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EXPERIMENTAL DATABASE USED
Thousands of experiments have been conducted around

the world to assess the shear capacity of concrete members,
although only a small fraction of them were specifically
aimed at the effect of size. ACI Subcommittee 445F
extracted, from a collection of more than 1000 data, a new
database of 398 data, called the Evaluation Shear Database
(ESDB).18 Only beams with no shear reinforcement,
subjected to three-point or four-point loading, are included.
All the beams have a rectangular cross section except that 24
are T-beams. The beam depth ranged from 4.33 to 78.74 in.
(110 to 2000 mm) (with a mean of 13.6 in. [345 mm], which
is nearly equal to the mean of 13.4 in. (340 mm) in the 1962
database, and a coefficient of variation [CoV] of 74%); the
shear-span ratio (a/d) (with a = M/V) ranged from 2.41 to
8.03 (with a mean of 3.6 and a CoV of 26%); the compression
strength fc′  of concrete of the beams ranged from 1828 to
16,080 psi (12.6 to 110.9 MPa) (with a mean of 6104 psi
[42.09 MPa] and a CoV of 55%); the longitudinal steel ratio
ranged from 0.14 to 6.64% (with a mean of 2.3% and a CoV
of 52%); and the maximum aggregate size, known for only
for 341 data points, ranged from 0.25 to 1.5 in. (6.35 to 38 mm)
(with a mean of 0.71 in. [18 mm] and a CoV of 40%).

The ESDB has been adopted for the present studies in ACI
Committee 446, even though the rationality and impartiality
of the criteria used to select the data have been questioned.19-23

For instance, the largest beams ever tested, up to 9.84 ft
(3 m) deep5-7 were excluded from the ESDB based on the
fact that they were subjected to distributed load, a combination

of which, with point loads in the same database, was thought
to complicate interpretation. But this position disregards the
fact that the code provision must apply to both. The
reduced-scale beam tests at Northwestern University,4 with
an aggregate size of 0.19 in. (4.8 mm) and a beam width bw
of 1.90 in. (48 mm), were excluded with the explanation that,
inexplicably, only beams with bw greater than 1.97 in. (50 mm)
were admissible; these tests, however, exhibited the most
systematic size effect trend, had an exceptionally broad size
range (1:16), and achieved the highest brittleness number24

among all the available tests, thus mimicking the brittleness
of very large beams (bw equaled 10 maximum aggregate
sizes in these tests, which is not only adequate but also, after
a width increase by mere 4%, would have technically qualified
these data for inclusion in the ESDB; the width increase would
not have distorted interpretation because it is generally
accepted that the effect of beam width on vc is nil8,20-23 if the
width exceeds approximately four aggregate sizes).

While the size effect is of major concern for beams deeper
than approximately 40 in. (1 m), 86% of the tests in the
ESDB pertain to beam depths less than 20 in. (0.5 m), 99%
less than 43 in. (1.1 m), and 100% less than 79 in. (2 m) (see
the database histogram in Fig. 1 of Reference 13). The CoV
or ω of the deviations of an empirical size effect formula
derived directly from the ESDB will therefore be totally
dominated by small size beams for which the size effect is
unimportant. Thus, it is possible that some formula that gives
the lowest ω for the ESDB could be completely wrong for
large sizes while another formula that might give a higher ω
could be much more realistic for large sizes. Obviously, a
purely empirical extrapolation to large sizes cannot be
trusted. A solid scientific basis is crucial. In the plot of
log(vc / ) versus logd (refer to Fig. 2 in Reference 13) it
is striking that, while the curves of various previously
proposed formulas are very different, they all appear to be
equally good (or equally bad) compared with the ESDB. The
reasons are: 1) The size range covered by the database is not
broad enough; 2) the scatter is enormous because the effects
of concrete strength and type, longitudinal steel ratio, shear
span, and aggregate size are not separated by a suitable
choice of relevant regression variables; and 3) the ESDB
database is biased by the fact that the interval averages of
other influencing variables (ρw, a/d, fc′ ), as well as the spread
between the minimum and maximum interval values of each
variable, vary strongly from one size interval to the next.

A serious obstacle to extracting a size effect formula
purely empirically from the ESBD is the fact that the vast
majority (more than 97%) of its 398 data points come from
tests motivated by different objectives (such as the effect of
concrete type, reinforcement, and shear span), in which the
beam depth was varied only slightly or not at all. The effects
of variables other than d exhibit enormous scatter, which
masks the size effect trend. It is necessary to find regression
coordinates that include the effects of influencing variables
other than the size.

CHOICE OF BASIC SIZE EFFECT FORMULA
In view of the preceding arguments, it is necessary to establish

the beam shear formula in two steps: 1) select the form of the
formula on the basis of a sound theory and verify it by close fits
of the available individual test series with geometrical scaling
and a sufficiently broad size range; and 2) calibrate the
selected formula using the whole ESBD. This procedure12-14

led to the classical energetic size effect formula25

fc′
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Fig. 3—(a) Comparison of proposed formula with ESDB;
and (b) smoothing of histogram of beam depth in ESDB.
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(1)

The first step shows that the choice of the form of size
effect would not be contaminated by random variation of
parameters other than size d. Because of high random scatter
in beam shear tests, the size range should be at least 1:8 to
obtain a clear size effect trend. Two data sets that closely
approach these requirements are those obtained at North-
western University (not included in the ESDB) and the
University of Toronto (refer to Fig. 4), which shows that the
fits by Eq. (1) are very close.

The salient property of this formula is that, for large sizes,
it approaches an inclined asymptote of slope –1/2 in a doubly
logarithmic plot, corresponding to a power law of the
type d–1/2. This property, which was endorsed as essential
by a unanimous vote of ACI Committee 446 in Vancouver in
2003, is indeed verified by the available broad-range test
series—Northwestern University tests (Fig. 4(a)), University
of Toronto tests (Fig. 4(b)), and the record-size Japanese
tests (Fig. 4(c) and (d)). It is not contradicted by any of the
existing additional seven test series of a lesser but still significant
size range8,26,27 (refer to the plots in Reference 14).

The Japan Society of Civil Engineers (JSCE) pioneered
the size effect for design code long ago. It adopted a
power-law, vc ∝ d–1/4, which was proposed by Okamura and
Higai28 already in 1980 before the energetic size effect was
discovered and was motivated by the Weibull statistical
theory, at a time when this classical theory was the only
theory of size effect. A decade later it became clear that the
Weibull theory applies only for structures failing right at the
initiation of fracture growth from a smooth surface,29,30

which is not the case for reinforced concrete beams, where a
large crack or cracking zone develops before the maximum
load is reached.24,29-32 Besides, even if the Weibull
statistical theory were the right explanation for the JSCE
power law, its exponent would need to be changed from –1/4 to
–1/12. The reason is twofold: 1) a realistic Weibull modulus
for concrete is 24 rather than 1214,33; and 2) the fracture
scaling must be considered two-dimensional (n = 2) because,
in not too wide beams, the fracture must (for reasons of
mechanics) grow over the whole beam width nearly
simultaneously. But the exponent –1/12 would be far too
small to describe the strong size effect evidenced by test
data, including those of JSCE.

The formula based on the crack spacing according to the
modified compression field theory (MCFT) has the opposite
problem of the JSCE formula. Its large-size asymptote is
vc ∝ d–1, while the exponent of the greatest thermodynamically
possible magnitude is –1/2 (or else the energy flux into
moving fracture front would be infinite24,29,31). Besides, the
proposed justification of the MCFT formula34 is unrealistic
for two reasons13,14: 1) crack spacing is not uniquely related
to energy release and depends also on other factors35; and 2)
the crack-bridging tensile and shear stresses at maximum
load are reduced to almost zero while the failure is caused
mainly by near-tip compression stresses parallel to the diagonal
shear crack. As for the CEB-FIP formula, it is purely
empirical and thus cannot be trusted for large sizes for which
data are scant or nonexistent.

The deceptiveness of a purely empirical power-law
extrapolation of a combined database such as ESBD is
illustrated in Fig. 5(a), (b), and (c). Suppose that the mean

vc
v0

1 d d0⁄+
-------------------------=

size effect trend agrees perfectly with size effect Law (1), but
different investigators choose different size effect ranges for
testing. In view of scatter, each of them fits a power law to
his data. The exponents of this power law will vary between
0 and –1/2 depending on the chosen size range. An unambiguous,
purely experimental verification of Eq. (1) would require a
very broad size range (Fig. 5(d)).

STATISTICAL CALIBRATION, VERIFICATION,
AND EVALUATION OF PROPOSED FORMULA

The next step is to calibrate the size effect formula by
proper statistical regression. Let vi (i = 1, 2,...n) be the

Fig. 4—Comparison of size effect Formula (1) to beam
shear test series with greatest size range and with nearly
geometrical scaling: (a) microconcrete beams tested by
Bažant and Kazemi at Northwestern University in 19914

(not included in ESDB); (b) large size tests at University of
Toronto reported by Podgorniak-Stanik9 and Lubell et al.;11

and (c) and (d) large beams under uniform loading in Tokyo.5-7

Fig. 5—Example of effect that choice of size range of highly
scattered tests can have on regression result when straight
line plot in log-scale in assumed.
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measured data points for sizes di  and let vi be the corre-
sponding values of vc calculated from the proposed formula.
It turns out that the right approach is not to minimize the sum
of squared errors (or residuals) Σi(vi – vi)

2 because the variance
of the data (precisely, conditional variance Var(vc|d)36) is
heteroscedastic, that is, strongly decreases with the increasing
size d. To minimize statistical bias, the statistical variable vc
should be transformed so as to make the variance, and thus
the scatter band width, approximately uniform,36 or
homoscedastic. This is approximately achieved by the
transformation y = lnvc. Thus, the objective of data regression
is to minimize, in the scale of lnvc , the square of the standard
error of regression sL, the unbiased definition of which is

 where p is the number of free
parameters in data fitting (because (dlnvc)

2 = (dvc)
2/vc

2 ), the
transformation from vc to y has a similar effect as applying
weights proportional to 1/vc

2 . In the linear scale of vc, the
corresponding CoV of regression is ω = ( )/2 (which
herein is almost equal to sL).

According to the ACI code, the factored shear force Vu
must not be greater than φ(Vc + Vs) where φ = 0.75 is the
understrength (strength reduction) factor and Vs is the yield
shear force carried by shear reinforcement. The maximum
shear force Vc that can be carried by concrete is proposed to
be calculated as14

, d0 = κ fc′
–2/3 (2)

where, if da is known, κ = 3800 ; if not, κ = 3330 (3)

where Vc is in lb, fc′  is in psi, ρw is the longitudinal steel ratio,
and bw and d are in inches. The expression for d0 is empirical.
Note that Vc increases continuously with d, but less than
proportionately (because of size effect).

As seen in Fig. 2(b), for very small d, the Vc value
according to the proposed Formula (2) is greater than
predicted by the current Formula (4), Vc = 2 bwd. This
means that the current formula can be used safely within a
certain range. The permissible safe range for Eq. (4) is d ≤ 6 in.
(150 mm). This is ascertained from the ESDB plotted in
Fig. 2, which reveals that for d ≤ 6 in. (150 mm), no beam
test gave a shear strength less than the value given by Eq. (4).

As a simple and safe (though often uneconomical) alternative
(Fig. 2(a)), the simple formulas

for d ≤ 6 in. (150 mm): Vc = 2bw d (4)

for d > 6 in. (150 mm): Vc = 5bw (5)

can be used instead of Eq. (2). In Fig. 2, the solid inclined line
represents Eq. (5). Note that if the small size limit were set at
9 or 12 in. (0.23 or 0.3 m), as shown by the other two dashed
inclined lines, the design equation would not be safe.

Formula (2), as well as Formulas (4) and (5), are recom-
mended for use regardless of whether or not there is shear
reinforcement. For small beams, shear reinforcement appears
to increase Vc appreciably. But this observation is based on
only one large beam test, which is statistically insufficient,
and the test shows that the size effect is only mitigated, but

sL
2 Σi 1=

n vi vi⁄( )2 n p–( )⁄ln=

e
sL e sL––

Vc 10bwρw
3 8⁄ 1 d

a
---+⎝ ⎠

⎛ ⎞ fc′ d0d

1 d0 d⁄+
---------------------=

da

fc′

fc′

fc′ d

not eliminated, by shear reinforcement. Furthermore, finite
element simulations at Northwestern University (based on
nonlocal damage concept) show that, for large beams
exceeding approximately 60 in. (1.52 m) in depth, shear
reinforcement does not increase Vc and does not help against
size effect. For very deep beams with strong shear rein-
forcement, these simulations indicate that not only is Vc not
increased, but Vs at maximum load is much below the yield
strength of stirrups Vs = Asfyd/s.

The general form of Formula (1) has been verified for
many different structural geometries and many different
quasibrittle materials. The analytical derivations (though not
the numerical verifications) have been subjected to the
hypothesis that a large crack or long band of cracking
damage develops in a stable manner before the maximum
load is reached and the failure modes of small and large
structures are geometrically similar (experiments as well as
finite element simulations document that this is approximately
true for beam shear failures).

The current ACI code also involves corrections to the
expression for Vc due to simultaneous action of compressive
or tensile axial force, and for the calculation of the shear span
ratio from the bending moment in the presence of axial force.
The multiplicative factors for these corrections are applied to
the present formula with no change.

The expressions for the parameters in Eq. (2) through (5)
have been obtained by simplified mechanical considerations
and calibrated by optimization of data fits.14 The
least-square fitting of the data, conducted in the plot of lnvc
versus lnd, was a weighted regression. The weighting was
necessary to counteract the subjective bias due to crowding
of the data points in the small-size range; refer to Fig. 3
where the data points are represented by circles having areas
proportional to the weight. A logarithmic scale of d needs to
be used because, for example, the size effect from 11.8 in.
(0.3 m) to 11.8 + 11.8 in. (0.3 + 0.3 m) is significant, but
from 118 in. (3 m) to 118 in. + 11.8 in. (3 m + 0.3 m) insignifi-
cant. The optimum data fitting was accomplished by a standard
library subroutine for the Levenberg-Marquardt nonlinear
optimization algorithm. The heavy solid line in Fig. 3
represents the mean fit formula, and the dashed line represents
the design formula, which is set at the lower 5% fractile of
the scatter band width. The overall CoV or ω of the errors of
Formula (2) calculated by the ESDB is 15%. The CoV of the
errors for various size intervals of 10 in. (0.25 m) width are 18.8,
15.6, 11.6, 15.3, 14.5, and 15.7%, respectively (note that these
values are approximately uniform, which conforms
homoscedasticity, is required for a proper statistical
approach and is achieved by transforming the regression vari-
able from vc to lnvc).

The reason why Eq. (3) gives two options for calculating
d0 is that sometimes the design needs to be made before the
maximum aggregate size da has been decided. Both expressions
for d0 give the same value when da = 0.77 in. (≈20 mm).

REGRESSION OF DATA GROUPED
IN EQUAL-RATIO INTERVALS

To minimize the size effect bias due to highly nonuniform
distribution of data through the size range of interest, subdivide
the range of beam depths d of the existing test data into five
size intervals (Fig. 6). They range from 3 to 6 in. (76.2 to
152.4 mm), from 6 to 12 in. (152.4 to 304.8 mm), from 12 to
24 in. (304.8 to 609.6 mm), from 24 to 48 in. (609.6 to
1219.2 mm), and from 48 to 96 in. (1219.2 to 2438.4 mm).
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Note that the borders between the size intervals are chosen to
form a geometric (rather than arithmetic) progression
because what matters for size effect is the ratio of sizes, not
their difference (note that, for example, from d = 4 to 24 in.
[100 to 600 mm], the size effect is strong and from 400 to
420 in. [10,160 to 10,668 mm], the size effect is negligible).

To filter out the effect of influencing parameters other than
d, each interval of d must include only the data within a
certain restricted range of ρw values such that the average ρw
will be almost the same for each interval of d. Similarly, the
range of a/d and da must be restricted so that the average a/d and
da be approximately the same for each interval of d. Because,
as generally agreed, the effect of the required concrete strength
fc′  is adequately captured by assuming the shear strength of
cross section vc to be proportional to , the range of fc′  does
not need to be restricted and the ordinate y of data centroid in
each interval may be obtained by averaging, within that
interval, not the vc values but the values of y = vc/  that fall
into the aforementioned restricted ranges of ρw, a/d, and da.

As shown in Fig. 6, there are only three test data in the size
interval 48 to 96 in. (1219 to 2438 mm), one of which has the
longitudinal steel ratio of ρw = 0.14%, the second is 0.28%,
and the third is 0.74%. This extremely low ρw makes it
impossible to find similar data in other intervals of d. For
example, the minimum ρw is 0.91% within the first interval
of d, and 0.46% within the third interval. Therefore, one may
consider the size range from 3 in. (76 mm) to only 48 in.
(1219 mm). After searching the ESDB, there are 7, 19, 25,
and 36 data points within the admissible ranges for each
interval of d (ideally, the number of data in each interval
should be the same, and thus it is impossible to eliminate bias
completely). For these restricted ranges, the mean values of
ρw are 1.51%, 1.5%, 1.51%, and 1.5%; the mean values of a/d
are 3.44, 3.25, 3.25, and 3.21, respectively; and the mean
values of da are 0.66, 0.66, 0.68, and 0.65 in. (16.8, 16.8,
17.3, and 16.5 mm). Thus, data samples with minimum bias
in terms of ρw , a/d, and da are achieved (a systematic
computerized procedure toward this end is developed in
Reference 37). The data centroids for each interval are
plotted as the diamond points in the plot of log(vc / )
versus logd (Fig. 6(a))—on top they are shown together with
all the data points of the database, and at bottom they are
shown alone. Despite enormous scatter in the database
(Fig. 6(a)[top]), the trend of these centroids is quite systematic.

Assuming the statistical weight of each size interval
centroid in Fig. 6 to be the same, statistical regression is used
to obtain the optimum least-square fit of these four centroids
with the theoretically justified size effect law vc /  =
C(1 + d/d0)–1/2, where C and d0 equal the free constants to
be found by the fitting algorithm. The fit is seen to be good;
it has a very small CoV of errors (ω = 2.7%), and the asymp-
totic slope –1/2 required by fracture mechanics2,13,14,25 is
seen to match the data trend well.

To increase the size range, consider now that one point
from the largest size interval from 48 to 96 in. (1219 to
2438 mm), namely the Toronto beam with ρw = 0.74%, is
included; refer to Fig. 6 (admittedly, one data point is too
few, but that is what must be accepted because of the cost of
testing very large beams). Then the same procedure is
followed as previously mentioned and, for the other four
intervals of d, 1, 2, 4, and 15 data points are found for which
the means of ρw in the interval of d are 0.91, 0.94, 0.92, 0.91,
and 0.74%, while the mean of a/d = 2.9 and the mean
maximum aggregate size da = 0.39 in. (10 mm) are the same

fc′

fc′

fc′

fc′

for each interval. Again, the size effect trend is very clear,
and agrees well with the asymptotic slope of –1/2. The CoV
of errors is now ω = 4%.

The foregoing regression with minimized statistical bias
lends no support for the previously proposed power laws
vc /  = Cd–1/4 or Cd–1/3. Neither does it lend any support
to the asymptotic size effect vc /  = Cd–1 implied by an
alternative model based on MCFT (an exponent magnitude
greater than 0.50 is energetically as well as statistically
impossible.24,29,31

EXCESSIVE FAILURE PROBABILITY
CAUSED BY IGNORING SIZE EFFECT

Could the size limit of 6 in. (150 mm) in Eq. (4) be extended
to 39.4 in. (1 m), as suggested by some researchers? No. To
demonstrate it,38 the data in the size range of d from 4 to 12 in.
(101.6 to 304.8 mm), centered at 8 in. (203.2 mm), are
isolated from the database (Fig. 7(a)). Within this narrow
range, no size effect trend is discernible, and the data may be
treated as a statistical population. Its mean and CoV are
found to be y = vc /  = 3.2 and ω = 25% (this relatively
high value of ω is the consequence of variability of many
parameters in the database). The data in this range suffice to
fix the probability density distribution function (pdf) for this
range, which is assumed to be log-normal. The same pdf is
compared in Fig. 7(a) with the series of individual tests of
beams of various sizes made at the University of Toronto,
which have been invoked by some engineers to claim that the
size effect may be ignored for d up to 39.4 in. (1 m).

It should be noted that, for the type of concrete, steel ratio,
and shear span ratio used in the Toronto tests, their shear
strength value lies (in the logarithmic scale) at a certain
distance a below the mean of the pdf. Because the width of
the scatter band in Fig. 7(a) in logarithmic scale does not
vary appreciably with the beam size, the same pdf and the
same distance a between the pdf mean and the Toronto data
must be expected for every beam size d, including the sizes

fc′
fc′

fc′

Fig. 6—ACI-ESDB and statistical regression of centroids of
test data with intervals of equal width: (a) large-size interval
not included; and (b) all intervals included.
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of d = 39.4 and 74.4 in. (1 and 1.89 m) for which there is only
one data point. In other words, if the Toronto test for d =
39.4 in. (1 m) were repeated for many different types of
concrete, steel ratios, and shear span ratios, humidity and
temperature conditions, etc., one would obtain a pdf shifted
downwards, as shown in Fig. 7(a). According to the
log-normal pdf shown, the proportion of unsafe 39.4 in. (1 m)
deep beams would be approximately 40%, while for small
beams, it is only 1%. This is intolerable. A design code
known to have such a dangerous property is unacceptable.

More seriously, a design code ignoring the size effect for
beams of d < 39.4 in. (1 m) will cause the failure probability
Pf of 39.4 in. (1 m) deep beams to be approximately 1000 times
larger than that of small beams 8 in. (200 mm) deep. To
demonstrate it, consider the pdf of the extreme loads expected to
be applied on the structure, which is denoted as f(y). Based on the
load factor of 1.6 and the understrength factor of φ = 0.75, the
mean of the pdf of the extreme loads will be positioned as shown
in Fig. 7(b). Assuming the individual loads to have the
log-normal distribution, their pdf is as shown in Fig. 7(b). Based
on the CoV of extreme loads, herein assumed as ωL = 10%, the
failure probability may now be calculated from the well-known
reliability integral36,39,40

(6)

where R(y) is the cumulative probability density distribution
(cdf) of structural resistance. Upon evaluating this integral

for beams of 8 in. (200 mm) depth, Pf ≈ 10–6 (7)

for beams of 39.4 in. (1 m) depth, Pf ≈ 10–3 (8)

The failure probability of one in 1 million corresponds to what
the risk analysis experts generally consider as tolerable,15-17 but
one in 1000 is intolerable.

SIZE EFFECT ON CONCRETE CONTRIBUTION Vc 
TO SHEAR STRENGTH OF BEAMS WITH STIRRUPS

Some researchers have recently voiced the opinion that
shear failure of beams with minimum or heavier shear

Pf f y( )
0

∞

∫ R y( )dy=

reinforcement exhibits no size effect. This opinion seemed
to be reinforced by one recent test at the University of
Toronto.11 In this test, a beam 74.41 in. (1.89 m) deep, with
approximately minimum stirrups, supported a shear force V
exceeding the required nominal shear strength Vu/φ by 6%
that is calculated according to ACI 318-05 (this observation
was claimed to confirm safety, even though this test result is,
in fact, 11% less than required if one notes that the design
should be based on the required compression strength, that
is, on vc = 2 , rather than the average compression
strength, that is, on vc = 2 ).

A proper statistical analysis, however, reveals that this
conclusion is incorrect. The correct interpretation of the
Toronto test is that there is a size effect, and that the reduction of
Vc caused by size effect is, for the Toronto test, approximately
41%, which is quite significant, though still much less than
the 76.2% reduction observed in a companion beam without
stirrups.41 The reason is that, aside from the (overt)
understrength factor φ = 0.75, the shear design implies two
covert understrength factors:
• Material understrength factor φm ≈ , due to the fact41

that the design must be based not on fcr′  but on fc′ , which
represents, on the average, approximately 70% of fcr′ ; and

• Understrength factor φf due to the fact that the design
formula has been set to pass at the margin (or fringe) of
the experimental scatter band width rather than through
its middle.

The situation is illustrated in Fig. 1. It shows all the points
of the ACI (1962) database containing only small beams
(accurately plotted from the table in the original source) and
also shows the fit of the histogram of vc data by a Gaussian
distribution. This database still serves as the basis of the
current ACI 318-05 shear design provisions. The ACI 318-05
formula for required average shear strength is shown by the
horizontal line at vc = 2  = vc = 2 .

The recent Toronto tests of two companion beams 74.41 in.
(1.89 m) deep, one with and one without stirrups, are shown by
the diamond points. The percentage strength reductions
marked in Fig. 1 show that the creators of ACI Formula 2
considered it necessary, from the safety viewpoint, that their
formula be set at approximately  × 65%, that is, 54%, of
the mean of their test database (note the separation of the
horizontal line 2  and the line 3.1  for the mean
of database).

The Toronto test without stirrups represents 0.74/3.1 =
23.8% of the mean of the database, and so the strength reduction
due to size effect is, for this test, 23.8%. But what strikes the
eye immediately is that not only the point for the beam
without stirrups, but also the point for the beam with
minimum stirrups, lies far below the mean of the database,
precisely at 1.83/3.1 = 59% of the mean. This indicates that
the size effect reduced the strength of the Toronto beam with
minimum stirrups to 59% of the average strength of the
small-beam database—a reduction that is not negligible at all.

The benefit provided by the minimum stirrups in the
Toronto tests was that the size effect reduction of Vc was
mitigated from 23.8 to 59%. That is helpful, but insufficient
for safety by far.   Even with stirrups, the failure probability
is several orders of magnitude higher than one in 1 million.

The aforementioned two covert understrength factors
implied by the current ACI 318-05 code provisions are 65 and
83.7%, as shown in Fig. 1. If these factors were unnecessary,
then the design formula would be vc = 2 /(0.65 × )
= 3.68  instead of vc = 2 , but this would, of course, be

fc′
fcr′

0.7

fc′ 0.7fcr′ 1.67 fcr′≈

fc′

0.7

fc′ fcr′

fc′ 0.7
f c′ fc′

Fig. 7—(a) Probability distribution of shear strength of
beams from 3.94 and 11.81 in. (10 to 30 cm) deep, based on
ACI Committee 318-F database, compared with Toronto
data; and (b) failure probability for small beam and 3.28 ft
(1 m) deep beam.
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unsafe. Obviously, the same safety margin must be satisfied
by any subsequent tests, such as the Toronto test.

These observations make it clear that stirrups do not eliminate
the size effect. They only mitigate it. According to the
theory,42 the general size effect Formula (1) remains valid
and the effect of stirrups is to increase the transitional size d0.
Avoidance of size effect would require elimination of
post-peak softening on the load-deflection diagram, and this
could be achieved only if the concrete were subjected to
strong triaxial confinement (all the three negative principal
stresses would have to exceed several times the uniaxial
compression strength in magnitude43).

The crack band finite element model has been used at
Northwestern University to check whether the shear failure
of beams with minimum stirrups exhibits a size effect. The
beam geometry is the same as in the Toronto tests,10,11

except that the longitudinal steel ratio is slightly raised to
1%, to make sure that the beam would not fail by flexure.
Computations are run for geometrically similar beams of
depths 37.2 in. (0.945 m), 74.4 in. (1.89 m, the size tested in
Toronto), and 148.8 in. (3.78 m). The fracture energy of the
Toronto concrete is estimated from the empirical formula44

as Gf = 60 J/m2. The stirrups and longitudinal bars are
assumed not to slip.

The mesh and the cracking pattern at maximum load are
seen in Fig. 8(a), which shows the simulated dimensionless
load-deflection diagrams for all the sizes. The diagram for d
= 74.4 in. (1.89 m, the size tested in Toronto) shows the peak
load of 340 kips (1513 kN), which is close to the measured
value (despite a small increase of longitudinal steel ratio).
Figure 8(c) shows the dependence of the average beam shear
strength vn = V/bwd on beam depth d, and Fig. 8(d) shows the
same for the average shear strength vc = Vc/bwd contributed
by concrete (Vc = V – Vs, Vs = As fyd/s where As and s equal
the stirrup area and spacing). These plots document the
existence of a strong size effect. The asymptotic slope –1/2
of the size effect is also shown.

To explore the effect of longitudinal steel ratio ρw , the
crack band finite element calculations are also run for
increasing ρw values (and for fixed size d = 74.4 in. [1.89 m])
(refer to Fig. 8(b)). It transpires that an increase of ρw raises
the shear capacity V of these beams, but only up to a certain
critical value, ρw ≈ 0.9%. For a further increase in ρw (and up
to 75% of the balanced steel ratio ρb), the shear capacity
slightly decreases and then levels off.

The conclusion from these finite element simulations is
that the shear reinforcement, whether minimum or heavier
than minimum, is unable to suppress the size effect. It mitigates
the size effect significantly, but not enough by far to make
the size effect negligible.

CLOSING COMMENTS
At present, the concrete design experts are not yet in

complete agreement. As pointed out, several alternative
formulas for size effect, including those of JSCE, CEB-FIP,
and ACI Subcommittee 445F, are being debated. They do
not show major differences within the range of the existing
database but give very different extrapolations to very large
beams. The extrapolation according to Eq. (2) gives much
smaller Vc values than the other formulas for beam depths of
the order of 393.7 in. (10 m). Even if the present rational
arguments are set aside, the prudent choice is the formula
offering the safest extrapolation of the database to large sizes,
which is Formula (2). If calibrated to the same database, this

formula will always give, for sizes beyond the database
range, lower values of Vc than the JSCE, CEB-FIP, and
ACI Subcommittee 445F formulas.

In view of costs, real-size tests of extremely large beams
are hardly feasible, and even moderately large beams cannot
be tested in sufficient numbers (and for a sufficient range of
shear spans, steel ratios, and concrete types), so as to provide
statistically significant evidence for an empirical formulation.
Some information, however, can be extracted from past
structural disasters. Their recent studies show that the size
effect must have been a contributing factor in many of them.
The reason that this was not initially recognized is that the
true overall safety factor (the ratio of the mean of test results to
the unfactored design service load) is huge—approximately 3.5
to 7 for shear failures of the small laboratory-size beams,41

and, even after taking the size effect into account, still
approximately 1.7 to 3.5 for the largest.

Therefore, not one mistake, but typically two or more
mistakes, are usually needed to cause shear failure of a reinforced
concrete beam. Unfortunately, multiple mistakes can happen,
and doubtless will. When they do, designing for size effect can
make the difference between failure and survival.
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APPENDIX—DISCUSSION OF DESIGN SITUATIONS 
NOT COVERED BY EXISTING DATABASE

Beams with low longitudinal steel ratio ρw 
in Joint ACI-ASCE Committee 445 database

Low ρw was one point on which concern has been voiced. In
the ESDB, ρw ranges from 0.14 to 6.64%, with a mean value
at 2.3%, and among the 398 tests, only 58 had ρw < 1%.
Therefore the data for ρw < 1% are plotted separately in
Fig. A(a) (in this and further figures with varying ρw , the size
of each circle is proportional to ρw). As can be seen, the fit is
just as good as that for the total ESDB, and so there is no
problem in this regard.

To clarify the role of ρw further, 18 beams, with ρw ranging
from 0.25 to 8%, have been simulated by a crack-band finite
element code with the microplane model (refer to Fig. A(b)).
In the computations, all the beams failed by shear. Again, the
ACI Committee 446 formula is seen to give a good and safe
estimate of shear strength for all the computer-generated data.

Design example: Fixed-end beam under 
distributed load

The ESDB is restricted to simply supported beams under
three- or four-point loading. The proposed code revision,
however, will, in practice, be applied also to redundant
beams and distributed loading. Although the existing code
specifications have, for a long time, been extended the same
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way, it is proper to check some cases. One case of concern is
an example of wide beam (slab) design presented in 2004 at
the ACI Committee 446 meeting in Washington, D.C.,
which seemed to cast doubt on the present proposal. A
fixed-end beam with a span of 20 ft (6.1 m), under an 11 ft
(3.35 m) overburden of soil, was considered and it was found
that the beam depth of d = 14 in. (356 mm) with ρw = 1.14%
is required according to the current ACI code, and the depth
of d = 34 in. (864 mm) with ρw = 0.13% would apparently be
required by the present code proposal. Due to negative
bending moment at ends, this is a case for which no test data
exist. Therefore, extensive simulations have been under-
taken using a crack-band finite element code to clarify the
perplexing conclusion (note that regular commercial finite
element codes lacking a nonlocal or crack-band concept
cannot be used because they cannot capture the size effect,
as a matter of principle).

The simulations of this loading, which is not covered by
the current ESDB, include two classical Japanese tests of
two beams 23.62 and 118.11 in. (0.6 and 3.0 m) deep,7 and
further three beams, all of them 14 in. (0.36 m) deep, with
ρw = 1, 2, and 3%. The results are shown by circles in Fig. A(c),
where the two Japanese tests are displayed as diamonds. The
simulations agree well with the Japanese tests, and also with
the proposed formula. The agreement with the Japanese tests
verifies the correctness of the finite element simulation and
confirms that the size effect is reproduced. Figure A(d)
further documents that the crack patterns at maximum load
simulated for the Japanese beams are quite realistic.
Figure A(d) also shows the simulated stress distribution
along the longitudinal steel bar, in which it should be noted
that the longitudinal steel bar does not yield at failure. For the
distributed load, the shear span is defined as a = M/V, and it
needs to be noted that it exceeds 2.5 for all the beams considered
herein. This means that these beams fit within the range of
validity of the current and proposed ACI specifications.

The proposed calculation suggested that an incredibly
deep beam with incredibly low ρw might be required if the
present code formula is used. Test data for this situation are
lacking. Because of negative bending moment at beam ends,
the effect of longitudinal steel entering the compression zone
needs to be simulated. Two beams shown in Fig. B(a) and (b)
were considered, both with d = 14 in. (356 mm), l = 240 in.
(6.1 m), and a/d = M/Vd = 2.86. In the beam on the left, the
longitudinal bars at the bottom face run through the whole
span, and in the beam on the right, the longitudinal bars
terminate at distance 1.5d from the supports. All the simulated
beams fail by shear (that is, the longitudinal steel does not
yield) and exhibit a clear diagonal shear crack at peak load.
The beam on the left of the figure has a shear strength higher
by 9% than the beam on the right. This result confirms that
the shear strength prediction is conservative when there is
steel bar in the compression zone. This is not surprising
because all finite element simulations show that the shear
strength is controlled by compression failure of the concrete
above the tip of the diagonal shear crack caused by compression
force parallel to the crack.

Although the design strength for both simulations is close
to the present proposal (Fig. B(c)), this proposal gives, for
d = 14 in. (356 mm), a design strength slightly less than the
factored load. This is what motivated the proposal to Joint
ACI-ASCE Committee 445 to calculate how much the beam
depths need to be enlarged to satisfy the present code
proposal. The calculation indicated that d = 34 in. (864 mm)
was needed if the present proposal were used. It was over-
looked in this calculation, however, that the present code
proposal, as well as the current code, becomes invalid once d
exceeds 16 in. (406 mm). The reason is that the beam
becomes a deep beam, which is defined as a beam with a/d ≤
2 and requires a different design procedure, based on the
strut-and-tie model. Using this procedure, one finds that the
necessary depth in the proposed example is d = 20 in.
(508 mm), and not 34 in. (864 mm).

This conclusion cannot be checked by the ESDB because
of its limitation to beams with a/d ≥ 2.5. Therefore, for

Fig. A—Test and simulations compared with proposed
formula: (a) ESDB data with ρw < 1%; (b) simulations of
beams with different ρw; (c) Japanese tests of simply
supported beams under distributed loads and their simulations;
and (d) crack patterns for Japanese beams at maximum load.

Fig. B—Finite element simulations for Bentz’s slab: (a) 14 in.
(356 mm) deep slab with steel bar at bottom face across
whole span; (b) 14 in. (356 mm) deep slab with steel bar at
bottom face terminated 1.5d away from support; (c) simulations
of fixed-end wide beams of different thicknesses, of sizes
within and outside the range of proposed formula; and (d)
42 in. (1.07 m) deep slab showing deep beam behavior.
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further clarification, four other beams are simulated by a
computer program. All parameters are the same except that
d = 4, 16, 20, and 42 in. (100, 406, 508, and 1067 mm) at
constant beam span L = 20 ft (6.1 m). The ratio a/d decreases
with increasing d, and this is seen to increase the shear
strength rapidly. The crack propagation and stress distribution
along the steel bar in the beam of 42 in. (1067 mm) depth are
plotted in Fig. B(d). A typical short beam failure is clearly
seen, and the steel bar yields at peak load. Formula (2) gives
good predictions for d = 14, 16, and 20 in. (356, 406, and
508 mm) even though it is supposed to apply only for d ≤
16 in. (406 mm) (which corresponds to a/d ≥ 2.5). For unusually

small depths, however, d < 4 in. (100 mm, a/d > 10), the
simulated shear strength is much less than predicted, which
suggests that an upper bound, a/d ≈ 8, might be considered
for adoption, with a different formula for higher a/d. The
reason is that, in very slender beams, the region having, at
maximum load, very high compressive stress (close to fc′ ) is
found to be much more elongated than for normal a/d, and
this apparently promotes crushing of concrete. Such
inferences cannot be checked with the ESDB, however, in
which the maximum a/d is 8.03. To cover a large a/d, which
is not included in the ESDB, the parameter a/d will have to
be included in Eq. (2).




