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Unbiased Statistical Comparison of Creep and Shrinkage 
Prediction Models
by Zdenek P. Bažant and Guang-Hua Li

This paper addresses the problem of selecting the most realistic
creep and shrinkage prediction model, important for designing
durable and safe concrete structures. Statistical methods of
standard and several nonstandard types and a very large experimental
database have recently been used to compare and rank the existing
prediction models, but conflicting results have been obtained by
various investigators. This paper attempts to overcome this
confusion. It introduces data weighting required to eliminate the
bias due to improper data sampling in the database, and then
examines Bažant and Baweja’s Model B3, the ACI model, the
CEB model, and two of Gardner’s models. The statistics of prediction
errors are based strictly on the method of least squares, which is the
standard and the only statistically correct method, dictated by the
maximum likelihood criterion and the central limit theorem of the
theory of probability, as well as the requirement of noncorrelation
of errors. Several nonstandard statistical methods that have
recently been invented to evaluate creep and shrinkage models are
also examined and their deficiencies are pointed out. The ranking
of the models that ensues from the least-square regression statistics is
shown to be quite different from the rankings obtained by the
nonstandard statistics.

Keywords: creep; design guide; least-square regression; prediction model;
shrinkage; statistics.

INTRODUCTION
Altering the statistical method can often lead to very

different conclusions. Aside from shear strength statistics,1

one important statistical problem where inventions of
various nonstandard statistical indicators2-7 have recently
sowed much confusion in the statistical comparison of
various prediction models for creep and shrinkage8-22 using
large databases. A model that was rated as superior
according to one statistical indicator was rated as inferior
according to another. The slight differences in the ranges
of strength, humidity, and cement type7 for which various
models were calibrated cannot explain the differences
in ranking.

Are all the statistical methods used in different creep and
shrinkage studies justified? This paper, whose contents were
summarized at a recent conference,23 shows that most of
them are not. In the case of creep and shrinkage, in which
one deals with central-range statistics of errors (and not with
the far-out distribution tail that matters for structural safety),
it is actually very clear what is a rational statistical approach.
It is the method of least squares—the standard method that
(as shown by Gauss24) maximizes the likelihood function
and is consistent with the central limit theorem of the theory
of probability (refer to the Appendix).25,26 There are, of
course, many debatable points, but they concern only details
such as the sampling, weighting, omission of outliers, and
data relevance or admissibility, rather than the statistical
method. This study will attempt to offer correct statistical

comparisons of the main prediction models for creep and
shrinkage of concrete and explain why various nonstandard
statistical indicators have led to dubious conclusions. The same
five models as in Reference 7 will be statistically evaluated:

1. Model B3, 1995, which was approved as the international
RILEM Recommendation27 and slightly updated in 200021

(this model is a refinement of the 1978 Model BP9 and of its
improvement as Model BP-KX13);

2. ACI model,8 based on 1960s research, reapproved by
ACI Committee 209 in 2008;

3. Model of Comité Européen du Béton, labeled CEB,
which is based on the work of Müller and Hilsdorf3 (it was
adopted in 1990 by CEB,12 updated in 1999,28 and co-opted
in 2002 for Eurocode 2);

4. Gardner and Lockman’s model, labeled GL20; and
5. Gardner’s earlier model, labeled GZ.19

Sakata’s model,18,22 whose scope is somewhat limited,
as well as the crude old models of Dischinger, Illston,
Nielsen, Rüsch and Jungwirth, Maslov, Arutyunyan,
Aleksandrovskii, Ulickii, Gvozdev, Prokopovich and
others,29-31 will not be considered.

There exist certain fundamental theoretical requirements32

that are essential for choosing the right creep and shrinkage
model, necessitate rejecting some models even before their
comparison to test data, and were taken as the basis of Model
B3. Nevertheless, most engineers place emphasis on statistical
validation using a large experimental database. Therefore,
this paper will deal exclusively with statistics.

The first comprehensive database, comprising approxi-
mately 400 creep tests and approximately 300 shrinkage
tests, was compiled at Northwestern University in 1978,9

mostly from American and European tests. In collaboration
with CEB, begun at the 1980 Rüsch Workshop,33 this data-
base was slightly expanded by an ACI 209 subcommittee. A
further slight expansion was undertaken by a RILEM
subcommittee. It led to what became known as the RILEM
database,3,34,35 which contained 518 creep tests and 426
shrinkage tests. Recently, a significantly enlarged database,
named the NU-ITI Database36 and consisting of 621 creep
tests and 490 shrinkage tests, has been assembled in the
Infrastructure Technology Institute of Northwestern University
by adding many recent Japanese and Czech experimental
results. A reduced database, consisting of 166 creep tests and
106 shrinkage tests extracted from the RILEM database, has
recently been used in Gardner’s statistical ranking.2,20,37

Title no. 105-M69



611ACI Materials Journal/November-December 2008

Zdenek P. Bažant FACI, is the McCormick Institute Professor and W.P. Murphy
Professor of Civil Engineering and Materials Science at Northwestern University,
Evanston, IL. He is a Registered Structural Engineer in Illinois. He has received six
honorary doctorates. He is a Past Chair and member of ACI Committee 446, Mechanics of
Concrete, and a member of ACI Committees 209, Creep and Shrinkage in Concrete; 348,
Structural Safety; and Joint ACI-ASCE Committees 334, Concrete Shell Design and
Construction; 445, Shear and Torsion; and 447, Finite Element Analysis of Rein-
forced Concrete Structures. He was the founding Chair of ACI Committee 446,
Fracture Mechanics.

Guang-Hua Li is a Graduate Research Assistant and Doctoral Candidate at North-
western University. His research interests include inelastic and probabilistic mechanics.

Among concrete researchers, a popular way to verify and
calibrate a creep and shrinkage model has been to plot the
measured values yk (k = 1, 2, …n) from an experimental
database against the corresponding model predictions Yk, or
to plot the errors (or residuals) εk = yk – Yk versus time
(Fig. 1).5,6,38 If the models were perfect and the tests scatter-
free, the former plot would give a straight line of slope 1, and
the latter a horizontal line of ordinate 0. Figure 1, using the
NU-ITI Database, shows examples of such plots for some of
the aforementioned models. One immediately notes that, in
this kind of comparison, there is very little difference among
the creep and shrinkage models, even those that are known
to give very different long-time predictions. The same is true
for another comparison, popular with concrete researchers,
where the data-model ratio, rk = yk /Yk, is plotted versus time.
If the model were perfect and the tests scatter-free, then all
the rk values would lie on a horizontal line, rk = 1 (for
deficiencies of this kind of statistics, see comments on
Eq. (13) and (14) that follow).

Why are the comparisons in Fig. 1 ineffectual for ranking
models? There are four reasons:

1. The statistical trends are not reflected in such plots;
2. Owing to highly nonuniform data distributions (evident

from the histograms in Fig. 2), the statistics are dominated by
the data for short load durations t – t′, low ages t′ at loading,
and small specimen sizes D, while the main practical interest
is in the long-time predictions;

3. Because of their longer test durations and high creep
and shrinkage, the statistics are also dominated by the data
for old types of concrete having low strength, not used any
more. Long-duration test data for modern high-strength
concretes, which creep and shrink little, are still quite rare
(refer to Fig. 2); and

4. The variability of concrete composition and other
parameters in the database causes enormous scatter,
masking the much lower scatter in the time evolution of creep
and shrinkage.

If the worldwide testing in the past could have been
planned centrally so as to follow the proper statistical design
of experiments, the chosen sampling of the relevant parameters
and reading times of creep and shrinkage tests would have
been completely different than those found in the databases.
This research attempts to overcome these deficiencies.

If the time, age, and specimen size are transformed to
variables that make the trends approximately uniform, and if
these variables are subdivided into intervals of equal
importance, the number of tests and the number of data
points within each interval should ideally be approximately
the same. However, this is far from true for every existing
database (refer to Fig. 2).

Nonetheless, there is no choice but to extract the best
information possible from the imperfect database that exists.
A quest to do that is what motivates this paper. Another

motivation is the need to compare the existing models using
the correct statistical approach and to explain why some
previous attempts at such comparisons2,4-7 were not objective.

RESEARCH SIGNIFICANCE
Creep and shrinkage have been a pervasive cause of

damage and excessive deflections in structures, and long-
time creep buckling has caused a few collapses. The deflections
of many large-span prestressed concrete bridges have been far
greater than predicted.39 For instance, in the case of the
Koror-Babeldaob Bridge in Palau, a prestressed box girder
that had the world-record span of 241 m (790.68 ft) when built
in 1977, the sag at midspan reached 1.52 m (5 ft) by 1996.
An ill-fated attempt to remedy it by additional prestress and
jacking led to collapse (with two fatalities). Inadequacy of
the creep and shrinkage prediction model available at the
time of design is certain to have been one of the causes of
excessive deflections of this bridge,40 as well as many
others. To minimize the chances of repetition, the best
among the available prediction models must be identified.

SUPPRESSING DATABASE BIAS
DUE TO NONUNIFORM SAMPLING OF 

PARAMETER RANGES
From Fig. 2, showing the histograms of the available data,

it is seen that their distribution in the database is highly
nonuniform. This nonuniformity is not an objective property
but a result of human choice, and thus leads to biased statistics
of data fits.

Fig. 1—Examples of ineffectual statistical comparisons in
which all the prediction models for: (a) and (c) compliance;
and (b) and (d) shrinkage look approximately equally good
(or equally bad).
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This bias must be counteracted by proper weighting of the
data. To this end, one may first subdivide the load duration t
– t ′, age at loading t ′, effective specimen thickness D and
environmental humidity H into intervals of roughly equal
importance that ought to have approximately the same
weight in the statistical evaluation.21 This is achieved by
subdividing log(t – t′) and log(t – t0) into equal intervals in
the logarithmic scale (refer to Fig. 3(a)), which means that
the subdivisions of t – t ′ and t – t0 form a geometric progression
(t = time = current age of concrete, t ′ = age at loading, t0 =
age at the start of drying, and t – t0 = shrinkage test duration—
all in days).

The main reason for this kind of subdivision into intervals
becomes clear upon noting that, because the creep and
shrinkage are decaying processes, a time increment of, for
example, 10 days, makes much difference when the test
duration is 10 days but little difference when it is 1000 days.
In other words, intervals forming an arithmetic progression
cannot have equal importance. By contrast, extending the
duration by, say, 20% is about equally important in both
cases, and this corresponds to intervals of equal length,
log1.2, in the logarithmic scale.

A similar argument can be made in regard to the effective
thickness (or size) D of the cross section, defined as D = 2V
= S = 2* volume/surface ratio of the specimen. Herein, the
proper coordinate transformation, before equal intervals are
introduced, is from D to √D. This transformation is indicated
by the diffusion theory, which shows that the half-time of
drying (or shrinkage) is proportional to D2.32,41,42 As for the
environmental humidity H, no transformation seems necessary.

There are four independent variables that need to be
subdivided into intervals of equal statistical weight: t – t ′,
t ′, D, and H for creep, and t – t0, t0, D, and H for shrinkage.
Ideally, all these subdivisions should be introduced
simultaneously, which would create four-dimensional
boxes (or hypercubes). The use of four-dimensional, as well
as three-dimensional, boxes, however, has another shortcoming:
For the database that exists, it appears that the number of data
points in some boxes is 0 or 1. Such boxes allow no statistics
to be taken and, therefore, must be deleted. Even two points
in a box is too low for meaningful statistics. Furthermore,
deletion of some boxes makes the relative weights of the
boxes and of the data sets unequal.

Because boxes of lesser dimensions have a lesser chance
of containing only 0, 1, or 2 points, two-dimensional boxes
of log(t – t′) and H for creep, and log(t – t0) and √D for
shrinkage (refer to Fig. 3(b)) appear to be preferable over
three- or four-dimensional boxes. One-dimensional boxes,
or intervals (refer to Fig. 3(a)), of load or drying durations
are even more advantageous in this respect because the
existing database has many points in every such interval.

Differences in weights might also be considered for data sets
obtained on different concretes and in different laboratories.
Maybe they should, but this would be a judgment exposed to
criticism. Besides, such differences in weights would certainly
be much smaller than an order of magnitude. Introducing such
weights would thus be unimportant in comparison to the
weights wi for the data boxes, which must differ by more than
one order of magnitude to compensate for the huge differences
in the number of data points in different boxes.

Another debatable point is whether the boxes for long
creep or shrinkage durations should not actually receive a
greater weight than those for short durations. Maybe they
should because accuracy of long-time prediction is of the
greatest interest. Again, however, this study does not introduce
such additional weights because the appropriate differences
in their values would be hard to assess and would be much
less than an order of magnitude, being dwarfed by differences in
weights wi compensating for differences in the number of
data points in different boxes.

Another bias stems from the difference in numbers Nri and
Nsi of the data readings taken by experimenters r and s within
box i. If Nri >> Nsi, then the statistics would be biased for exper-
imenter r and against experimenter s. For two-dimensional
data boxes, however, this bias is not very strong (because,
mostly, 0.5 < Nri /Nsi < 2), and thus is not considered herein.

CHOICE OF TRANSFORMATIONS OF RANDOM 
VARIABLES FOR REGRESSION

Data scaling for strength effect
The tests of old types of concretes with high water-cement

ratios (w/c), lacking modern admixtures, dominate the data-
base. Of little relevance though such concretes are today,
these tests cannot be ignored because they supply most of the
information on very long creep and shrinkage durations.
Besides, these tests are not completely irrelevant for the
purpose of this paper because the time curves for low- and
high-strength concretes are known to have similar shapes.
This is not surprising because, in both, the sole cause of
creep is the calcium silicate hydrate (C-S-H). The difference
resides merely in the scaling of creep and shrinkage
magnitudes. This scaling depends strongly on the w/c and
admixtures, in a way that is not yet predictable mathematically
(which makes it an important problem for research). Therefore,

Fig. 2—Histograms of data points and of test curves in the
NU-ITI database.
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the data for old kinds of concrete must be used, but their bias
must be counteracted.

Because the overall magnitude of creep and shrinkage
strains is roughly proportional to the elastic compliance, and
because this compliance is roughly proportional to 1/
where fc′  is the cylindrical compressive strength, one can
reduce this bias by replacing the measured data y for the
compliance and shrinkage by y , where fc

0 is the
constant factor that is necessary to get dimensionless ratios
and may be chosen arbitrarily because it has no effect on
model comparison (the authors chose fc

0 = 5000 psi [34.5 MPa]).
It is by virtue of this simple approximate property that fc′
need not be considered as a fifth independent variable in
regression statistics.

The effect of the 1/  scaling of the data is shown, for
shrinkage, in Fig. 4(a) and (b). It makes the data band noticeably
narrower, but less so for compliance, which is not shown in the
figure. Why is the effect of this scaling not more
pronounced? Because it is masked by variation of other
parameters. For this reason, statistical comparisons will be
made both with and without strength scaling.

Relative creep and shrinkage growth with time
Experimental observations show that for concretes of

different compositions, the relative increase of deformation
with time differs much less than the total increase, provided
that other influencing parameters are fixed. For statistical
analysis, it thus makes sense to consider the relative compliance
or relative shrinkage, defined as the compliance or shrinkage
strain divided by its initial value

J(t,t′) = J(t,t′)/J0,   ε(t,t0) = ε(t,t0)/ε0 (1)

where J0 and ε0 are the initial values of compliance and
shrinkage, which are chosen as the compliance for 3 days of
sustained load and the shrinkage for 28 days of drying (the
shrinkage at 3 days of drying is too small to be useful,
whereas the compliance for 1 day, or even 0.1 day, of
sustained loading could serve almost equally well). When
the relative compliance and relative shrinkage of the entire
database are plotted as a function of load or drying duration,
however, the reduction of the scatter band width of the database
is disappointingly small. The reason is that taking the relative
values suppresses only the effect of composition, not the
effects of variation of the age at loading, environmental
humidity, specimen size, and specimen shape throughout the
database. Unlike a change in composition, these parameters
affect the compliance and shrinkage at various times differently.
Therefore, the statistics will be calculated for both relative and
total values of compliance and shrinkage.

Logarithmic transformation of random data
The creep or shrinkage data plotted in terms of the load

duration t – t′ or drying duration t – t0 are generally found to
be markedly heteroscedastic (that is, the conditional variance
is not constant but varies with time). The regression statistics,
however, works best when the data are homoscedastic43 (that
is, the conditional variance is almost uniform). To make the
data homoscedastic, transformation of the variables is the
standard approach. As is generally the case when the relative,
rather than actual, changes of response matter, approximate
homoscedasticity of compliance data happens to be achieved
by taking the logarithm of the data y = J (lny is preferred over

fc′

fc
0 fc′⁄

fc′

log10y because, for small errors, the standard deviation of lny
is equal to the coefficient of variation of y, as dlnYk = dYk/Yk).

A comparison of Fig. 4(c) and (d) shows that the compliance
data indeed become almost homoscedastic upon logarithmic
transformation, which is better applied to the relative, rather
than actual, compliance. The scatter band becomes very wide
(compared with the scatter band rise over time). Therefore,
statistical comparisons will be made for both J and ln(J/J0).

STANDARD REGRESSION STATISTICS
OF DATABASE

Based on the subdivision into boxes of equal weight, the
standard error s of the prediction model (representing the
standard error of regression) is defined as follows25,44,45

Fig. 3—Sketches explaining: (a) and (b) subdivision of data-
base variables into one-dimensional intervals and two-
dimensional boxes of equal importance; and (c) and (d)
difference between ensemble (or population) statistics and
regression statistics.

Fig. 4—(a) and (b) Effect of logarithmic ordinate transformation
on compliance database; and (c) and (d) effect of scaling
ordinate by (strength)–1/2 on shrinkage database.
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(2)

where mi and wi are the number of data points in box number
i and the statistical weight assigned to the points in this box,
respectively; N =  is the number of all
the data points in the database; yij are the measured creep or
shrinkage data of which the database is comprised; Yij are the
corresponding model predictions; and yij – Yij = εij are the errors
of the predictions.

The multiplier N/(N – p) where p is the number of input
parameters of the model (p = 12 for Model B3), is very close
to 1 because N >> p (and could thus be dropped). This multiplier
is used in Eq. (2) to eliminate a different (and much milder)
kind of bias, namely, to prevent the variance of regression
errors of the database with a finite number N of data points
from being systematically smaller than the variance of a
theoretical database with N → ∞.44,45 Another reason why
this multiplier is necessary is that a set of only p data points
can be fitted exactly (that is, with no errors).

Let the intervals or boxes of data be labeled by one index,
i = 1, 2, …n, running consecutively through all the data sets
in the database, as illustrated in Fig. 3(a) and (b). To counteract
the human bias, every box of every data set must be assigned
the same weight. This is achieved by considering the statistical
weights wi of the individual data points in each box to be
inversely proportional to the number mi of data points in that
box. Normalizing the weights so that ,

(3)

To compare various models, one must use dimensionless
statistical indicators of scatter. In regression statistics, two
kinds of such dimensionless indicators are recognized. One
is the coefficient of variation of regression errors, which
characterizes ratio of the scatter band width to the mean, and
is defined as

(4)

where y represents the weighted mean of all the measured
values yij in the database (the expression used in Reference 21,
namely wi = N/nmi, might seem to be different but is, in fact,
equivalent to Eq. (3) because N/n is constant).

While the coefficient of variation ω characterizes the ratio
of the scatter band width to the data mean (and should be
minimized), the correlation coefficient ρ (which should be
maximized) is used in statistics to characterize the ratio of
the scatter band width to the overall spread of data, including
the spread caused by systematic statistical trend. This
coefficient (or the coefficient of determination) indicates
what percentage of data variation is accounted for by the
prediction model. Generalizing the definition of ρ from
linear regression44,45

(5)
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where s is the overall weighted standard error of predictions
and s is the overall weighted standard deviation of all the data.

Figure 5 presents comparisons of the coefficient of varia-
tion (ω, Eq. (2) and (4)) and of the correlation coefficients
(ρ, Eq. (5)) for the five aforementioned prediction models,
based on many types of two-dimensional and one-dimensional
boxes. Compared are statistics of the total values, relative
values, and strength-scaled values. Furthermore, Tables 1(a),
(b), (c), and (d) list the comparisons of the coefficient of
variation ω of the five models based on other types of data
boxes—one- and three-dimensional (checked were also four-
dimensional boxes given by intervals of log (t – t′), log t′, H, and
√D, numbering 1400 for compliance and 1120 for shrinkage,
but they appeared statistically useless because more than half
of them were empty).

In each of these comparisons, Model B3 is found to be the
best, except for one value in Table 1 where Model B3 is one
of two equal best. Gardner’s newer Model GL,20 which
modifies his original Model GZ19 by introducing two key
aspects of Bažant and Panula’s 1978 Model BP9 (the
shrinkage function, and the dependence on the size or
volume-surface ratio) comes out as second best. Considerably
worse but the third best overall is seen to be the CEB model.
Because the current ACI 209 model, labeled ACI, is the
oldest (introduced in 19728 on the basis of 1960s research),
it is not surprising that it comes out as the worst.

SCATTER BAND PLOTS AND OBSTACLES
TO REDUCING THEIR WIDTH

The coefficient of variation of compliance as well as
shrinkage is quite small (≤8%) when the concrete type and other
parameters are fixed.46,47 The high coefficient of variation
values, evident in Fig. 5, are caused by the variability of
concrete composition, curing, and other parameters
throughout the database, as schematically portrayed in Fig. 3(c)
and (d). The consequence is a very broad scatter band in plotting
the trend with time, as seen in Fig. 4 and 6(a) and (b). In Fig. 6,
the logarithmic time scale is subdivided into five decades
and the centroid of data located in each decade is shown by
the diamond point. The solid curves connect the points of the
decade centroid ± standard deviation of the data in that decade,
and the dashed curves represent the interval centroid ± standard
deviation of the predictions corresponding to the database
points in the same decade (if Gaussian distribution is assumed,
14% of the data or predictions would lie above the upper
curve, and 14% below the lower curve). As can be seen, the
scatter bands of both the data and the predictions are so
wide that it is impossible to distinguish among even very
different shapes of creep or shrinkage curves of various models.

Nevertheless, for the relative compliance and relative
shrinkage, the comparison in Fig. 6(c) and (d) of the bands
of interval centroids ± standard deviation of errors is somewhat
more indicatory than the analogous comparison for the
actual values in Fig. 6(a) and (b). For Model B3, the band of
predictions (dashed curves) lies mostly within the band of
data (solid curves) and exceeds this band only slightly in a
few cases. For Model GL, the band of data is exceeded
slightly more. For the ACI 209 model, the band of predictions
spreads grossly outside the band of data.

To further reduce the scatter in the time evolution, one
might filter from the database all the data belonging to a
certain small cube (or three-dimensional box) defined by
chosen intervals of three parameters, of logt ′, logt0, and H or
√D. Then one could do the same for the predictions of each
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model corresponding to each extracted point. This would
lead to rather narrow scatter bands of the data points and of
the corresponding predictions, and in this way, one would
see a much greater difference among different models.

There is a problem, though. For the presently chosen
parameter intervals, there are as many as 280 such cubes,
each of them giving one scatter band of data and one scatter
band of the corresponding predictions. The rating of the five
prediction models would not be the same for each cube. One
could obtain the root-mean-square of the coefficients of
variation from all these 280 cubes, but that would be analogous
to the regression statistics for four-dimensional boxes,
whose significance is debatable for reasons already
mentioned. The ranking of the models would get clearer by
selecting from the 280 cubes a few typical ones, but such a
selection would have to be made intuitively, and thus would
be effected by human bias. Therefore, it is preferable not to
engage in such comparisons.

NONSTANDARD STATISTICAL INDICATORS
USED IN RECENT STUDIES

Gardner’s linear coefficient of variation
In Reference 2, the logarithmic scales of load duration t – t′

and drying duration t – t0 are divided into intervals equal to
decades, labeled as i = 1, 2, … The overall mean of data for all
the intervals is obtained as y = (1/n) where yi = (1/mi)

. Herein, yi is the mean of the data in interval i and y
represents the standard expression for a weighted mean,
giving equal weight to each decade of time. The calculation
of the overall coefficient of variation of prediction errors,
ωG , however, is nonstandard

(6)

where

(7)

The bias due to having different numbers mi of points in
different intervals is herein compensated by using the
coefficient of variation for each interval, which correctly

gives to each time interval the same weight. The expression
in Eq. (6) for the overall standard deviation s of the data from
the model predictions, however, is not statistically justified
because, instead of averaging the squared errors si

2, the
averaging is linear in si. Properly, the averaging must be
applied to the squared errors. The linear averaging of si is
tantamount to denying the validity of the maximum likelihood
criterion and of the central limit theorem of the theory of
probability, underpinning the Gaussian distribution (see
the Appendix). This implicit denial is untenable (it is true
that linear averaging of errors has recently been used for
some special purposes in financial statistics,26 but that was
in problems of extreme value statistics, to which the least-
square regression and the central limit theorem of the theory
of probability do not apply).

The definition of error used for ranking of various prediction
models is correct only if the minimization of error yields the
optimum data fit. Otherwise, a smaller error would not mean
a better model. In the case of Eq. (6), one would have to
minimize the expression

 ≠ quadratic (8)

Because this paper deals with a statistical problem in which
the data represent not merely a population (or ensemble) of
realizations of one stochastic variable but the realizations of
a variable with a statistical trend, the correct, generally
accepted, statistical approach is not population statistics but
the least-square statistical regression (Fig. 3(c) and (d)).48-57

Therefore, in the special limit case of a linear model, the
statistical method must reduce to linear regression statistics.
This is a simple but fundamental check on the soundness of
the statistical approach to the comparison of prediction models.

In the special case of a two-dimensional linear model, Yij = a +
bXij, Eq. (6) would give the following expression to be minimized

(9)
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Table 1—Standard coefficients of variation of errors of various prediction models in: (a) compliance; 
(b) shrinkage; (c) relative compliance; and (d) relative shrinkage*

(a) Compliance, % (c) Relative compliance, %

B3 ACI CEB GL GZ B3 ACI CEB GL GZ

200 cubes 28.3 38.8 30.6 28.5 39.5 24.4 59.0 29.3 27.3 35.7

Five intervals, log(t – t′) 26.2 41.9 29.7 28.5 43.8 26.4 66.0 33.0 29.8 32.9

Four intervals, log t ′ 27.4 37.1 29.9 28.8 48.2 26.9 74.3 33.3 30.5 33.0

Seven intervals, √D 23.3 36.9 27.3 23.3 33.2 20.1 55.9 24.4 21.9 22.6

Ten intervals, H 24.4 44.2 29.0 30.7 44.6 21.0 52.6 28.0 25.4 28.6

(b) Shrinkage, % (d) Relative shrinkage, %

B3 ACI CEB GL GZ B3 ACI CEB GL GZ

112 cubes 37.4 44.4 48.1 43.3 50.0 41.8 51.8 47.9 48.3 58.1

Five intervals, log(t – t0) 29.4 40.8 48.0 37.7 49.3 34.5 49.5 46.0 43.3 54.7

Four intervals, log t0 42.8 48.6 56.0 53.9 64.2 44.9 52.8 57.6 54.0 64.7

Seven intervals, √D 27.2 37.3 49.2 29.1 38.9 33.7 46.4 45.0 39.9 52.9

Ten intervals, H 38.4 52.0 46.9 54.4 46.6 41.6 55.6 43.0 41.9 45.6
*Cubes are in log(t – t′), log t′, and H for compliance or √D for shrinkage.
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where Xij are the coordinates (for example, the values of
log(t – t ′)) of data points Yij. The minimizing conditions
∂s2

G / ∂a = 0 and ∂s2
G / ∂b = 0 would then yield two equations

for a and b. It is easy to see that these equations will be
nonlinear, and thus will not guarantee a unique solution,
despite linearity of the regression problem. The nonlinearity
of these equations confirms again that Eq. (6) is invalid.

On the other hand, in the case of the standard error expression
in Eq. (2), substitution of Yij = a + bXij yields

 = minimum (10)

Herein, the minimizing conditions ∂s2/ ∂a = 0 and ∂s2/ ∂b = 0
yield linear equations, and their solution gives the well known
expressions for slope b and intercept a of the regression line.

But can the difference between the statistical indicators s
in Eq. (2) and (6) be significant? Indeed it can. To document
it, consider again the special limit case of a linear model Y =
a + bX, for which it is known that the correct optimum data
fit is obtained if and only if the linear regression is used.
Consider two sets of three pairs of data points shown in two
diagrams in Fig. 7. (For Set 1, the data are Y = 0.1 and 0.3 for
X = 0, Y = 1.0 and 1.3 for X = 1, and Y = 2.1 and 2.4 for X =
2. For Set 2, the data are Y = 0.1 and 0.3 for X = 0, Y = 0.2
and 1.8 for X = 1, and Y = 1.7 and 1.9 for X = 2). In each
diagram, the regression line is drawn and the values of the
coefficient of variation obtained according to the least-
square linear regression and according to Eq. (6) are indicated.
For Set 1 (left diagram), the correct coefficient of variation
(based on linear regression) is 14%, whereas Eq. (6) gives
16%. This is not a great discrepancy. For Set 2 (right
diagram), however, the correct coefficient of variation is

s
2 N

N p–
------------- wi yij a bXij+( )–[ ]2

j 1=

mi

∑
i 1=

n

∑=

Fig. 5—Coefficients of variation of errors (a) through (h) and (j) through (n), which
should be minimized, and correlation coefficients (i) and (o), which should be maxi-
mized, for five prediction models and NU-ITI database; (a), (d), (i), (j), (m), and (o)
for actual data; (b), (e), (k), and (n) for relative data; (g) and (h) for logarithmic
relative data; and (c), (f), and (l) for data scaled by (strength)–1/2.
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57%, which is 21% larger than the value given by Eq. (6),
which is 47%. This discrepancy is not insignificant.

CEB coefficient of variation
In Reference 3 (compare with References 5 and 38), the

coefficient of variation of prediction model errors was
defined as

(11)

Note that because mi – 1 appears in the denominator and is
0 for a box with only one point, mi = 1, not only the empty
boxes but also those with a single point have to be deleted in
calculating this statistic.

This statistic has a different shortcoming: The statistical
trend is ignored because the statistics of creep and shrinkage
data are herein calculated as the population (or ensemble)
statistics. In principle, converting a statistical problem having a
data trend with respect to some variable to a problem of
population statistics (refer to Fig. 3(e) and (f)) is not a legitimate
statistical approach and leads to misleading comparisons.

The conversion from least-square regression to population
statistics was effected by treating the ωi in the individual
intervals as the coefficients of variation of different groups
of realizations of one and the same statistical variable with
no trend. But this is unreasonable if the data exhibit a statistical
trend with respect to some parameter (in this case, the time)
because the errors must be measured with respect to the trend
and not the data mean.

Another objectionable aspect is that, compared with the
least-square statistical regression, the short-time data get
overemphasized and the long-time data get underempha-
sized. This is caused by the appearance of yi (rather than y)
in the denominator of Eq. (11) before all ωi are combined
into one coefficient of variation. An interval with a nearly
vanishing yi (which occurs, for example, for short-time
shrinkage) gives a very large ωi and thus, incorrectly,
dominates the entire statistics.

Can the difference from the correct statistical indicator in
Eq. (2) be significant? Very much so. To demonstrate it, the
authors again consider the limiting special case of a linear
model and the example of two sets of data in Fig. 7. The
coefficient of variation for Set 1 (the left diagram) is found
to be 44%, which is 214% larger than the correct value of
14% from linear regression. The coefficient of variation for
Set 2 (the right diagram) is found to be 77%, which is 35%
larger than the correct value of 57%.

CEB mean-square relative error
In Reference 3 (compare with References 5 and 38), another

comparison is made on the basis of the relative error defined as

(12)

where wij = 1/yij
2. Unlike the previous case, this definition of

error is based on the method of least squares. But it is applied
to the model-data ratio, which implies unrealistic weighting
of the data. As shown by the last expression, it means that the
weights wij are inversely proportional to yij

2. This causes the
errors in the small compliance or shrinkage values to be
greatly overemphasized, and the errors in the large values to
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be greatly underemphasized. For example, if the compliance
increases four times, its weight will be 16 times smaller. Yet,
the long-time predictions are the most important, whereas
the short-time ones are the least important. A short-time
value 10 times smaller than a long-time value will have a
weight 100 times larger, and will thus totally dominate the
statistics, making the long-term data irrelevant.

Fig. 6—Bands of interval centroids ± standard deviation for
actual data (solid lines) and predicted values (dashed lines)
for: (a) compliance; (b) shrinkage; (c) relative compliance;
and (d) relative shrinkage for various prediction models.

Fig. 7—Differences in coefficients of variation of errors
between standard and nonstandard statistical methods for
examples of linear regression.
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Coefficient of variation of data/prediction ratios
Noting that, in a perfect model, the data-model ratios rij =

yij/Yij should be as close to 1 as possible, some studies calculate
the coefficient of variation of rij and use it to compare the
prediction models. But this approach to statistics, endemic in
concrete research, is incorrect. To show the problem,
replace, for the sake of brevity, the double indicies ij by a
single index k = 1, 2, …K where K = . The variance
sR

2 of the population of all rk = yk /Yk is

(13)

where wk are the weights such that  and r is the
weighted mean of all rk. Consider now that the prediction
formula giving Yk is multiplied by any constant factor c, that is,
Yk ← cYk. Then the variance changes from sR

2 to R
2 as follows

(14)

So, as can be seen, the variance of the model-data ratios
can be made arbitrarily small by multiplying the prediction
formula by a sufficiently large number. Because the mean r
is replaced by r/c, the coefficient of variation ωr = sR/r is
found to be independent of c.58

Therefore, the minimization of sR
2 cannot be used for the

purpose of data fitting. It follows that the use of the coefficient
of variation ωr in some studies, intended for statistical compar-
ison of different models, is unreasonable and misleading.
Further, it follows that the plots of data-model ratios rk versus
time (or versus k) should not be used for visual comparisons of
the goodness of data fits by various creep prediction models.

To justify Eq. (12) or (13), it is reasoned that the relative
errors ΔYk/Yk are more important than actual errors ΔYk. But
if so, and if the data in lnYk are closer to being homoscedastic
than those in Yk, then the correct approach is the least-square
regression of lnYk rather than Yk (because dlnYk = dYk/Yk).

Minimization of sR
2 also fails the test that, in the case of a

linear model, minimization of the coefficient of variation of
all rij must reduce to linear regression. Another problem is
that the difference 1 – rij tends to be the greatest for short
times, which thus dominate the statistics, although the long
times are of main interest.

MODEL COMPARISONS BY STANDARD AND 
NONSTANDARD STATISTICAL INDICATORS

The aforementioned standard and nonstandard statistical
indicators have been calculated for all the presently considered

prediction models using the present database, as well as the
RILEM database and Gardner’s drastically reduced database.
From the last two databases, it was necessary to delete a few
data sets for which the parameters required for evaluating
some of the prediction models were not known.

The results are shown by the column diagrams in Fig. 8.
As seen, the nonstandard indicators give a very different
ranking of prediction models than the standard indicators.
According to the standard indicator (Eq. (4)), Model B3
appears as the best, and both the classical ACI 209 model
and the GZ model as by far the worst, although not according
to the nonstandard indicators in Eq. (6), (11), and (12).
Model GL is the second best according to the standard indicator
when the present database is used, and the best7 according to
Gardner’s indicator (Eq. (6)) when his reduced database is used.

The five creep and shrinkage prediction models considered
herein were statistically also compared by Gardner and
Al-Manaseer,2,5 and these comparisons were featured in a
recent report7 (see the results listed in Table 2(a) and (b)
reproduced from Reference 7). Nonstandard indicators were
used for models other than Model B3. The RILEM database,
which is a slightly reduced subset of the present one, was
used, except that a drastically reduced subset of the RILEM
database was used by Gardner2 (recalculations using
Gardner’s database, kindly made available to the writers,
showed that one value needs to be corrected, as shown by
shrinkage prediction of Model GL by ωG in the last row of
Table 2), that is, the last value should be 22 instead of 19.
Unfortunately, the nonstandard statistical indicators were
considered as equally relevant, and so it is no surprise that
each different statistical indicator placed a different prediction
model on top or bottom.

OTHER ASPECTS OF MODEL EVALUATION AND 
COMPARISON, AND CROSS-VALIDATION

Because the variations in concrete strength, composition,
and curing cause by far the greatest random scatter of creep
and shrinkage predictions, good long-time predictions can
be achieved only by extrapolating short-time tests, or
updating of the prediction model according to such tests, or
a combination of both. Realistic extrapolation of shrinkage
and drying creep data requires measuring weight loss of test
specimens.21,27 Using a statistically correct extrapolation
method21,27 is one essential requirement for reliable long-time
predictions. The second requirement is to use a model of a form
that allows easy fitting of short-time data by adjustments of
its parameters according to linear regression. The third
requirement is to use a model having correct shapes of the
curves of creep and shrinkage versus time, the age at the start
of loading or drying, the environmental humidity, and the
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Table 2—Comparison of standard and nonstandard statistical indicators of errors used by various authors 
to compare and rank four predictions models, for (a) compliance and (b) shrinkage

(a) Compliance, % (b) Shrinkage, %

Indicator ACI B3 CEB GL Indicator ACI B3 CEB GL

Bažant21 basic creep ω 58 24 35 — Bažant21 ω 55 34 46 —

Bažant21 drying creep ω 45 23 32 —

Al-Manaseer5

ωCEB 46 41 52 37

Al-Manaseer5

ωCEB 48 36 37 35 SCEB 83 84 60 84

SCEB 32 35 31 34 MCEB 122 107 75 126

MCEB 86 93 92 92 Gardner2 ωG 41 20 — 19

Gardner2 ωG 30 27 — 22 Gardner2 recalculated ωG 41 20 44 22
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effective thickness of cross section. Unlike others, Model B3
satisfies all these requirements.

Correctness of the shape of time curves cannot be judged
by comparisons with the entire database because it is masked
by huge scatter resulting from variations of strength,
composition, curing, and other parameters. It can be
appraised only by comparisons with the creep and shrinkage
curves for one and the same concrete, conducted in one and
the same laboratory, for one and the same precisely
controlled curing. Only if the model can fit such curves
closely, is it suitable for extrapolation of short-time data. A
few examples of such fits with Model B3, extracted from the
examples in References 13 and 21, are presented in Fig. 9.

Model B3 was calibrated by the RILEM database, which
was smaller than the present one. The fact that it is evaluated
herein by an enlarged database represents a part of the procedure
of cross-validation.59 The fact that the fits of enlarged database
remain equally close supports Model B3.

CONCLUSIONS
Based on the research, the following conclusions can be made:
1. The highly nonuniform data distribution in the database

is a result of human choice. It introduces an unintended bias,
which must be suppressed. This can be accomplished by
data weighting;

2. Although the precise weighting to use is debatable and
weight differences less than an order of magnitude are not
very important, it is reasonable to assign the same weight to
the total of all test data within each interval of time, size,
humidity, and age at loading or start of drying. This is the
basic premise of minimizing the statistical bias;

3. The nonstandard statistical indicators examined herein
are not rational approaches for comparing the accuracy of
prediction models. They do not yield estimates of maximum
likelihood, conflict with the principles of least-square
regression, are tantamount to denying the central limit
theorem of the theory of probability, and do not lead to a
model for which the errors would be uncorrelated;

4. Therefore, the previous rankings of various prediction
models obtained by these nonstandard indicators cannot be
taken seriously7; and

5. In the present comparisons of five prediction models
based on the standard statistical indicators and the complete
database, Model B3 comes out as the best and Model GL as
the second. The old 1972 ACI Model, reapproved by ACI in
2008, comes out as the worst.
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APPENDIX—WHY IS THE LEAST-SQUARE 
REGRESSION THE ONLY RATIONAL METHOD 

FOR COMPARING CONCRETE DESIGN MODELS?
The method of least squares was first published by

Legendre in 180660 but its rigorous derivation, proving its
necessity, is due to Gauss24 (who is known to have used it
before 1806). For brevity, let us again replace the double
indexes ij by a single data index k = 1, 2, …K where K =

. Let εk = yk – Yk = model errors, k = 1, 2, …K where

Yk = F(Xk, Yk, …) = predicted values, Xk, Yk, … = independent
variables (for example, influencing parameters such as the
load duration, age at loading, thickness, and humidity)
associated with data point k, and F(…) = function defining
the prediction model. The joint probability density distribution
of all the data, called the likelihood function L,25 is

L = f(y1, y2 ,...yk) = (15)

where φ(yk) is probability density distribution (pdf) of
measurement yk , and Wk is assigned weight (equivalent to
Wk-fold repetition of the k-th measurement).

First assume the errors to be approximately normally
distributed, that is,

φ(yk) =  (k = 1,2, ...K) (16)

where  = (conditional) variance of yk, which is a constant
known (or knowable) a priori. The optimal data fit must
maximize L,25 that is, minimize –lnL;

(17)

=  = min

where wk = Wk/2  = redefined weights (not normalized), and

C =  = constant. Equation (17) shows that

minimization of the weighted sum of squared errors is the only
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correct approach if one adheres to the standard requirement
of maximum likelihood.

The histograms of data plotted on the normal probability
paper (Fig. A) indicate that the distributions or errors eij in
creep and shrinkage are approximately normal. But the
histograms are not broad enough to prove it. So what if the
distributions φ(yk) of data yk are not normal? In that case, the
database may be subdivided into data groups labeled as r =
1, 2, …Ng, such that each group r contains a sufficient but not
excessive number nr of adjacent data points located so
closely that the statistical trends within each group are negligible
(nr ≈ 6 appears suitable). The mean of each data group is a
scaled sum of random variables, and according to the central
limit theorem,25,26 the distribution of this sum, and thus the
group mean, converges to the normal distribution, albeit one
with a scaled standard deviation. We may now logically
expect that the best fit of yk can be obtained as the best fit of
all the group means, each of which has a Gaussian distribution.
The remaining derivation up to Eq. (17) is the same and leads
to the same conclusion. Q.E.D.

Another requirement that inevitably leads to the least-
square regression is that, for optimum fit, the random errors
εk = yk – Yk must be uncorrelated, or else the fit would not
capture the statistical trend. So, the correlation matrix of
random variables εk must be diagonal. If the statistics used
are not based on the method of least squares, this requirement
will be violated.

To be rigorous, it must be admitted that there exist special
problems where the least-square regression is insufficient or
even inappropriate. One example is the extreme value
statistics, leading to Weibull distribution of strength of
brittle structures.26 Another is the extension of the least-
square approach to Bayesian optimization, in which the
posterior data are supplemented by some sort of prior
information.44 A third example is the robust regression,61

used to emphasize the role of numerous outliers of heavily
tailed non-Gaussian distributions. But these special problems
do not arise for the typical regression problems of concrete
design equations discussed herein.

Fig. A—Cumulative histograms of errors of B3 model compared
to NU-ITI database, plotted on normal probability paper:
left—compliance; right—shrinkage; top—unweighted;
bottom—weighted.


