting gives a significantly higher
r than the complete formula fitted to the results for all the
sizes �see Fig. 2�c� where r=3.1�. Moreover, if the small-size
computer results are left out, the portion of size effect curve to the
left of inflexion point does not get sampled. Such a fit leads to
r=4.27 �this approach, with lp=0, was taken in the Bažant and
Novák �2000a� study of normal-size flexural strength tests, giving
r=1.14�. However, even if small-size data are unavailable, attain-
ing good agreement with the cohesive crack model necessitates
calculating and using ratio 
p, with the full deterministic-

energetic formula �6�.
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This point is documented in Fig. 2�c�, showing how the opti-
mum r depends on the size range of �N data. Fig. 2�c� shows
examples of two erroneous data fits with the deterministic for-
mula. For the combined energetic-statistical size effect Eq. �9�,
Fig. 5 shows the �N values for scaled dams and three different

Fig. 5. Comparisons of three two-dimensional stochastic simulations
�mean nominal strength±standard deviation� and of deterministic
results with predictions �not fits� by proposed size effect formula
�Eq. �9�, no fit�. �a� m=48, ls=Db �n /m=1/24�, �b� m=24, ls=Db

�n /m=1/12�, �c� m=24, ls=Db �n /m=1/12�; �b� is the most realistic
estimate.
�m , ls� pairs �corresponding to different ls /Db�.
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The tolerable foundation displacement of a dam can never be
set as zero. The value considered for Malpasset Dam design is
unknown. Nevertheless, the foregoing analysis with the energetic-
statistical size effect formula �with m=24 and ls=Db=0.28 m�
reveals that the mean tolerable displacement of Malpasset Dam
abutment would today be about 50% of the value considered safe
according to the design method that was standard in the early
1950s when this ill-fated dam was designed. If the size depen-
dence of the understrength safety factor in quasibrittle structures
�Bažant and Pang 2005b, 2006� were taken into account, the tol-
erable displacement would safely be reduced to much less than
50%, albeit to not less than 25% �of course, this leaves unaffected
many other aspects of dam safety; Hartford and Baecher 2004�.

Verification by Stochastic Finite-Element Simulations

It was conducted using ATENA with embedded probabilistic soft-
ware FREET �Novák et al. 2003a, 2006�, the effectiveness of
which has been documented by reliability assessments of bridge
structures �Pukl et al. 2002; 2003; Bergmeister et al. 2004�, and
by size effect studies of concrete specimens �Vořechovský and
Matesová 2006�. These tools provide information not only on the
mean size effect but also the cumulative probability distributions.
The differences of the mean �N from Eq. �9� are small and can be
attributed to inevitable errors and the limited size of samples of
stochastic variables. Note that the tail of the statistical distribution
cannot be expected to be captured accurately, because Latin hy-
percube sampling, which cannot adequately sample the extreme
values �Bažant et al. 2007�, has been used.

The mean dam strength from the combined statistical-
energetic size effect is found to represent the following percent-
ages of the strength from the deterministic energetic size effect
alone; i.e., ratios �Eq. �9�� fr

���54, 60, 71, 77, 81, and 85%
for m=10, 12, 18, 24, 30, and 40, respectively, provided that the
all the strength distributions are Weibull. A realistic value for
concrete is m=24, for which the statistical size effect reduces the
strength of the dam to 77.8% of deterministic size effect. The
energetic size effect from the size of typical modulus of rupture
tests to size the dam size represents, according to Fig. 5, a
strength reduction to about 64%, and the combined energetic
and statistical size effects cause strength reduction to about
0.778�0.64=50% of the strength of laboratory specimens �bent
beam of reasonable depth D=0.27 m�. This is a significant effect
indeed.

The stochastic simulations used the Latin hypercube sampling
of all stochastic variables. In this efficient technique, the probabil-
ity range �0, 1� of the mean strength of each of N random blocks,
is divided into N layers of equal thickness, each of which is
sampled once and only once in all of Ns stochastic simulations
�hence, Ns=N�. From all these values, one can estimate the mean
and the coefficient of variation of �N for each size, and one can
also plot the cumulative distribution for each size �see the scatter
bands in Fig. 5�.

A question might be raised regarding autocorrelation of the
strength field, which surely exists and is here not considered.
However, the Weibull theory needs no autocorrelation to be
physically meaningful, and since the random blocks are in most
cases larger than a conceivable autocorrelation length, this ques-
tion is not relevant anyway. Nonlocality may invite another
question. But the crack band model is a simpler equivalent of the

nonlocal approach.
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Size-Dependent “Random Block Method”
for Efficient Stochastic Simulations

The foregoing stochastic simulations were facilitated by employ-
ing Bažant and Novák’s �2003� method �elaborated on by Novák
et al. 2003b� which uses a “stochastic mesh” consisting of so-
called “random blocks” �originally called “macroelements”� that
generally differ from the finite elements and have a strength
scaled depending on the block size. This method allows increas-
ing the element size in proportion to structure size D, and so the
number of elements in dam simulations can be kept constant
�eight elements per wall thickness for any D�. The properties of
each random block �associated with one stochastic variable� are
uniform but independent of the properties of other random blocks.
If Model M4 is used, the mean �or deterministic� strength prop-
erties are characterized by parameter k1.

For small structures, the random blocks may be considered
identical to the finite elements, having roughly the size of ls. But
for large structures, this would lead to many thousands of stochas-
tic variables, creating enormous computational burden. Although
the random blocks must be small enough so that the stress would
not vary greatly over each block, they can be scaled up with D
because the stress field is scaled up, too. Each random block, of
size l, is imagined to consist of ne elemental material volumes �or
RVEs�, whose strengths are independent stochastic variables. The
weakest-link model is assumed to be followed not only by the
structure as a system of random blocks but also by each block as
a system of RVEs—i.e., the failure of one RVE causes the whole
random block, and thus the whole structure, to fail. So, the
strength of each random block must follow Eq. �14�. To prove it
rigorously, recall that the structure is statistically equivalent to a
chain of many RVEs. For the reference structure of size D=D0,
the stress in the ith RVE is �i�N, and the number of RVEs is N0.
When the structure is scaled up to size D, the ith RVE is scaled up
to the ith random block, each consisting of ni=�nd RVEs having
common stress �i�N; �=D /D0=scaling ratio, assumed to be an
integer, and the number of random blocks remains N0 regardless
of D. Since the structure �of positive geometry� survives if each
random block survives, and each random block survives if each of
its RVEs survives

1 − Pf��N� = �
j=1

N

�1 − PR��i�j��N�
 = �
i=1

N0

�1 − Pi� �15�

1 − Pi = �1 − PR��i�N�
�nd

where �i�j��N is the stress in the ith RVE within random block j,
and N=N0�nd. The last term indicates that scaling of the mean
strength of each random block is sufficient and that it asymptoti-
cally approaches the Weibull scaling if the number �nd of RVEs in
the random block is large ��1000, Bažant and Pang 2006a,b�.

In previous simulations �Bažant and Novák 2003; Novák et al.
2003b�, the strength distribution of one RVE in Eq. �14� was
assumed to be completely Weibull. This implied a Weibull size
effect in the scaling of mean strength �̄b�l� of each random block
from one RVE to the block size, i.e., �̄b�l�= f t��l / ls��n/m�, and also
a constant value of the coefficient of variation. Such scaling,
which is equivalent to using the stability postulate of random
value statistics �Fréchet 1927; Fisher and Tippett 1928; Gumbel
1958; Ang and Tang 1984; Bouchaud and Potters 2000� is accu-
rate for the random block strength only if the material inhomoge-
neities are negligible �or if Neq	104, Bažant and Pang 2005a, b�

and if spatial correlation can be disregarded �Vořechovský and
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Novák 2004�. This applies to fine-grained brittle ceramics except
on the micrometer scale. For small concrete specimens, the exist-
ing experimental histograms are too limited to distinguish be-
tween the Gaussian and Weibull distributions because they differ
significantly only in the far-out tail. Studies subsequent to the
present computations, based on stress dependence of atomic acti-
vation energy �Bažant and Pang 2005a, b, 2006�, showed that the
distribution for one RVE must be Gaussian except for a far-out
Weibull �or power-law� tail grafted on a Gaussian core at the
failure probability of roughly 0.001 �if a significant part or the
whole of strength distribution of an alleged RVE were Weibull,
this alleged RVE could not really be a RVE since it would be-
have as a chain in which failure must localize into one link—the
true RVE�. The mean size effect based on Eq. �14� �Fig. �9a� and
Eqs. �59�–�64� in Bažant and Pang 2005a, Fig. 3�b� in Bažant
and Pang 2006� deviates to a large degree from the mean Weibull
size effect only for Neq�200 while the real-size dam size with
its stress field corresponds to Neq�2000 if the RVE size is taken
as 5 cm.

Conclusions

1. The recently derived energetic-statistical formula for size ef-
fect on the strength of quasibrittle structures failing at crack
initiation is extended and used to avoid stochastic nonlinear
simulations of structural response.

2. The characteristic length for the statistical part of size effect
can be deduced by considering the limiting case of energetic
part of size effect for a vanishing thickness of the boundary
layer of cracking. The elastically calculated stress field is
used to obtain the large-size deterministic strength and to
evaluate the Weibull integral for the failure probability for
one chosen structure size, which gives one point on the curve
of the statistical part of size effect. Deterministic plastic limit
analysis of an elastic body with a through-crack imagined to
be filled by a perfectly plastic “glue” yields the small size
asymptote of size effect. Deterministic nonlinear simulations
of several scaled structures, based for example on the crack
band model, then suffice for calibrating the deterministic part
of the size effect.

3. The present approach allows easy calibration of the mean
energetic-statistical size effect.

4. Stochastic two-dimensional nonlinear simulation of the fail-
ure of Malpasset Dam demonstrates good agreement with the
proposed procedure, and documents the necessity of consid-
ering the size effect in the design of arch dams and other
structures failing at crack initiation. Although the abutment
displacement considered tolerable in design is not known,
one may conclude that, upon taking into account the mean
combined energetic-statistical size effect, the mean tolerable
displacement of the abutment of this ill-fated dam must have
been only about 50% of the displacement considered toler-
able at the time of design, when no type of size effect in
concrete was known.
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