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a b s t r a c t

Ensuring a small enough failure probability is important for the design and selection of

restorative dental ceramics. For this purpose, the two-parameter Weibull distribution, which

is based on the weakest link model with infinitely many links, is usually adopted to model

the strength distribution of dental ceramics. This distribution has been thoroughly validated

for perfectly brittle materials. However, dental ceramics are generally quasibrittle because

the inhomogeneity size is not negligible compared to the size of the ceramic part. For such

materials, the experimental histograms of many quasibrittle materials have been shown

to exhibit strong deviations from the two-parameter Weibull distribution. As a remedy, the

three-parameter Weibull distribution, which has a nonzero threshold, has been proposed.

However, the improvement of the fits of histograms of quasibrittle materials has been only

partial. Instead of making the threshold non-zero, the correct remedy is to consider the

weakest link model to have a finite number of links, each of them representing one finite-

size representative volume element of material. This model has recently been justified on

the basis of the probability of random jumps of atomic lattice cracks over the activation

energy barriers on the free energy potential of the lattice. It is shown that, in similarity

to other quasibrittle materials, this new model allows excellent fits of the experimental

strength histograms of various types of dental ceramics.

© 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The flexural strength is one of the main limiting factors in the
modern applications of dental restorative ceramics [24,16,14].
A fairly low failure probability Pf , such as 10−2 per lifetime, is
usually required [1,15]. The strength corresponding to such
a failure probability may be determined through extensive
strength histogram testing. But the costs are high and the
results, as it now appears, misleading. Therefore, it is neces-
sary to determine the strength distribution by a theory that is
more realistic and can be calibrated by tests easily.

∗ Corresponding author. Tel.: +1 847 491 4025.
E-mail address: z-bazant@northwestern.edu (Z.P. Bažant).

The statistical distribution of flexural strength of dental
restorative ceramics has been studied extensively. The exper-
imental strength histograms have initially been fitted with
the two-parameter Weibull distribution, which has a zero
threshold [24,23,15,17,16]. It has been found, though, that the
two-parameter Weibull distribution cannot fit the histograms
closely.

As found upon closer scrutiny, the reason for poor fits is
that the size of the inhomogeneities, and thus of the frac-
ture process zone (FPZ) and of the representative volume of
material (RVE), is not negligible compared to the size D of den-
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tal restorative ceramic parts. A new theory, in which the size
of the FPZ (or the RVE) is taken into account, will be shown
capable of providing excellent fits of the experimental strength
histograms of alumina-, feldspar-, leucite-, and zirconia-based
ceramics, commonly used in dentistry. It will also be demon-
strated that the current practice of fitting the histograms by
the two-parameter Weibull distribution can lead to serious
overestimation of safety margins for fracture of the ceramic
parts and underestimation of the Weibull modulus.

The statistical distribution of strength is well known for
two simple limiting cases: (1) perfectly ductile (or plastic)
structures, for which the cumulative distribution function
(cdf) of strength distribution must be Gaussian (or normal),
and (2) for perfectly brittle structures, for which the pdf must
be Weibullian [10,2,3]. The statistics of plastic behavior can be
described by the fiber-bundle model and is characterized by
the absence of size effect, while the coefficient of variation
(C.o.V.) of strength decreases as D−1/2 (D = structure size). The
statistics of brittle failure is described by a weakest link model
with infinitely many links in the chain, and is known to lead
to a power-law statistical size effect on material strength with
a size-independent C.o.V., provided that the structure fails as
soon as a macro-crack initiates from one RVE. Such failure
behavior is typical of many applications, including the dental
ones (though not of reinforced concrete).

Perfectly brittle structures consist of fine-grained brittle
materials for which the RVE of the material is negligibly small
compared to the structural dimension D. The width of the
FPZ at the front of a crack is approximately equal to the RVE
size, which typically equals 2–3 inhomogeneity sizes (grain
sizes). Quasibrittle structures are those for which the RVE is
not negligibly small compared to D, which is typical of dental
applications. Therefore, the weakest link model must be con-
sidered to have a finite, rather than infinite, number of links
in the chain. Consequently, the classical formulas (based on
the gamma function) for the mean and standard deviation of
strength and for the size effect do not apply. The finite number
of links explains why the behavior of quasibrittle materials is
at a transition between ductile and brittle behaviors. Theoret-
ically, this has two implications: (1) The upper right part of
strength histogram in Weibull scale deviates to the right from
a straight line fit of the lower left part and (2) the size effect
plot deviates from the power law of classical Weibull theory.

Both of these properties have recently been amply ver-
ified experimentally for various quasibrittle materials (e.g.
concretes, mortars, fiber–polymer composites, industrial
ceramics, sea ice, wood, rigid foams) [8,9,18,6,7]. The purpose
of this paper is to demonstrate it for dental restorative ceram-
ics.

2. Review of finite weakest link model

Strong deviations of the strength histograms of quasibrittle
ceramics from Weibull distribution [18] have recently been
documented in the testing of industrial ceramics. It has been
thought that this problem could be overcome by using a three-
parameter Weibull distribution, which has a finite threshold.
However, this brings about only a partial improvement of
histogram fits [8,9]. Histograms of a broad enough range (>

1000 tests) still reveal significant deviations at the high proba-
bility tail. Likewise, for some quasibrittle materials for which
deviations from power-law size effect curves have been doc-
umented, the use of a finite threshold has been found to
improve the fits of experimental size effect curves only partly,
and to lead to excessive strength prediction for very large
sizes.

Recent analysis [8,9] showed that the problem lies
elsewhere—in the assumption of an infinite weakest link
model, which underlies the Weibull distribution of strength.
The number of links must be finite, rather than infinite,
because the size of the RVE (or FPZ) is not negligible compared
to the size of the ceramic part. This is the salient feature of
quasibrittle materials, which endows them with some degree
of ductility.

That the finiteness of the weakest link model is generally
the correct remedy is verified by attaining, for many quasib-
rittle materials, close fits of both the histograms of [8,9,18]
and the size effect curves. The use of a finite weakest link
model might be regarded as inconvenient, since the mean and
coefficient of variation can no longer be given by explicit for-
mulas involving the gamma function. But there still exists a
simple integral for the failure probability distribution whose
numerical evaluation is easy [9].

The power-law nature of the strength distribution tail,
and the vanishing of the strength threshold, are not merely
empirical findings. Under certain plausible hypotheses, they
have been shown to be a logical consequence of fracture
mechanics of random jumps of the front of cracks propa-
gating through the nano-structure, either a regular atomic
lattice or a disordered nano-structure [5]. The jumps are con-
trolled by activation energy barriers separating a series of
metastable states on the surface of the free energy potential
of the nano-structure. These barriers depend on the energy
release increment from the nano-structure due to nano-crack
advance by one atomic spacing in atomic lattice or one nano-
inhomogeneity in a disordered nano-structure. By applying
the Griffith theory to the propagation of the nano-crack, the
amount of energy release increment can be expressed as a
function of the remote stress applied on the nano-structure.
Based on the fact that the activation energy barriers for for-
ward and backward jumps can differ only little, the left tail
of the pdf of strength has been shown to be a power law of
exponent 2, having a threshold that is virtually zero (since the
effect of crack front diffusion at low Péclet number is entirely
negligible).

By approximating the multi-scale transition from nano-
scale to the RVE scale with a hierarchical model consisting
of series and parallel couplings (i.e., of chains and bundles)
(Fig. 1), it has been shown that the strength distribution on
the material scale of one RVE has a Gaussian distribution onto
which a remote power-law tail with zero threshold is grafted
from the left [8,9,11]. The exponent of power-law tail is found
to increase in passing to higher scales until, on the RVE scale,
it becomes equal to the Weibull modulus, m [9].

So, as this theory shows, the rate processes such as the
phase changes, creep rate, dislocation mobility, etc., are not
the only phenomena that translate simply and directly from
the atomic scale to the material scale. The power-law tail of
the cdf of strength is another such phenomenon.
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Fig. 1 – Models of series and parallel couplings: (a)
hierarchy of sub-chains and sub-bundles and (b) a weakest
link model—series coupling (or chain) of elements, each
representing one RVE.

To describe the probability density function (pdf) of mate-
rial strength on the RVE level, the Weibull tail (which is a
power-law for small stress) may be considered to be grafted
from the left onto a Gaussian pdf at the failure probability of
about 0.01–1% [8,9]:

p1(�N) = rf �W (�N) for �N < �N,gr (1)

p1(�N) = rf �G(�N) for �N ≥ �N,gr (2)

where �W (�N) = (m/s1)(�N/s1)me−(�N/s1)m ; �G(�N) =
e−(�N−�G)2/2ı2

G /(ıG

√
2�); �N = nominal strength of struc-

ture = Pmax/bD or Pmax/D2 for two- for three-dimensional
scaling (Pmax = maximum load or its parameter, b = structure
thickness); �G and ıG are the mean and standard deviation
of the Gaussian core; m and s1 are the shape and scale
parameters of the Weibull tail; rf is the scaling parameter
needed to normalize the grafted pdf; i.e.

∫ ∞
−∞ p1(�N)d�N = 1,

and �N,gr is the grafting stress corresponding to the grafting
probability Pgr. In total there are 6 statistical parameters: m,
s0, �G, ıG, Pgr, and rf . Only 4 of them are free to be adjusted to
statistical data because of the aforementioned normalization
condition and a second condition that ensures the continuity
of pdf at the grafting point, i.e. �W (�N,gr) = �G(�N,gr) [9].

Since, for the purpose of failure, one RVE must be defined as
the smallest material volume whose failure causes the whole
structure to fail, the failure probability of quasibrittle struc-
tures with positive geometry can be calculated by applying
the joint probability theorem to the survival probability of the
structure:

1 − Pf (�N) =
n∏

i=1

[1 − P1(〈�i(xi)〉)] (3)

or

Pf (�N) = 1 −
n∏

i=1

[1 − P1(〈s(xi)〉�N)] (4)

where �N = maximum stress in the structure, �i(xi) = �Ns(xi) =
stress at the center xi of the i-th RVE, s = dimensionless stress
(if �N = �max, then the maximum of s is 1); 〈x〉 = max(x, 0), and
P1(�) =

∫ �

0
p1(�′) d�′ = strength cdf of one RVE.

Here, it is useful to introduce the concept of equivalent
number of RVEs, Neq, for which a chain of Neq elements sub-
jected to a uniform stress �N gives the same cdf:

Pf (�N) = 1 − [1 − P1(�N)]Neq (5)

In general, Neq is a function of the actual number of RVEs
n, modified by the stress distribution s(x) and by �N. It can
further be shown that if all of the RVEs have Weibull dis-
tribution, then Neq depends only on n and the stress field
s(x): Neq =

∑n

i=1〈si(xi)〉m. For large-size structures, the struc-
ture will fail at very small �N, and so only the tail of the cdf
of each RVE (Weibull tail) is relevant: P1(�N) = (�N/s0)m. Not-
ing that limN→∞(1 + z/N)N = ez, and setting z = Neq(�N/s0)m,
one can see that the strength cdf for large-size structures
approaches the Weibull distribution, which corresponds to the
case of perfectly brittle behavior, i.e.

Pf (�N) = 1 −
[

1 − Neq(�N/s0)m

Neq

]Neq

⇒
Neq→∞

1 − e−Neq(�N/s0)m (6)

3. Problems with non-zero threshold

For some quasibrittle materials, it has been demonstrated that
the Weibull distribution with a finite threshold �0, i.e.,

Pf = 1 − e−[(�−�0)/s0]m (7)

fits the strength histograms better than the Weibull dis-
tribution with a zero threshold [13,22,12]. However, these
histograms were limited to several hundred specimens and,
according to the present theory, it is likely that the upper part
of histogram would not be fitted well for much broader his-
tograms with many more tests. This is clear from the plot of
Weibull’s data [26] in Fig. 10 of [9]. Anyway, the excellent fit
of the strength histograms obtained by the finite weakest link
model with a zero threshold demonstrates that the nonzero
threshold is unnecessary (besides, if one has doubts, it is the
less conservative choice).

Within the framework of the present theory, the strength
distributions of a structure on the macro-scale, and of an
atomic lattice at the nano-scale, are linked through parallel
and series couplings. It has been shown that a power-law tail
with a zero threshold is a logical consequence of the acti-
vation energy control of crack length jumps in the atomic
lattice, an that it is preserved by all parallel and series cou-
plings. Therefore, the theory requires the strength cdf at the
macro-continuum scale to also have a power-law tail with zero
threshold.
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Fig. 2 – Optimum fits of experimental strength histograms of dental ceramics by the present theory and by the
two-parameter Weibull distribution: (a) Alumina glass Composite, (b) Dicor, (c)IPS Empress, (d) Vitadur Alpha Core, (e)
Vitadur Alpha Dentin, (f) Vitadur VMK 68 and (g) Zironia-TZP.
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Table 1 – Test specimens

Product Code Type Specimen size

Alumina glass Composite AG Lanthannum-glass-infiltrated alumina glass-ceramic 3 mm × 4 mm × 45 mm
Dicor D Tetrasilicic fluoromica glass-ceramic 1.5 mm × 3 mm × 30 mm
IPS Empress IE Leucite-reinforced porcelain 1.5 mm × 3 mm × 30 mm
Vitadur Alpha Core VAC Alumina-reinforced feldspathic porcelain 1.5 mm × 3 mm × 30 mm
Vitadur Alpha Dentin VAD Feldspathic Porcelain 1.5 mm × 3 mm × 30 mm
Vita VMK 68 VMK Feldspathic Porcelain 1.5 mm × 3 mm × 30 mm
Zironia-TZP Z Partially stabilized zirconia ceramic 1.5 mm × 3 mm × 30 mm

As another argument, it may be remarked that a nonzero
threshold would be in conflict with the nonlocal Weibull the-
ory for quasibrittle materials [10,6,2,3], which underlies the
well-established Type I size effect law for mean strength [7,4]).
To see what size effect would result if a non-zero threshold
were assumed, consider that each single RVE has a power-law
tail with non-zero threshold, i.e. P1 = [〈�N − �0〉/s0]m. Then the
mean strength of large-size structures can be calculated as:

�̄N =
∫ ∞

0

(1 − PN) d�N =
∫ ∞

0

(1 − P1)Neq d�N (8)

�̄N = �0 + N
1/m
eq s0�

(
1 + 1

m

)
(9)

Therefore, for increasing structure size, the mean strength will
approach a constant value �0 and the size effect on strength
will asymptotically vanish. However, well-established models
such as the nonlocal model and the crack band model, predict
a power-law size effect for large structure sizes [6,2,3], and
these predictions are well supported by many experimental
observations for quasibrittle structures [7]. In fact, the power-
law for the size effect on mean strength is inextricably linked
to a zero threshold in the Weibull distribution.

The problems with assuming a nonzero threshold are also
apparent upon examining the existing test data for quasib-
rittle materials in general, not limited to dental ceramics.
They are blatant when trying to fit the data on the size effect
on mean strength of geometrically similar specimens. Fitting
these data with the Weibull size effect gives different values
of Weibull modulus m than fitting the strength histograms for
one fixed size. Some researchers have even been misled to
suggest that m depends on the structure size as well as geom-
etry, although this is in principle impossible as m is a material
property.

A related problem with nonzero threshold is that fitting the
strength histograms for different sizes of geometrically sim-
ilar specimens gives different m values. To avoid misleading
erroneous results, it is, therefore, useful to test not only spec-
imens of one size but also specimens of different sizes. The
specimens must be geometrically similar and the size ratio
must not be too small (compared to the coefficient of variation
of strength).

4. Optimum fitting of experimental data for
dental ceramics

In recent literature, one can find strength data for seven dental
restorative ceramics that are commonly used in crown, veneer

and inlay construction [24,15]. They represent almost the full
range of commercially available dental restorative ceram-
ics, ranging from low strength ceramics such as feldspathic
ceramics, to high-tech ceramics such as Zirconia ceramics
[16,14]. For each type of ceramic, four-point loaded flexural
strength tests using prismatic beam specimens were reported.
Table 1 shows the product name, the ceramics type, and the
specimen size for each material [24,15].

Optimum least-square fits of data have been obtained by
the algorithm presented in Appendix A. Fig. 2 presents the
fits of the strength histograms, obtained by both the present
model and the two-parameter Weibull model. The plots are
made in the Weibull scale, in which the Weibull distribution
is a straight line.

A salient feature of these histograms is a kink separating
each histogram into two segments. Similar kinks have also
been found for other quasibrittle materials such as cement
mortar and fibrous composites [26,25,21,19,20,13]. Obviously,
the two-parameter Weibull distribution cannot fit both seg-
ments simultaneously.

By contrast, the current model allows an excellent fit of
these histograms over the entire range, with both segments
and the kink location matched well. The histogram can be
subdivided into three ranges of failure probability. For the low
probability range, the stress is so low that the strength of all
the RVEs lies in the Weibullian tail, causing that the cdf of the
strength of the whole structure follows the Weibull distribu-
tion.

For the intermediate failure probability range, each RVE
has a different type of cdf because of the non-uniformity of
the stress field. Some of the RVEs are subjected to high stress
which corresponds to the Gaussian part of the strength cdf,
while the remaining RVEs still experience a low stress corre-
sponding to the Weibull tail of the strength cdf.

For the high failure probability range, the stress is high
enough for most RVEs to follow the Gaussian distribution,
though with different stress value. Note that the transitions
between these three portions are smooth. The transition
between the first and second ranges creates in the histogram
a kink. The kink point may be identified with the grafting
probability, and its location is a measure of brittleness or qua-
sibrittleness of the structure. It is impossible to identify the
exact kink location (or the grafting probability) by mere visual
examination of the histogram. But if the lower part of the his-
togram is fitted by Weibull cdf and the upper part by the Eqs.
(1–3) for the weakest link model, the grafting point is unique
(see Appendix A).

Many researchers attempted to determine the Weibull
modulus by fitting the strength histograms that were not quite
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Table 2 – Prediction of design strength

Material Code �design (MPa) at Pf = 0.01 �design (MPa) at Pf = 0.05

Weibull Current Model Error (%) Weibull Current Model Error (%)

AG 161.13 215.05 25.07 228.04 264.35 13.75
D 39.30 47.96 18.05 49.50 55 10.00
IE 52.10 59.07 11.80 62.90 64.21 2.05
VAC 104.38 108.46 3.76 114.58 116.62 1.75
VAD 40.20 42.49 5.38 47.30 48.60 2.67
VMK 55.92 56.84 1.62 65.27 65.94 1.01
Z 729.80 810.92 10.00 797.20 835.17 4.55

straight [15,24]. However, fitting a two-parameter Weibull
cdf to the entire histogram will always underestimate the
Weibull modulus. Since the kink (or grafting) point separates
the distribution into two segments, only the slope of the
lower segment, which is steeper, represents the true Weibull
modulus. The error in m obtained by fitting the histograms
with a two-parameter Weibull model is nearly undetectable
if only specimens of one size are used, and if the struc-
ture size (compared to the inhomogeneity size or the RVE
size) is so large that the kink (or the grafting point) lies
at the upper margin of the histogram. This happens to be
the case for some of the histogram tests analyzed here, i.e.
Vita VMK 68, Vitadur Alpha Dentin, and Vitadur Alpha Core.
Nevertheless, for some dental ceramics studied here (Zironia-
TZP, IPS Empress and Alumina glass Composite), the kink
lies in the middle range of the histogram, and the Weibull
modulus identified by data fitting with the two-parameter
Weibull model can be as low as one third of the correct
value (Fig. 2).

To be sufficiently reliable, the restorative dental ceramics
should be designed for failure probability Pf ≤ 10−2 [1,15]. If
100 tests are carried out, only one test is likely to lie below 10−2.
To demonstrate Pf ≤ 10−2 experimentally, one would need to
obtain almost 100 realizations in the tail beyond 10−2, which
would require increasing the number of test about 100 times.
Therefore, one would need > 104 tests to verify such a proba-
bility purely empirically, i.e., by histogram testing at real size.
Therefore, to reduce the cost, it is preferable to deduce Pf from
a well founded statistical model that can be calibrated by much
fewer tests.

Many researchers predicted flexural strength for 1 and 5%
failure probabilities based on two-parameter Weibull model
calibrated by the strength histograms [15,24]. Table 2 shows
the comparisons between the prediction of flexural strength
by the two-parameter Weibull cdf and the present model. It
is clear that, at the failure probabilities of 1 and 5% the two-
parameter Weibull cdf underestimate the predicted strength.
At Pf = 5%, the two-parameter Weibull cdf underestimates the
design strength by nearly 3% for most of the materials, and for
some even by 14%. At Pf = 1%, the underestimation is around
6% for most of the materials, and for some even 25%. If lower Pf

were specified, the underestimation of design strength would
be even greater.

Therefore, while the two-parameter Weibull cdf does give a
safe design strength, it can lead to significant over-design. On
the other hand, the three-parameter Weibull cdf, which has a
finite threshold, can lead to a severe over-estimation of design
strength.

5. Closing remarks

In closing, the present theory, which is based on atomistic
fracture mechanics, gives more realistic predictions of the
strength distribution of restorative dental ceramics. The two-
parameter Weibull distribution used so far cannot fit the entire
strength histograms and often leads to erroneous predictions
of the design strength.

Finally, it should be emphasized that that the best way to
calibrate the strength distribution is to test histograms not
only for one size but also for some significantly different size.
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Appendix A. Optimum least-square fitting
algorithm used

(1) First estimate the RVE size and calculate the stress field.
According to the nonlocal model, the RVE size is roughly
the double or triple of the maximum size of material inho-
mogeneities [8,9]. The structure may be discretized by
elements having approximately the RVE size, and then the
elastic stress field s(x) can be generally obtained by finite
element method. For simple structures such as the four-
point flexure test considered here, the stress field can be
simply calculated according to the engineering theory of
beam bending.

(2) By fitting the lower portion of the histogram, which
appears to be a straight line in the Weibull scale, one can
obtain the Weibull modulus m and the scale parameter
S of the Weibull portion of the strength cdf. If the stress
field s(x) is known, the Neq value for the Weibull portion is
calculated as Neq =

∑n

i=1〈si(xi)〉m. The scale parameter of
the Weibull tail of the strength cdf of one RVE is obtained
as s0 = SN

1/m
eq . Thus the Weibull modulus m and the scale

parameter s0 for the Weibull tail are fixed.
(3) To define the entire strength cdf for one RVE, two more

statistical parameters must be determined. Convenient
parameters are the grafting probability Pgr and the coef-
ficient of variation ω0 of the entire strength distribution of
one RVE. An empirical equation was calibrated to relate
the normalized standard deviation of the Gaussian core to
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Pgr and ω0 [9]:

ıGn =
(

ıG

s0

)

= exp

{
−3.254 + 11.566ω0 −

[
1000Pgr

108.8Pgr + 0.1334

]
ω2

0

}

(10)

Then the normalized grafting stress can be calculated as

ςgr =
(

�gr

s0

)
= [− ln(1 − Pgr)]

1/m (11)

and the normalized mean of the Gaussian core can be
obtained as

�Gn =
(

�

s0

)
= ςgr + ıGn{−2 ln[

√
2�mıGnςm−1

gr e
−ςm

gr ]}1/2
(12)

Finally, the normalizing parameter rf can be calculated as

rf = (1 − Pgr)
[

1 − 	

(
ςgr − �Gn

ıGn

)]−1
(13)

where 	(x) = (1/
√

2�)
∫ x

−∞ e−x2/2 dx = error function rep-
resenting the standard Gaussian cdf. Knowing all these
parameters, one can obtain the entire strength cdf of one
RVE from Eqs. 1 and 2 .

(4) Pgr and ω0 are the free parameters to adjust so as to obtain
the optimum fit of the given histogram by the method
of least squares. For a given set of Pgr and ω0, the failure
probability of the structure Pf can be calculated from
Eq. (4). Let N = number of data points in the histogram
and yi(�i)(i = 1, · · ·, N) = failure probability corresponding
to stress �i. For Pgr, the reasonable parameter range
is (10−5 < Pgr < 10−2), and for ω0 it is (0.05 < ω0 < 1.0).
Since these ranges are relatively narrow, the simplest
programming is to choose sets of discrete values such
as Pgr = 10−5.00, 10−4.75, 10−4.50, 10−4.25, . . . 10−2.25, 10−2.00

and ω0 = 0.05, 0.10, 0.15, 0.20, . . . 1.00. There are only
520 possible combinations of these values, for each
of which the computer calculates the objective
function

F =
N∑

i=1

[ ln ( ln

{
1

1 − Pf (�i)

}
) − ln ( ln

{
1

1 − yi(�i)

}
) ] 2

(14)

and then chooses the combination giving the minimum
F. Alternatively, the Levenberg–Marquardt optimization
algorithm can be used to locate the minimum of F pre-
cisely.
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